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Abstract

Whereas there are numerous papers on the free vibrations of beams of uniform or non-uniform cross-
section carrying concentrated masses, the problem does not lend itself to the closed-form solution. Here
such a solution is reported, apparently for the first time. The solution originally derived for the
inhomogeneous beam without a concentrated mass is generalized to include a tip mass. The semi-inverse
method is utilized, to achieve this goal.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of beams is a classical subject. It is elucidated in books by Sekhniashvili [1] and
Gorman [2]. For example, in several handbooks there are tables and charts illustrating the natural
frequencies of beams under various conditions and complicating effects. The reader may consult
handbooks by Ananiev [3], Blevins [4], Pilkey [5] and Karnovsky and Lebed [6]. The subject of a
beam vibration with a concentrated mass has also attracted much attention. It has been studied
inter alia by Lau [7] (although the title uses the term ‘‘bar’’ instead of that of ‘‘beam’’), Lee [8],
Mabie and Rogers [9], Lau [10], Liu and Huang [11], Yang [12], Maltbaek [13] and Laura [14].
Extensive discussion was conducted on the proper boundary conditions in papers by To [15],
Laura [16], Jacquot [17] and To [18]. It is instructive to read the paper by Soedel [19] on
see front matter r 2005 Elsevier Ltd. All rights reserved.
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philosophical implications of the above discussion. The recent studies on this topic include papers
by De Rosa and Nicastro [20], Rossi et al. [21], De Rosa et al. [22,23].
All the above papers reported closed-form solutions. To the best knowledge of the writers, no

closed-form solution exists for the natural frequency of a beam, be it uniform or a non-uniform,
homogeneous or inhomogeneous, carrying a concentrated mass. In what follows, such a solution
is derived for an inhomogeneous beam with variable modulus of elasticity, resulting in variable of
flexural rigidity. The mass density is assumed to be constant.
2. Analysis

The differential equation that governs the vibration of an inhomogeneous beam reads:

q2

dx2
DðxÞ

q2yðx; tÞ
qx2

� �
þ rðxÞAðxÞ

q2y
qt2

¼ 0, (1)

where

DðxÞ ¼ EðxÞIðxÞ (2)

is the flexural rigidity, EðxÞ the Young’s modulus, IðxÞ the moment of inertia, rðxÞ the mass
density, AðxÞ the cross-sectional area, yðx; tÞ the displacement, x the axial coordinate, and t the
time. We consider the case in which the cross-sectional area is a constant, AðxÞ ¼ const,
IðxÞ ¼ const, along with the mass density rðxÞ ¼ const. We introduce the non-dimensional
coordinate x:

x ¼ x=L, (3)

where L is the beam’s length. The beam is clamped at one end, leading to boundary conditions:

yðx; tÞ ¼ 0; qy=qx ¼ 0 at x ¼ 0 (4)

and at the tip carries a concentrated mass M of negligible dimensions. The boundary conditions at
x ¼ L read:

q2y=qx2 ¼ 0, (5)

q
qx

DðxÞ
q2y
qx2

� �
¼ M

q2y
qt2

at x ¼ L. (6)

For the beam with DðxÞ ¼ const, condition (6) reduces to that given by Laura [16]. We seek for
harmonic vibrations in time, and set

yðx; tÞ ¼ Y ðxÞ sinot, (7)

where Y ðxÞ is the mode shape, o the natural frequency to be determined. Substituting Eq. (7) into
Eq. (1) in view of Eq. (3) we get

d2

dx2
DðxÞ

d2Y

dx2

� �
� rAo2L4Y ¼ 0. (8)

Following Ref. [24], we seek a polynomial solution for Y ðxÞ:
Y ðxÞ ¼ a0 þ a1xþ a2x

2
þ a3x

3
þ x4, (9)
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where four constants, namely a0; a1; a2, and a3 ought to be determined from the boundary
conditions. Utilization of conditions (4) leads to

a0 ¼ a1 ¼ 0. (10)

Condition (5) results in
a2 þ 3a3 ¼ �6. (11)

In order to impose condition (6) we need an expression for DðxÞ. We postulate it in the form of
the fourth-order polynomial:

DðxÞ ¼ b0 þ b1xþ b2x
2
þ b3x

3
þ b4x

4, (12)

where b0; b1; b2; b3 and b4 are constants, to be determined. We use the semi-inverse method, i.e.
such values of bj so that postulates (9) and (12) satisfy the governing differential equation (8) and
remaining boundary condition (6) in exact terms. The latter condition yields:

ðb1 þ 2b2 þ 3b3 þ 4b4Þð2a2 þ 6a3 þ 12Þ þ ðb0 þ b1 þ b2 þ b3 þ b4Þð6a3 þ 24Þ

¼ �Mo2L3ða2 þ a3 þ 1Þ. ð13Þ

We solve Eqs. (11) and (13) to obtain:

a2 ¼ 3½Mo2L3 � 12Dð1Þ�=2½Mo2L3 � 3Dð1Þ�, (14)

a3 ¼ �5Mo2L3 � 24Dð1Þ=2½Mo2L3 � 3Dð1Þ�, (15)

where Dð1Þ ¼ b0 þ b1 þ b2 þ b3 þ b4. Substitution of Eqs. (9) and (12), bearing in mind Eqs. (14)
and (15) into Eq. (8) leads to fourth-order polynomial equation in terms of powers of x:

X4
j¼0

Cjx
j
¼ 0, (16)

where

C0 ¼ 24b0 � 6b1ð5Mo2L3 � 24BÞ=F þ 6b2ðMo2L3 � 12BÞ=F , (17)

C1 ¼ 72b1 � 18b2ð5Mo2L3 � 24BÞ=F þ 18b3ðMo2L3 � 12BÞ=F , (18)

C2 ¼ 144b2 � 36b3ð5Mo2L3 � 24BÞ=F þ 36b4ðMo2L3 � 12BÞ=F

� 3rAo2L4ðMo2L3 � 12BÞ=2F , ð19Þ

C3 ¼ 240b3 � 60b4ð5Mo2L3 � 24BÞ=F � rAo2L4ð5Mo2L3 � 24BÞ=2F , (20)

C4 ¼ 360b4 � rAo2L4 ¼ 0, (21)

where
B ¼ Dð1Þ ¼ b0 þ b1 þ b2 þ b3 þ b4, (22)

F ¼ Mo2L3 � 3B. (23)

Since Eq. (16) must be valid for every value of x, all coefficients Cj in front of xj must vanish
ð j ¼ 0; 1; 2; 3; 4Þ.
The expression C4 in front of x4 is C4 ¼ 360b4 � rAo2L4 ¼ 0.
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This equation gives us the formula for the natural frequency squared:

o2 ¼ 360b4=rAL4. (24)

This expression coincides with the value of the natural frequency squared derived from
inhomogeneous beams without concentrated mass by Elishakoff and Candan [25]. This means that
when the mode shape and flexural rigidity are sought in terms of polynomial functions, the expression
for the natural frequency is unaffected by the value of the concentrated mass M. The natural question
arises: What is the effect of the concentrated mass if the analytical expression for the natural frequency
remains unchanged by the presence of the concentrated mass? The answer is that, the expressions for
the coefficients bj of the flexural rigidity are affected by the concentrated mass.
We introduce the ratio of the concentrated mass to the mass of the entire beam:

a ¼ M=rAL. (25)

Substitution of Eqs. (24) and (25) into the expression for C3 results in

240b3 þ 120b4ð1800ab4 � 24BÞ=360ab4 � 3B ¼ 0. (26)

This equation is linear in terms of b0, allowing expressing b0 in terms of the rest of the
coefficients bj:

b0 ¼ b3b4ð120a� 5Þ � b1b3 � b2b3 � b2
3 � 4b4ðb1 þ b2Þ þ b2

4ð300a� 4Þ=b3 þ 4b4. (27)

Substitution of the expression into that of C2 gives

2b2b4 þ b2
3 þ 14b3b4 þ 28b2

4 ¼ 0, (28)

which is linear in terms of b2. We solve it out for b2 to get

b2 ¼ �ðb23 þ 14b3b4 þ 28b2
4Þ=2b4. (29)

Substitution of this expression into C1 yields:

4b1b
2
4 � b23 � 16b2

3b4 � 32b3b
2
4 ¼ 0, (30)

which is linear in terms of b1. We express b1:

b1 ¼ b3ðb
2
3 þ 16b3b4 þ 32b2

4Þ=4b2
4. (31)

Substitution into expression (17) for C0 gives

20b4b
4
3 þ 100b33b

2
4 þ 240b2

3b
3
4 þ 600b3b

2
4 þ 864b5

4 þ b53 þ 960ab3b
4
4 þ 2400ab54 ¼ 0. (32)

This is a quintic equation for either b3 or b4. At this stage we note that the unknowns are
o2; b0; b1; b2; b3 and b4. Thus, we have six unknowns; the number of equations Cj ¼ 0; ð j ¼
0; 1; 2; 3; 4Þ is five.
We conclude at this stage that without setting an additional constraint we get infinite

number of solutions. Let us first express these solutions in terms of a single parameter
b4, which will be treated as an arbitrary parameter. Hence it makes sense to express b3 in
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terms of b4:

b3 ¼ bb4. (33)

We notice that because Eq. (32) is quintic, for a specified a and b, one has to resort to a
numerical solution. However, an analytical solution is available in an implicit form, expressing a
from Eq. (32):

a ¼ �
ðb4

3 þ 16b33b4 þ 36b2
3b

2
4 þ 96b3b

2
4 þ 216b44Þðb3 þ 4b4Þ

480b44ð2b3 þ 5b4Þ
. (34)

Now, setting

b ¼ bn, (35)

where bn is a pre-selected value, and substituting it into Eq. (34) results in the appropriate value
for the mass ratio. For different values of b4 we obtain the exact analytical expressions via use of
Eqs. (27), (31) and (29).
For bn

¼ �5, and b4 ¼ 1 and we get a ¼ 739
2400

, b0 ¼
473
8
, b1 ¼

115
4
, b2 ¼

17
2
. The associated flexural

rigidity of the beam is (Fig. 1)

DðxÞ ¼ 473
8
þ 115

4
xþ 17

2
x2 � 5x3 þ x4. (36)

For bn
¼ �6, b4 ¼ 1 and we have a ¼ 51

70
, b0 ¼ 106, b1 ¼ 42; b2 ¼ 10 (Fig. 2):

DðxÞ ¼ 106þ 42xþ 10x2 � 6x3 þ x4. (37)

For bn
¼ �7, and b4 ¼ 1 and we obtained a ¼ 593

480
, b0 ¼

1309
8
, b1 ¼

217
4
, b2 ¼

21
2
(Fig. 3):

DðxÞ ¼ 1309
8

þ 217
4
xþ 21

2
x2 � 7x3 þ x4. (38)
Fig. 1. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �5.
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Fig. 2. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �6.

Fig. 3. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �7.
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For bn
¼ �8, and b4 ¼ 1 and we arrive at a ¼ 293

165, b0 ¼ 226, b1 ¼ 64; b2 ¼ 10 (Fig. 4):

DðxÞ ¼ 226þ 64xþ 10x2 � 8x3 þ x4. (39)
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Fig. 4. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �8.

Fig. 5. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �9.
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For bn
¼ �9, and b4 ¼ 1 and we get a ¼ 945

416, b0 ¼
2273
8 , b1 ¼

279
4 , b2 ¼

17
2 (Fig. 5):

DðxÞ ¼ 2273
8

þ 279
4
xþ 17

2
x2 � 9x3 þ x4. (40)
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Fig. 6. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �10.

Fig. 7. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �11.
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For bn
¼ �10, and b4 ¼ 1 and we are left with a ¼ 131

50 , b0 ¼ 326, b1 ¼ 70; b2 ¼ 6 (Fig. 6):

DðxÞ ¼ 326þ 70xþ 6x2 � 10x3 þ x4. (41)
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Fig. 8. Variation of flexural rigidity vs. non-dimensional axial coordinate b ¼ �12.
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For bn
¼ �11, and b4 ¼ 1 and we get a ¼ 21973

8160
, b0 ¼

2693
8
, b1 ¼

253
4
; b2 ¼

5
2
(Fig. 7):

DðxÞ ¼ 2693
8

þ 253
4
xþ 5

2
x2 � 11x3 þ x4. (42)

For bn
¼ �12, and b4 ¼ 1 and we obtain a ¼ 222

95
, b0 ¼ 298, b1 ¼ 48; b2 ¼ �2 (Fig. 8):

DðxÞ ¼ 298þ 48x� 2x2 � 12x3 þ x4. (43)

3. Discussion

In all the above cases the flexural rigidity turns out to be a positive-valued function throughout
x 2 ½0; 1�. This is the condition needed to get a physically feasible solution. Thus, one cannot set
the value of b that will result in negative flexural rigidity throughout beam’s length. Unique
solution can be obtained if one sets additional conditions. These can be set in different forms:
(1) One can demand that the beam with flexural rigidity in Eq. (12) should have a pre-selected

solution under some static loading.
(2) One can demand that the value of the flexural rigidity at some cross-section should be equal

to the pre-selected one. For example, one can demand that the flexural rigidity at the tip cross-
section should equal Dð1Þ ¼ B ¼ Dn, where Dn is a given quantity.
(3) One can demand that the natural frequency of the beam should be equal to some set value

O. In this case, from Eq. (24) one obtains the value for b4:

b4 ¼ O2rAL4=360 ¼ bn

4. (44)

Once the value of b4 is so obtained, one evaluates the values of the other coefficients in terms of
the mass ratio and bn

4.
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The obtained solution can be used as a benchmark for verification of approximate or numerical
techniques; additionally, when and if in the future a manufacturing method will be developed to
produce an arbitrary variation of the modulus of elasticity EðxÞ one will be in a position to design
beams with pre-selected criterion on their performance.
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