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Abstract

A modeling method for the flapwise bending vibration analysis of a rotating multi-layered composite
beam is presented in this paper. For the modeling method, the shear and the rotary inertia effects are
considered based on Timoshenko beam theory and hybrid deformation variables are employed to derive
the equations of motion. Dimensionless parameters are identified from the equations of motion and the
combined effects of the dimensionless parameters on the modal characteristics of the rotating composite
beams are investigated through numerical study.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating composite beam structures are often found in engineering examples like helicopter
blades. In order to design such structures, their modal characteristics need to be estimated
accurately. The modal characteristics of rotating flexible structures differ significantly from those
of non-rotating flexible structures. Centrifugal inertia force due to rotational motion causes the
variation of bending stiffness, which naturally results in the variations of natural frequencies and
mode shapes. Since composite structures possess the property of high strength/weight ratio, they
are frequently utilized for practical structural designs these days. Moreover, the stiffness property
of composite structures can be easily modulated through changing their fiber orientation angles
see front matter r 2004 Elsevier Ltd. All rights reserved.
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and number of layers. However, since composite structures usually possess extremely low shear
modulus compared to extensional modulus (for instance, the ratio for graphite–epoxy is around
1
30
– 1
50
), deliberate consideration of shear (even if the composite structure has a slender shape) is

usually necessitated to calculate the modal characteristics accurately. For isotropic structures
having slender shapes, the shear effect (along with the rotary inertia effect) can be ignored without
significant loss of accuracy.
There exists large amount of literature related to modal characteristics of rotating flexible

structures. Southwell and Gough [1] pioneered to provide an analytical model (which is often
called the Southwell equation) to calculate the natural frequencies of rotating beams. Due to the
simplicity of the model, it is still used by many engineers in the field of turbo-machine blade
designs. Later, Schilhansl [2] derived the equations of motion for rotating cantilever beams and
obtained more accurate coefficients for the Southwell equation based on the Ritz method. Thus,
analytical models were introduced in the early stage of research for rotating flexible structures. As
the computational technology progressed, a large number of papers in which numerical methods
were employed were published (see, for instance, Refs. [3–10]). These papers, however, deal with
rotating flexible structures made of isotropic materials. Even if the modal characteristics of
stationary composite structures were frequently studied (see, for instance, Refs. [11–15]), relatively
a few number of papers regarding rotating composite structures can be found in the literature. In
these papers (see, for instance, Refs. [16,17]), nonlinear strain measures were employed to capture
the stiffening effect of rotating composite structures. Steady-state in-plane strain measures were
obtained from longitudinal equations, and then substituted into bending equations. This two-step
procedure is quite involved and lacks rigorousness. Moreover, the combined effects of angular
speed, hub radius, slenderness ratio, shear/extension modulus ratio, and fiber orientation angles
on the modal characteristics were not scrutinizingly investigated in these works.
The purpose of the present study is to propose a modeling method to analyze the modal

characteristics of rotating multi-layered composite beams. The modeling method employs
Timoshenko beam theory and hybrid deformation variables to derive the equations of motion.
The complexities involved in employing nonlinear strain measures could be avoided in this
modeling method. Incidentally, to eliminate the coupling effect between two bending motions
(thus, to avoid undesired twist), a set of skew-symmetric fiber orientation angles is employed for
the layers. Thus, complexities involved in considering the coupling effect between two bending
motions could be avoided with the modeling method and the combined effects of angular speed,
hub radius, slenderness ratio, shear/extension modulus ratio, and fiber orientation angles of layers
on the modal characteristics are investigated. Especially, the effects of shear and rotary inertia on
the modeling accuracy of rotating composite beams are investigated. Such effects are often
ignored indiscriminately for slender beams. In the present study, the combined effects of
slenderness and shear/extension modulus ratios on the shear and the rotary inertia (thus, on the
modal characteristics) of multi-layered composite beams are scrutinizingly analyzed.
2. Derivation of the equations of motion

The configuration of a cantilever beam attached to a rotating rigid hub having radius r is shown
in Fig. 1. The elastic deformation of the beam is denoted as ~u in the figure. Conventionally,
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Cartesian deformation variables are employed to represent the elastic deformation. In the present
study, however, a non-Cartesian variable s denoting arc-length stretch is employed instead of u
which denotes the axial deformation. Thus, a hybrid set (Cartesian variable w denoting flapwise
bending deformation along with the non-Cartesian variable s) is employed to derive the equations
of motion.
The elastic strain energy of a composite beam employing the hybrid set (based on Timoshenko

beam theory) is given as follows:

U ¼
1

2

Z L

0

A11
qs

qx

� �2

þ 2B11
qs

qx

� �
qy
qx

� �
þ D11

qy
qx

� �2

þ kA33 yþ
qw

qx

� �2
" #

dx (1)

where L denotes the length of the beam, k denotes the shear correction factor and y denotes cross-
section rotation angle. Also, Aij ; Bij and Dij can be obtained by integrating the properties of the
composite beam layers (shown in Fig. 2) as follows:
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Fig. 1. Configuration of a rotating cantilever beam.
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Fig. 2. Composition of a multi-layered composite beam.
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D11 ¼ b

Z h=2

�h=2
Q

ðkÞ
11 z2 dz ¼

b

3

XN

k¼1

Q
ðkÞ
11 ðz

3
k � z3k�1Þ (2)

where zk and zk�1 denote distances from the mid-plane to the top and the bottom surfaces of the
kth layer, b and h denote the width and the thickness of the beam, N denotes the number of total
layers, and Q

ðkÞ
ij denotes the off-axis stiffness of the kth layer, which are determined by the fiber

orientation angle Gk as follows:

Q
ðkÞ
11 ¼ C11 cos

4 Gk þ C22 sin
4 Gk þ 4C12 sin

2 Gk cos
2 Gk

Q
ðkÞ
33 ¼ C23 sin

2 Gk þ C13 cos
2 Gk (3)

where Cij’s are determined by the material properties (see Ref. [18]) as follows:

C11 ¼
E1

1� n13n31

C22 ¼
E2

1� n13n31

C12 ¼ G12

C23 ¼ G23

C13 ¼ G13 (4)
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where Ei’s denote the Young’s modulus and Gij’s denote the shear modulus of the composite
beam.
If the shear deformation is ignored, y ¼ �qw=qx and the strain energy based on

Euler–Bernoulli beam theory is reduced to

U ¼
1

2

Z L

0

A11
qs

qx

� �2

� 2B11
qs

qx

� �
q2w
qx2

� �
þ D11

q2w
qx2

� �2
" #

dx (5)

To obtain ordinary differential equations of motion, deformation variables are approximated
using the Rayleigh–Ritz assumed mode method as follows:

sðx; tÞ ¼
Xm1
j¼1

f1jðxÞq1jðtÞ

wðx; tÞ ¼
Xm2
j¼1

f2jðxÞq2jðtÞ

yðx; tÞ ¼
Xm3
j¼1

f3jðxÞq3jðtÞ (6)

where f1j; f2j; and f3j denote spatial mode functions. Any compact set of admissible functions
that satisfy the geometric boundary conditions of the beam can be employed as the mode
functions. Also, q1j; q2j; and q3j denote generalized coordinates; and m1; m2; and m3 denote the
number of the generalized coordinates q1j; q2j; and q3j; respectively.
If the Kane’s method (see Ref. [19]) is employed, the equations of motion can be expressed as

follows:

Fi þ Fn

i ¼ 0 ði ¼ 1; . . . ;mÞ (7)

where m is the total sum of m1; m2; and m3; and the generalized forces Fi and Fn
i can be expressed as

follows:

Fi ¼ �
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qqi

Fn

i ¼ �

Z L
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� I
2
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where qi’s consist of q1j’s, q2j’s, and q3j’s; r denotes the mass per unit length of the beam;
~vP

i and ~aP denote the partial velocity and the acceleration of the generic point P; ~odB; ~odB
i ;

and ~adB; respectively, denote the angular velocity, the partial angular velocity, and the angular
acceleration of the arbitrary cross-section of the beam; and I

2
denotes the inertia dyadic per

beam length.
The velocity of the generic point P can be derived employing the following equation:

~vP
¼ ~vO

þA~vP
þ o

*A
� ð~r þ~uÞ (9)
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where ~vO denotes the velocity of the reference point O that is fixed to the rigid frame A;
A~vPdenotes the relative velocity of P with respect to A; ~oA is the angular velocity of the rigid frame
A; and ~r denotes the position vector from point O to point P in the un-deformed configuration.
When the rigid hub rotates at a constant angular speed O; each vectors in Eq. (9) can be expressed
as follows:

~vO
¼ rOâ2 (10)

A~vP
¼ _uâ1 þ _wâ3 (11)

o
*A

¼ Oâ3 (12)

~r ¼ xâ1 (13)

~u ¼ uâ1 þ wâ3 (14)

where â1; â2; and â3 denote mutually orthogonal unit vectors fixed in A. By substituting
Eqs. (10)–(14) into Eq. (9), the velocity of the point P can be obtained as follows:

~vP
¼ _uâ1 þ ½Oðr þ x þ uÞ	â2 þ _wâ3 (15)

In Eq. (15), u and _u need be expressed in terms of s, w, and their time derivatives (since s instead of
u is approximated). The geometric relation between the arc-length stretch s and the Cartesian
variables is given as follows:

s ¼ u þ
1

2

Z x

0

qw

qs

� �2

dsþ ðHigher degree termsÞ (16)

Differentiation of the above equation with respect to time gives

_s ¼ _u þ

Z x

0

qw

qs

� �
q _w
qs

� �
dsþ ðHigher degree termsÞ (17)

Using Eqs. (15)–(17), the partial derivative of the velocity of P with respect to the generalized
speed _qi can be obtained as follows:

q~vP

q _qi

¼ f1i �
Xm
j¼1

Z x

0

f2i;Zf2j;Z dZ
� �

qj

" #
â1 þ f2iâ3 (18)

where the subscript Z after comma denotes a partial differentiation with respect to the variable. By
differentiating Eq. (15) with respect to time, the acceleration of P can be obtained as follows:

~aP
¼ ½ €u � O2ðr þ x þ uÞ	â1 þ 2O _uâ2 þ €wâ3 (19)

In Eq. (8), the angular velocity, the angular acceleration, and the inertia dyadic per beam length
can be obtained as follows:

~odB
¼ ~oA

þA~odB
¼ �_yâ2 þ Oâ3

~adB ¼ O_yâ1 � €yâ2
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I
2

¼ r
I2

A
â2â2 (20)

where I2 denotes the area moment of inertia in â2 axis and A is the cross-section area of beam. The
partial derivative of the angular velocity with respect to the generalized speed _qi can be obtained
as follows:

q~odB

q _qi

¼ �f3iâ2 (21)

Substituting Eqs. (18)–(21) into Eq. (8), the final equations of motion can be obtained. The
equations of motion consist of three parts that are related to stretching, flapwise bending, and
shear deformations. Since the natural frequencies related to stretching modes are much larger
than those of bending modes, only the following equations (that are related to flapwise bending
and shear deformations) will be employed for the modal analysis.
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Also, the equations of motion based on Euler beam theory are reduced as follows:
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To convert the equations of motion into a dimensionless form, the following dimensionless
variables are introduced:

t �
t

T
; x �

x

L
; y2i ¼

q2i

L
; y3i ¼ q3i; faiðxÞ ¼ caiðxÞ; g ¼ TO (25)
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The notation T denotes a reference time, which is defined as follows:

T �

ffiffiffiffiffiffiffiffi
rL4

D

s
(26)

where D denotes the value of D11 when all the angles of layers are zero. Introducing the
dimensionless variables into Eq. (18), the following equations can be obtained:

Xm2
j¼1

½M22
ij
€y2j þ fba2K22

ij þ g2KG2
ij gy2j	 þ ba2

Xm3
j¼1

KC23
ij y3j ¼ 0 i ¼ 1; . . . ; m2

Xm3
j¼1

½M33
ij
€y3j þ fa2dK33

ij þ ba4M33
ij gy3j	 þ ba4

Xm2
j¼1

KC32
ij y2j ¼ 0 i ¼ 1; . . . ; m3 (27)

where double dots over the symbol yaj denotes the double differentiation of yaj with respect to t
(dimensionless time) and

a ¼

ffiffiffiffiffiffiffiffiffi
AL2

I2

s
; b ¼

ð1� n13n31ÞkA33

bhE1
; d ¼

D11

D
(28)

where a denotes the slenderness ratio, b denotes the shear/extension modulus ratio, and
d denotes the bending rigidity modulation ratio, which is determined by the fiber
orientation angles Gk’s. Also the mass and the stiffness indices in Eq. (27) are defined as
follows:

Mab
ij ¼

Z 1

0

caicbj dx

Kab
ij ¼

Z 1

0

cai;xcbj;x dx

KG2
ij ¼

Z 1

0

sð1� xÞc2i;xc2j;x dxþ
1

2

Z 1

0

ð1� x2Þc2i;xc2j;x dx

KCab
ij ¼

Z 1

0

cai;xcbj dx (29)

where

s ¼
r

L
(30)

The notation s denotes the hub radius ratio. If yaj’s are harmonic functions of t; the column
matrix w which has y2j and y3j as its elements can be expressed as follows:

w ¼ ejotY (31)

where j denotes imaginary number, o denotes dimensionless natural frequencies (natural
frequencies multiplied by T); and Y denotes the constant column matrix characterizing the
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deflection shape of synchronous motion. Using Eq. (31), Eq. (27) can be expressed as follows:

o2MY ¼ KY (32)

where M and K denote square matrices which are constituted as follows:

M ¼
M22 0

0 M33

" #
; K ¼

K22 K23

K32 K33

" #
(33)

The element matrices in Eq. (33) are defined as follows:

K22 ¼ ba2K22 þ g2KG2

K23 ¼ ba2KC23

K32 ¼ ba4KC32

K33 ¼ da2K33 þ ba4M33 (34)

3. Numerical results

In this section, the eigen analysis results obtained by employing Eq. (32) will be presented and
discussed. To obtain the numerical results, the composite beams that consist of 4 skew symmetric
fiber orientation layers ½0�=G=� G=0�	 are considered. Every layer thickness is identical and the
composite beams are made of a graphite–epoxy. The material properties of the graphite–epoxy
are given in Table 1.
To check the accuracy of the modeling method proposed in this study, the numerical

results obtained by using the proposed modeling method are compared to those presented
in Refs. [13,14] and those obtained by a commercial program. For the skew symmetric 4-layer
disposition, G ¼ 90� is employed. The hub radius ratio s and the slenderness ratio a are given
as 0 and 50, respectively. Tables 2 and 3, respectively, show the lowest five dimensionless
natural frequencies of the stationary and the rotating composite beams. Table 2 clearly shows that
the results obtained by the present modeling method are in good agreement with those of
Table 1

Material properties of the graphite–epoxy used for the composite beams

Notation Description Data

E1 Young’s modulus along the fiber direction 14.5 � 1010 Pa

E2 Young’s modulus transverse to the fiber direction 0.96 � 1010 Pa

E3 Young’s modulus transverse to the fiber direction 0.96 � 1010 Pa

G12 Shear modulus between 1 and 2 directions 0.41 � 1010 Pa

G13 Shear modulus between 1 and 3 directions 0.41 � 1010 Pa

G23 Shear modulus between 2 and 3 directions 0.34 � 1010 Pa

n13 Poison’s ratio between 1 and 3 directions 0.3

k Shear correction factor 5/6
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Table 2

Comparison of lowest five dimensionless natural frequencies for a stationary composite beam

Mode Ref. [13] Ref. [14] Present

1 3.045 3.073 3.064

2 13.90 14.44 14.36

3 31.46 31.75 31.40

4 48.63 49.68 48.87

5 65.85 66.23 66.24

G ¼ 90�; a ¼ 50:

Table 3

Comparison of lowest five dimensionless natural frequencies for the rotating composite beam

g Mode Present ANSYS Error (%)

0 1 3.067 3.06 �0.225

2 14.359 14.172 �1.319

3 31.397 30.878 �1.681

10 1 10.698 10.63 �0.634

2 28.802 28.525 �0.972

3 52.397 51.729 �1.292

50 1 20.522 20.356 �0.815

2 51.492 51.05 �0.865

3 86.791 85.786 �1.172

G ¼ 90�; a ¼ 50; s ¼ 0:

H.H. Yoo et al. / Journal of Sound and Vibration 286 (2005) 745–761754
Refs. [13,14] for the stationary beams. Table 3 also shows that the results obtained by the
present modeling method are in good agreement with those of a commercial program for rotating
beams.
The lowest three dimensionless natural frequencies of a rotating composite beam versus the

dimensionless angular speed are shown in Fig. 3. The slenderness ratio a ¼ 70 ðL=hX20Þ and the
hub radius ratio s ¼ 0 are employed and G ¼ 90� is employed for the skew symmetric 4-layer
disposition. As inspected, all the natural frequencies increase as the angular speed increases. It
should be noticed that the second and the third natural frequencies estimated by Euler beam
theory are quite different from those estimated by Timoshenko beam theory. If the slender beam
were made of an isotropic material (instead of the composite material), the two theories would
provide trivial difference.
The variations of the lowest three dimensionless natural frequencies versus the slenderness ratio

a are shown in Fig. 4. The dimensionless angular speed g ¼ 5 and the hub radius s ¼ 0:1 are
employed for the analysis. As the slenderness ratio increases, the difference between results
produced by two theories decreases. As shown in the figure, the difference becomes negligible as a
approaches 210. As shown in these results, the well-known rule of thumb that the two theories
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produce negligible difference if a exceeds 70 (i.e. L=hX20) is not valid for composite beams. At
a ¼ 70; the difference in the produced by the two theories is approximately 8%. Table 4 shows a
percentage errors between two results estimated by Euler and Timoshenko beam theories for
isotropic and composite beams. The material properties of the composite beams are given in Table
1. g ¼ 5 and s ¼ 0:1 are employed for the analysis. In the table, li’s denote percentage errors
between the ith dimensionless natural frequencies estimated by two theories. It is shown that the
error gets larger for higher natural frequencies. With an isotropic material, l3 becomes less than



ARTICLE IN PRESS

Table 4

Percentage errors between two results estimated by Euler and Timoshenko beam theories for isotropic and composite

beams

a l1 l2 l3

Iso Com Iso Com Iso Com

50 0.311 2.413 5.567 13.30 5.389 27.22

70 0.160 1.340 1.133 8.047 2.898 18.30

100 0.079 0.689 0.562 4.374 1.463 10.84

210 0.018 0.162 0.129 1.079 0.339 2.918

Iso: isotropic, com: composite, g ¼ 5; s ¼ 0:1:
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3% when a exceeds 70. However, for a beam made of the composite material, similar accuracy
could be obtained with the Euler beam theory only if a exceeds 210.
The errors estimated for isotropic and composite beams (by Euler and Timoshenko beam

theories) are different since the shear/extension modulus ratios for isotropic and composite beams
are different. The shear/extension modulus ratio ðbÞ of the composite material is 0.0214 while that
of an isotropic material is 0.292. The shear/extension modulus ratio for the composite beam can
be calculated by using Eq. (28) and the material properties given in Table 1. The error variations
versus the inverse of the shear/extension modulus ratio are shown in Fig. 5. As shown in the
figure, the error increases monotonically as the inverse of the shear/extension modulus ratio
increases. The slopes of the error loci increase as the mode number increases but they decrease as
the slenderness ratio increases.
The variations of the lowest three dimensionless natural frequencies versus the angular speed g

are shown in Fig. 6. The slenderness ratio a ¼ 70 is employed. Three hub radius ratios (s ¼ 0; 0.5,
2) are employed for the analysis. As shown in the figure, the slopes of the dimensionless frequency
loci increase as the hub radius ratio increases.
The variations of the lowest three dimensionless natural frequencies versus the fiber orientation

angle G of the skew symmetric layers are shown in Fig. 7. The slenderness ratio a ¼ 70; the
dimensionless angular speed g ¼ 5; and the hub radius ratio s ¼ 0:1 are employed for the analysis.
As shown in the figure, the natural frequencies decrease monotonically as the fiber orientation
angle increases. Approximately 5% decrement could be obtained with G ¼ 90�: Also it is noted
that the natural frequency variation occurs rapidly in the range of 30�pGp60�: However, the
variation occurs slowly in the range of 60�pGp90�:
The differences of the lowest three mode shapes estimated by Euler and Timoshenko beam

theories when g ¼ 5; s ¼ 0:1; a ¼ 70 are shown in Fig. 8. The differences between the two theories
are noticeable, if not significant. It is noted that the nodal and anti-nodal points estimated by
Timoshenko beam theory slightly move to the fixed end of the cantilever beam.
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4. Conclusion

A modeling method for the flapwise bending vibration analysis of rotating composite beams
having skew symmetric layers is presented in this paper. The skew symmetric layers are chosen to
avoid the twist deformation caused by the coupling between two bending motions. The Kane’s
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method along with the Rayleigh–Ritz assumed mode method is employed to derive the equations
of motion. The dimensionless parameters are identified from the equations of motion and the
effects of the dimensionless parameters on the modal characteristics of the rotating composite
beams are investigated. As inspected, the natural frequencies of the rotating composite beams
increase as the angular speed increases and the slopes of the natural frequency loci increase as the
hub radius ratio increases. The numerical results indicate that the slenderness ratio (to ignore the
shear and the rotary inertia effects without losing the accuracy of the modal analysis) should be
increased as the shear/extension modulus ratio decreases. It is also found that the natural
frequencies can be modulated within approximately 5% by changing the fiber orientation angles
of the skew symmetric layers of the composite beam.
Lastly, it should be noted that many coupling effects exist in the deformation of multi-layered

composite beams. In the present work, the coupling effect between stretching and flapwise
bending motions is only considered so that stiffening effect due to rotational motion can be
accurately captured. Other coupling effects are, however, not considered in the present work.
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