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Abstract

Small deformation three-dimensional free vibrations of a circular arch with uniform rectangular cross-
section have been investigated by using different theoretical approaches and by experimental verification.
Special emphasis has been focused on a numerical formulation which models each element of the arch using
the theory of a Cosserat point. Comparison has been made with accurate three-dimensional numerical
modeling of the arch using the computer program ANSYS. Also, three-dimensional beam elements in the
computer programs ANSYS and I-DEAS have been considered along with an exact solution of
approximate model equations of the arch. The results indicate that appropriate modeling of rotary inertia is
necessary to predict accurate frequencies associated with torsional out-of-plane modes. Moreover, in its
general form the theory of a Cosserat point is a fully nonlinear theory that has already been tested for
buckling of beams and arches. Therefore, the success of the Cosserat theory for the dynamic problem
considered in this paper suggests that the theory of a Cosserat point can be used for more complicated
nonlinear dynamic problems of thin rod-like structures.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A number of models of thin rods (curved beams) have been developed over the years. For
example, equations for static large deformations and small deformation vibrations of rods can be
see front matter r 2004 Elsevier Ltd. All rights reserved.
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found in Ref. [1]. Also, Kuo and Yang [2] have reviewed a number of approaches for buckling of
curved rods and presented an approach for deriving equations for a curved beam taking the limit
of an infinite number of infinitesimal straight beam elements. A more modern approach to the
mechanics of thin structures is based on Cosserat theories. These Cosserat theories are inherently
nonlinear and are valid for both static and dynamic response of rods. Specifically, the theory of
rods proposed by Antman [3,4] includes axial extension and tangential shear deformation of the
rod’s cross-section. More general equations which also include normal cross-sectional extension
and cross-sectional shear deformation have been developed by Green et al. [5,6]. Also, the recent
book by Rubin [7] discusses the Cosserat theories of shells, rods and points in a unified manner.
Modern applications of rod theory to micro-electro-mechanical-systems (MEMS) devices often

require the ability to model both geometric nonlinearity and dynamics. Since the dynamic
nonlinear response of a rod is characterized by partial differential equations which are functions
of one space variable and time t, numerical methods must be developed to obtain solutions to
general practical problems. Simo [8] and Simo and Vu-Quoc [9,10] have developed numerical
methods for the rod theory proposed by Antman [3]. More recently Rubin [11] has developed a
theory of a Cosserat point which is used to formulate the numerical solution of dynamic nonlinear
problems of rods of the type proposed by Green et al. [5,6]. The theory of a Cosserat point is a
fully nonlinear continuum theory which models the response of a small region like a finite
element. Within the context of this theory the rod is replaced by a finite set of connected elements,
each of which is modeled using the theory of a Cosserat point. As in the standard finite element
formulation, neighboring Cosserat points are connected by kinematic and kinetic conditions at
their common boundaries. Also, since the theory of a Cosserat point is fully nonlinear it can be
used to model the dynamic stiffening that occurs in rotating turbine and helicopter blades.
The theory of a Cosserat point for rods has been tested by considering the static post-buckling

behavior of nonlinear elastic beams and three-dimensional frames [12]. It has also been tested for
static nonlinear problems of rods [13] and for the static post-buckling response of shallow arches
[14]. The objective of this paper is to demonstrate that this theory of a Cosserat point can accurately
model the dynamic response of rods. To this end, attention is focused on the simplest problem of
small deformation free vibrations of a circular arch with a uniform rectangular cross-section.
The survey articles of Markus and Nanasi [15] and Chidamparam and Leissa [16] indicate that

although in-plane vibrations of circular arches have been considered by a number of authors,
studies of out-of-plane vibrations are much more rare. Some recent studies of out-of-plane
vibrations include Refs. [17–21], where more references can be found.
After taking the displacements of a circular arch to be sinusoidal functions of time with

frequency o; the equations for the magnitudes of these displacements can be determined by the
work by Tufekci and Arpaci [22] for in-plane deformations and by Tufekci and Dogruer [21] for
out-of-plane deformations. Specifically, for in-plane deformations the equations of motion
become

�mo2w ¼
1

R

dRt

df
�

Rn

R
; �mo2u ¼

1

R

dRn

df
�

Rt

R
; (1.1a,b)

�m
Ib

A

� �
o2Ob ¼

1

R

dMb

df
þ Rn; (1.1c)
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with the constitutive equations

Rt ¼ EA
1

R

dw

df
þ

u

R

� �
; Rn ¼

GA

kn

1

R

du

df
þ

w

R
� Ob

� �
; (1.2a,b)

Mb ¼ EIb

1

R

dOb

df

� �
: (1.2c)

Also, for out-of-plane deformations the equations of motion are given by

�mo2v ¼
1

R

dFb

df
; �m

In

A

� �
o2On ¼ �Fb þ

Mt

R
þ

1

R

dMn

df
; (1.3a,b)

�m
Ip

A

� �
o2Ot ¼ �

Mn

R
þ

1

R

dMt

df
; (1.3c)

with the constitutive equations

Fb ¼
GA

kb

1

R

dv

df
þ On

� �
; Mn ¼

EIn

R

dOn

df
þ Ot

� �
; (1.4a,b)

Mt ¼
GJp

R

dOt

df
� On

� �
: (1.4c)

The notation used in these equations is the same as that in the references except that r in Ref. [22]
has been changed to R and Ip in the expression for torsional stiffness in Ref. [21] has been
corrected to Jp: For the calculations in Refs. [21,22] the values of the shear correction coefficients
fkn; kbg and the second moments of area fI t; Ib; Ipg and the quantity Jp related to the torsional
stiffness were specified by (except that Ip was mistakenly set equal to Jp in Ref. [21])

kn ¼ kb ¼
6

5
; Ib ¼

H3W

12
; In ¼

HW 3

12
; Ip ¼ Ib þ In; (1.5a,b,c,d)

Jp ¼
H2W 2

3
Bðx3Þ; Bðx3Þ ¼

1

x3
1�

0:63

x3
1�

1

12x43

( )" #
; x3 ¼ Max

H

W
;
W

H

� �
; (1.5e,f,g)

where H is the radial thickness and W is the axial depth of the rod’s cross-section (Fig. 1).
Moreover, it can be seen that the in-plane and out-of-plane equations are uncoupled and that
torsion and bending are coupled in the out-of-plane modes. This is due to the fact that these
equations are based on thin rod theory and they ignore warping of the cross-section.
In the following analysis it will be shown that it is essential to distinguish between the rotary

inertia term Ip in Eq. (1.3c) and the torsional stiffness term Jp in Eq. (1.4c) to obtain accurate out-
of-plane frequencies and mode shapes. The fact that these two terms are equal for circular cross-
sections has possibly lead to an incorrect specification of Ip ¼ Jp for noncircular cross-sections in
some of the literature [18–21].
An outline of this paper is as follows. Section 2 presents a brief summary of the basic

equations of the theory of a Cosserat point for rods. Section 3 describes the numerical procedure
for connecting the N Cosserat points which are used to model the arch under consideration.
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Fig. 1. Sketch of a circular arch with mean radius R and a rectangular cross-section of thickness H and width W.
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Finally, Section 4 presents the experimental frequencies for free vibration of an arch with
three different boundary conditions. Additional analytical [21,22] and numerical results are
presented and discussed. Specifically, the Cosserat results are compared with converged
calculations using three-dimensional brick elements in the commercial computer code
ANSYS. Also, beam elements in ANSYS and another commercial computer code I-DEAS are
considered.
Throughout the text, bold faced symbols are used to denote vector and tensor quantities. Also,

I denotes the unity tensor; tr(A) denotes the trace of the second-order tensor A and AT denotes the
transpose of A. The scalar a.b denotes the dot product between two vectors a; b; the scalar
A.B ¼ trðABT

Þ denotes the dot product between two second-order tensors A, B; the vector a � b

denotes the cross product between a and b; and the second-order tensor a 	 b denotes the tensor
product between a and b. Moreover, the usual summation convention over repeated lower-cased
indices is implied with the range of Greek indices always being (1,2). The range of Latin indices
will usually be (1,2,3) but sometimes it will be ð0; 1; . . . ; 5Þ: Consequently, the range will be
explicitly stated whenever it is not clear from the context. Moreover, there is no sum implied when
the indices are upper-cased letters.
2. Basic equations of the theory of a Cosserat point

For the numerical solution of dynamic problems of rods, the rod is divided into N elements.
Here, the Ith element ðI ¼ 1; . . . ;NÞ is modeled using the theory of a Cosserat point [11] and the
equations of motion of the entire rod are obtained by using kinematic and kinetic coupling
conditions at the common boundaries of the elements. These coupling equations yield a set of
ordinary differential equations which are functions of time t only. This section briefly summarizes
the basic ideas with additional details being recorded in Refs. [7,11–13,23].
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Fig. 2. Sketch of the deformed configuration of the Ith Cosserat point.
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Fig. 2 shows a sketch of the deformed configuration of the Ith Cosserat point. Specifically, the
Ith cross-section ðI ¼ 1; 2; . . . ;N þ 1Þ is characterized by three nodal director vectors
fI d
0; I d
1; Id



2g; with I d
0 locating its centroid (relative to a fixed origin O), and fI d
1 and Id



2g

identifying deformable line elements in the cross-section. In addition to the usual three rotational
degrees of freedom of the cross-section, the nodal directors fI d
1 and I d
2g include: cross-sectional
extension (i.e. the lengths of Id



1 and I d
2 are allowed to change) and cross-sectional shear

deformation (i.e. the angle between Id


1 and I d
2 is allowed to change). Kinematic coupling requires

the nodal directors of the (I � 1)th element to be the same as those of the Ith element at their
common boundary. In the stress-free reference configuration these nodal directors take the
reference values fI D


0; I D

1; ID



2g:

Here, attention is confined to rods which have uniform rectangular cross-sections, with
thickness H and width W. The reference directors I Di are related to the reference nodal directors

I D

i by the expressions

I D0 ¼
1

2
ðI D


0 þ Iþ1D


0Þ; I D3 ¼

1

I L
ðIþ1D



0 � ID



0Þ;

I D1 ¼
1

2
ðI D


1 þ Iþ1D


1Þ; I D4 ¼

1

I L
ðIþ1D



1 � ID



1Þ;

I D2 ¼
1

2
ðI D


2 þ Iþ1D


2Þ; I D5 ¼

1

I L
ðIþ1D



2 � ID



2Þ; ð2:1Þ

where the length I L of the Ith element is determined by

jID3j ¼ 1; I L ¼ jIþ1D


0 � ID



0j: (2.2)

For the linearized theory the present values Id


i of the nodal directors and present values I di of

the element directors are expressed in terms of the nodal displacements Id


i and the director

displacements Idi; such that

I d
i ¼ ID


i þ Id



i for i ¼ 0; 1; 2; Idi ¼ I Di þ Idi for i ¼ 0; 1; . . . ; 5: (2.3)
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Also, Idi are related to Id


i through equations of type (2.1)

Id0 ¼
1

2
ðId



0 þ Iþ1d



0Þ; Id3 ¼

1

I L
ðIþ1d



0 � Id



0Þ;

Id1 ¼
1

2
ðId



1 þ Iþ1d



1Þ; Id4 ¼

1

I L
ðIþ1d



1 � Id



1Þ;

Id2 ¼
1

2
ðId



2 þ Iþ1d



2Þ; Id5 ¼

1

I L
ðIþ1d



2 � Id



2Þ: ð2:4Þ

Moreover, these displacements are determined by solving the balances of director
momentum

X5
j¼0

I mI yij
I d
��

j ¼ I mIb
i � I t

i for i ¼ 0; 1; . . . ; 5; (2.5)

with

I t
0 ¼ 0; I mI bi ¼ I mIB

i þ Im
i
1 þ I mi

2 for i ¼ 0; 1; . . . ; 5: (2.6)

In these equations, I m is the mass of the element, I yij are director inertia coefficients, I Bi are the
specific (per unit mass) external assigned director couples due to body force and tractions on the
lateral surface of the element, fIm

0
1; Im

0
2g are resultant forces and fIm

a
1; I ma

2; a ¼ 1; 2g are directors
couples which are applied to the ends of the element, and I t

i are intrinsic director couples which
need to be specified by constitutive equations.
Furthermore, for the linear theory the displacements fId



i ; Idig and the kinetic quantities

fI ti; IB
i; I mi

1; Im
i
2g (2.7)

are assumed to be small enough that quadratic terms in these quantities can be neglected. Also, it
is convenient to introduce the reciprocal vectors ID

i

IDi
.
I D j ¼ d j

1 for i; j ¼ 1; 2; 3; (2.8)

where d j
1 is the Kronecker delta symbol. Then, the homogeneous strain tensor IE and the

inhomogeneous strains Iba can be defined by

I E ¼
X3
i¼1

1

2
½Idi 	 ID

i þ I Di 	 Idi�;

Ib1 ¼ Id4 � ðID
i.

I D4ÞIdi; Ib2 ¼ Id5 � ðI Di.
I D5ÞIdi: (2.9)

Next, with reference to the fixed rectangular Cartesian base vectors ei ði ¼ 1; 2; 3Þ and the
cylindrical polar base vectors fer; ey; e3g

erðyÞ ¼ cos y e1 þ sin y e2; eyðyÞ ¼ � sin y e1 þ cos y e2; (2.10)
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consider a circular arch of mean radius R, which occupies the region �bpypb; and is divided
into N equal sections so that the reference nodal directors ID



i are given by

I D

0 ¼ Rerðy



I Þ; I D


1 ¼ erðy


I Þ; I D


2 ¼ �e3;

y
I ¼ �bþ 2ðI � 1Þa; ȳ



I ¼
1

2
½y
I þ y
Iþ1�; a ¼

b
N

for I ¼ 1; 2; . . . ;N þ 1; (2.11)

where y ¼ y
I is the angle locating the Ith cross-section and y ¼ ȳ



I is the angle locating the center
of the Ith element. It then follows from Eq. (2.1) that

ID0 ¼ R cos aerðȳ



I Þ; I D1 ¼ cos aerðȳ



I Þ; ID2 ¼ �e3; I D3 ¼ eyðȳ



I Þ;

I D4 ¼
1

R
eyðȳ




I Þ; I D5 ¼ 0; (2.12)

where the length I L defined in Eq. (2.2) is given by

I L ¼ L ¼ 2R sin a: (2.13)

Moreover, it follows from Eqs. (2.1) and (2.8) that

I D1=2 ¼ cos a; ID
1 ¼

1

cos a
erðȳ




I Þ; ID
2 ¼ �e3; ID

3 ¼ eyðȳ



I Þ: (2.14)

Now, for an arch made of a uniform, homogeneous isotropic elastic material, the mass I m and
the scalar I V can be expressed in terms of the constant three-dimensional reference density r
0 and
the geometry, such that

I m ¼ m ¼ r
0HWL cos a ¼ r
0HWR sinð2aÞ; I V ¼ V ¼ HWL: (2.15)

Moreover, the strain energy function IS for the Cosserat point can be expressed in terms of the
strain energy function S
 of the three-dimensional material and the strain energy function IC
associated with inhomogeneous deformations, such that

IS ¼ ISðI E; IbaÞ ¼ S
ðIEÞ þ ICðIbaÞ;

r
0S

ðI EÞ ¼

1

2
K
ðIE.IÞ2 þ m
ðIE

0.
IE

0Þ; I E0 ¼ IE �
1

3
ðI E.IÞI; (2.16)

where K
 is the bulk modulus, m
 is the shear modulus, I E0 is the deviatoric strain, IC is given by
[7,11,23]

I mIC ¼
1

2 I D1=2V ½K1ðIk
3
1Þ

2
þ K2ðIk

3
2Þ

2
þ K3ðIk

1
1Þ

2
þ 2K4ðIk

1
1Ik

2
2Þ þ K5ðIk

2
2Þ

2

þ K6ðIk
2
1Þ

2
þ 2K7ðIk

2
1Ik

1
2Þ þ K8ðIk

1
2Þ

2
�;

Ik
1
1 ¼ I LIb1.ID

1; Ik
2
1 ¼ W Ib1.I D2; Ik

3
1 ¼ HIb1.I D3;

Ik
1
2 ¼ HIb2.ID

1; Ik
2
2 ¼ LIb2.I D2; Ik

3
2 ¼ W Ib2.I D3 (2.17)
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and fK1–K8g are constants that characterize the stiffness of the element. These constants have
been determined by matching exact solutions of a parallelepiped for pure bending and torsion [23]
to obtain

K1 ¼ K2 ¼
E


12
; K3 ¼ K5 ¼

E


12ð1� n
2Þ
; K4 ¼

n
E


12ð1� n
2Þ
;

K6 ¼
H

W

m
b

ðx3Þ

6ð2� KÞ

� �
; K7 ¼

m
b
ðx3ÞðK � 1Þ

6ð2� KÞ

� �
; K8 ¼

W

H

m
b
ðx3Þ
6ð2� KÞ

� �
;

K ¼ Min 2� �;
1

b

ðx3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I L2b


ðx1Þb


ðx2Þ

HW

s2
4

3
5; � ¼ 0:1;

x1 ¼ Max
W

I L
; I L

W

� �
; x2 ¼ Max

H

I L
; I L

H

� �
; x3 ¼ Max

H

W
;
W

H

� �
;

b
ðxÞ ¼
1

x
1�

192

p5x

X1
n¼1

1

ð2n � 1Þ5

� �
tanh

pð2n � 1Þx
2

� �" #
; (2.18)

in terms of Young’s modulus E
; and Poisson’s ratio n
; which are related to K
 and
m
 by

K
 ¼
2m
ð1þ n
Þ
3ð1� 2n
Þ

; E
 ¼ 2m
ð1þ n
Þ: (2.19)

Also, b

ðxÞ is a function characterizing the torsional stiffness and � is a small constant that is used

to ensure that the strain energy due to torsion remains positive definite. In this regard, it is noted
that the approximate function BðxÞ in Eq. (1.5f) is remarkably close to the exact form b


ðxÞ in Eq.
(2.18) for the full range of x:
For an elastic Cosserat point, the constitutive equations become

I D1=2
I T ¼ I m

@IS
@I E

; I t4 ¼ I m
@IS
@Ib1

; I t
5 ¼ I m

@IS
@Ib2

: (2.20)

Thus, with the help of Eqs. (2.16) and (2.17) it follows that

I T ¼ V ½K
ðIE.IÞI þ 2m
I E0�;

I t
4 ¼ I D1=2V ½I LfK3Ik

1
1 þ K4Ik

2
2gID

1 þ W fK6Ik
2
1 þ K7Ik

1
2gID

2 þ HfK1Ik
3
1gI D3�;

I t
5 ¼ I D1=2V ½HfK7Ik

2
1 þ K8Ik

1
2gID

1 þ I LfK4Ik
1
1 þ K5Ik

2
2gID

2 þ W fK2Ik
3
2gI D3�;

I ti ¼ ½I D1=2
IT � I t4 	 I D4 � I t

5 	 ID5�
.
ID

i for i ¼ 1; 2; 3: (2.21)
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More specifically, using Eqs. (2.9), (2.12) and (2.14), it can be shown that for a circular
arch

IE ¼
1

2

1

cos a
fId1 	 erðȳ




I Þ þ erðȳ



I Þ 	 Id1g � fId2 	 e3 þ e3 	 Id2g

�

þfId3 	 eyðȳ



I Þ þ eyðȳ



I Þ 	 Id3g
�
; Ib1 ¼ Id4 �

1

R Id3; Ib2 ¼ Id5;

I t
1 ¼ V ½K
ðIE.IÞI þ 2m
I E0�erðȳ




I Þ; I t2 ¼ �V cos a½K
ðI E.IÞI þ 2m
IE
0�e3;

I t
3 ¼ V cos a½K
ðIE.IÞI þ 2m
I E0�eyðȳ




I Þ �
1

R I t
4;

I t4 ¼ V cos a I LfK3Ik
1
1 þ K4Ik

2
2g

1

cos a
erðȳ




I Þ � W fK6Ik
2
1 þ K7Ik

1
2ge3 þ HfK1Ik

3
1geyðȳ




I Þ

� �
;

I t5 ¼ V cos a HfK7Ik
2
1 þ K8Ik

1
2g

1

cos a
erðȳ




I Þ � I LfK4Ik
1
1 þ K5Ik

2
2ge3 þ W fK2Ik

3
2geyðȳ




I Þ

� �
:

(2.22)

Next, the director inertia coefficients are specified by

I y00 ¼ 1; I y11 ¼ ð1� ayÞ
H2

p2

� �
þ ay

H2

12

� �
; I y22 ¼ ð1� ayÞ

W 2

p2

� �
þ ay

W 2

12

� �
;

I y33 ¼ I L2

p2
; I y01 ¼ I y10 ¼ g1

H2

p2R
; I y34 ¼ I y43 ¼

g2
R

2L

3p

� �4
;

I y44 ¼ I y55 ¼ g3
2L

3p

� �4
all other I yij ¼ 0 for i; j ¼ 0; 1; . . . ; 5: (2.23)

In these expressions for I y11 and I y22; ay is a parameter that is used to help match free vibrational
frequencies. Specifically, for ay ¼ 0 these values correspond to those which have been determined
by matching predictions of free vibrations of a parallelepiped [24], and for ay ¼ 1:0 these values
are consistent with those for a rigid cross-section. To determine limitations on the value of ay; the
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expression for the kinetic energy IK of the Ith element is expanded to obtain

IK ¼
X5
i¼0

X5
j¼0

1

2
mI yij

I wj
.
Iwj

¼
1

2
m Iw0 þ

H2

p2R Iw1

� �
.

I w0 þ
H2

p2R I w1

� ��

þ
H2

p2
ð1� ayÞ þ ay

p2

12
�

H2

p2R2

� �
I w1

.
Iw1 þ

W 2

p2
ð1� ayÞ þ ay

p2

12

� �
I w2

.
Iw2

þ
L2

p2 Iw3 þ
16L2

81p2R Iw4

� �
.

I w3 þ
16L2

81p2R Iw4

� �

þ
2L

3p

� �4
1�

16L2

81p2R2

� �
I w4

.
I w4 þ

2L

3p

� �4
I w5

.
I w5

#
: ð2:24Þ

Thus, since m is positive the restrictions

0payp1;
16L2

81p2R
o1 (2.25)

are sufficient conditions for the kinetic energy to remain a positive definite function of the director
velocities. Moreover, in Eq. (2.25) use has been made of Eq. (2.13) and the fact that HpR=2:
3. Numerical solution procedure

For the numerical solution procedure it is convenient to use Eq. (2.13), the director inertia
coefficients (2.23), and the results (B.8) in Ref. [11]

I m3
1 ¼ �

L

2 Im
0
1; I m3

2 ¼
L

2 Im
0
2; I m4

1 ¼ �
L

2 I m1
1; Im

4
2 ¼

L

2 I m1
2;

Im
5
1 ¼ �

L

2 I m2
1; Im

5
2 ¼

L

2 Im
2
2; (3.1)

to reformulate the equations of motion (2.5) in the alternative forms

I m0
1 ¼

1

L

L

2
fI mðI d

��

0 þ I y01I d
��

1Þ � I mI B0g � fI mðI y33
I d
��

3 þ I y34I d
��

4Þ � I mI B3 þ I t
3g

� �
;

I m0
2 ¼

1

L

L

2
fI mðI d

��

0 þ I y01I d
��

1Þ � I mI B0g þ fI mðI y33
I d
��

3 þ I y34I d
��

4Þ � I mI B3 þ I t
3g

� �
;

Im
1
1 ¼

1

L

L

2
fI mðI y10

I d
��

0 þ I y11
I d
��

1Þ � I mIB
1 þ I t

1g � fI mðI y43I d
��

3 þ I y44
I d
��

4Þ � I mIB
4 þ I t4g

� �
;



ARTICLE IN PRESS

M.B. Rubin, E. Tufekci / Journal of Sound and Vibration 286 (2005) 799–816 809
Im
1
2 ¼

1

L

L

2
fI mðI y10

I d
��

0 þ I y11
I d
��

1Þ � I mIB
1 þ I t

1g þ fI mðI y43I d
��

3 þ I y44
I d
��

4Þ � I mIB
4 þ I t4g

� �
;

I m2
1 ¼

1

L

L

2
fI mI y22

I d
��

2 � I mIB
2 þ I t

2g � fI mI y55
I d
��

5 � I mI B5 þ I t
5g

� �
;

I m2
2 ¼

1

L

L

2
fI mI y22

I d
��

2 � I mIB
2 þ I t

2g þ fI mI y55
I d
��

5 � I mI B5 þ I t
5g

� �
: (3.2)

Next, the equations of motion of the entire arch are obtained by using kinematic and kinetic
coupling equations at the interior nodes ðI ¼ 2; 3; . . . ;NÞ: Specifically, the kinematic coupling
equations are satisfied by expressions (2.4). Furthermore, the kinetic coupling equations
associated with the interior nodes require [7]

I�1m
i
2 þ Im

i
1 ¼ IM

i
 for I ¼ 2; 3; . . . ;N and i ¼ 0; 1; 2; (3.3)

where (I M0
) are concentrated forces and (IM
a
) are director couples applied to the nodes. Details

of the physical meanings of these concentrated loads can be found in Ref. [12]. Also, the boundary
conditions require specification of

f1d


0 or 1m

0
1g and f1d



1 or 1m

1
1g and f1d



2 or 1m

2
1g;

fNþ1d


0 or Nm0

2g and fNþ1d


1 or Nm1

2g and fNþ1d


2 or Nm2

2g: (3.4)

Eqs. (3.3) and (3.4) represent 3ðN þ 1Þ ordinary differential vector equations to determine the
3ðN þ 1Þ nodal vector displacements Id



i as functions of time. Since these equations are second

order in time it is necessary to specify the initial values of

fId


i ð0Þ; Id



�

ið0Þg for i ¼ 0; 1; 2: (3.5)

More specifically, for particular values of the nodal director displacements Id


i ; the director

displacements Idi are determined by Eq. (2.4), the intrinsic director couples I t
i are determined

by the constitutive equations (2.21), and the contact director couples fIm
i
1; Im

i
2g are determined

by Eq. (3.2). In this regard, it is emphasized that although fI m0
1; I m0

2g represent forces applied
to the ends of the Ith element, the couples fI ma

1; I ma
2g are more general than the standard

mechanical moments I ma applied about the centroid of the cross-sections of the Ith element,
which are defined by

Im1 ¼ ID


1 � Im

1
1 þ I D


2 � Im
2
1;

Im2 ¼ Iþ1D


1 � Im

1
2 þ Iþ1D



2 � Im

2
2 for I ¼ 1; 2; . . . ;N: (3.6)

To be more specific, clamped conditions at the end I ¼ N þ 1 are specified by

Nþ1d


i ðtÞ ¼ 0 for i ¼ 0; 1; 2 (3.7)

and free conditions are specified by

Nmi
2ðtÞ ¼ 0 for i ¼ 0; 1; 2: (3.8)
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4. Experiments, analysis and discussion

Experiments were performed to measure the free vibrational frequencies of a semi-circular arch
with three types of boundary conditions. The arch was made of steel with the measured material
properties given by

E
 ¼ 90:0GPa; n
 ¼ 0:30; r
0 ¼ 7:85Mg=m3: (4.1)

Also, the dimensions of the arch were determined by averaging 12 measurements taken at equally
spaced circumferential intervals to obtain (see Fig. 1)

R ¼ 0:20m; H ¼ 0:034m; W ¼ 0:021m: (4.2)

The output of an accelerometer attached to the arch was used to identify peak frequencies
associated with free vibrational modes, but the associated mode shapes were not measured. The
results are recorded for three sets of boundary conditions in Table 1 (free–free), Table 2
(clamped–free) and Table 3 (clamped–clamped).
Numerical calculations were performed using ANSYS and converged solutions based on the

three-dimensional 20-node brick element Solid95 and the 8-node brick element Solid45 are given
in Tables 1–3. The meshes for these calculations used 128 elements circumferentially, eight
elements through the radial thickness ðHÞ; and four elements through the axial width ðW Þ: For
comparison purposes the total number of degrees of freedom (dof) are indicated for each
calculation. Also, the ANSYS calculation using the element Solid95 was considered to be the most
accurate result and all other calculations were normalized relative to the ANSYS Solid95 values
by introducing the error e in the frequency o defined by

e ¼
o

oðSolid95Þ
� 1: (4.3)

It can be seen from Tables 1–3 that the calculations are reasonably consistent with the
experimental results for all three boundary conditions. Also, the results of the ANSYS Solid45
element are consistent with those of the Solid95 element. These tables include results of numerical
calculations of three beam models and the Cosserat theory (for two values of ay), which were
each meshed with 128 elements circumferentially. In addition, they include the exact solution of
Eqs. (1.1)–(1.4) denoted by T&A [22] and T&D [21]. The last column in these tables uses the
specifications (1.5), and the second to last column uses the specifications (1.5) with the rotary
inertia specified by

Ip ¼ Jp; (4.4)

instead of by Eq. (1.5e). This exact solution and the other beam models include the effects of: (a)
axial extension; (b) tangential shear deformation; and (c) rotary inertia, but not the effects of: (d)
normal cross-sectional extension; and (e) cross-sectional shear deformation, which are also
included in the Cosserat model. Specifically, the ANSYS Beam4 model allows for specification of
the stiffnesses and rotary inertia terms independently like in Eqs. (1.1)–(1.4). For the Beam-Linear
and the Beam-Parabolic elements in I-DEAS these stiffnesses and inertia terms are calculated
automatically by the program. Moreover, the Beam-Parabolic element in I-DEAS is an
isoparametric element which attempts to model curved structures and which can be attached to
parabolic shell elements.
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Table 1

Frequencies for free–free boundary conditions

Mode Mode Exp. ANSYS ANSYS ANSYS I-DEAS I-DEAS Cosserat Cosserat T&A T&A

No. type (Hz) Solid95 Solid45 Beam4 Beam-Linear Beam-Parabolic ay ¼ 0:0 ay ¼ 0:95 T&D T&D

(Plane) 8 
 4 
 120 8 
 4 
 120 128 128 128 N ¼ 128 N ¼ 128 Ip ¼ Jp

dof dof dof dof dof dof dof

64,107 17,415 774 774 1542 1161 1161

(Hz) e (%) e (%) e (%) e (%) e (%) e (%) e (%) e (%)

1 In 252 241 0.03 �0.29 �0.29 �0.22 �0.27 �0.19 �0.30 �0.30

2 Out 340 346 0.55 0.26 0.25 1.01 �0.51 �0.11 0.71 0.25

3 In 688 686 0.07 �0.64 �0.65 �0.46 �0.19 0.01 �0.65 �0.65

4 Out 744 712 0.31 0.44 0.44 4.43 �2.14 �0.05 3.28 0.43

5 Out 1352 1309 0.54 0.28 0.27 4.19 �5.41 0.01 3.59 0.26

6 Out 1376 1332 0.12 0.02 0.01 a
�4.42 �0.42 a 0.00

7 In 1496 1400 0.13 �0.77 �0.78 �0.46 �0.10 0.25 �0.79 �0.79

Outb — — — — — — — — 1544b —

8 Out 2140 1934 0.60 �0.40 �0.40 �20.36 �6.49 �0.44 15.18 �0.41

9 Out 2340 2214 0.44 0.42 0.41 0.27 �1.23 0.31 2.84 0.40

Outc — — — — — 2292c — — — —

10 In 2480 2320 0.21 �0.88 �0.88 �0.41 0.04 0.55 �0.89 �0.89

Commercial code results, Cosserat results, in-plane solutions [22] (T&A) and out-of-plane solutions [21] (T&D).
aI-DEAS Beam-Parabolic element misses the out-of-plane mode number 6.
bThe frequency (Hz) associated with an incorrect out-of-plane mode predicted by (T&D) with an incorrect specification of rotary inertia.
cThe frequency associated with an incorrect out-of-plane mode predicted by I-DEAS Beam-Parabolic element. The error parameter e is defined in

Eq. (4.3).
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Table 2

Frequencies for clamped–free boundary conditions

Mode Mode Exp. ANSYS ANSYS ANSYS I-DEAS I-DEAS Cosserat Cosserat T&A T&A

No. type (Hz) Solid95 Solid45 Beam4 Beam-Linear Beam-Parabolic ay ¼ 0:0 ay ¼ 0:95 T&D T&D

(Plane) 8 
 4 
 120 8 
 4 
 120 128 128 128 N ¼ 128 N ¼ 128 Ip ¼ Jp

dof dof dof dof dof dof dof

63,744 17,280 768 768 1536 1152 1152

(Hz) e (%) e (%) e (%) e (%) e (%) e (%) e (%) e (%)

1 Out 35.2 35.1 0.80 �0.71 �0.72 �0.72 �0.68 0.12 �0.71 �0.72

2 In 57.6 57.5 0.05 �0.10 �0.10 �0.09 �0.52 �0.08 �0.11 �0.11

3 Out 108 111 0.35 �0.05 �0.06 �0.01 �0.75 �0.19 0.07 �0.07

4 In 184 180 0.08 �0.62 �0.63 �0.61 �0.46 �0.16 �0.64 �0.64

5 Out 372 373 0.38 0.02 0.02 0.76 �0.82 �0.13 0.49 0.01

6 In 601 599 0.12 �0.73 �0.74 �0.62 �0.20 �0.06 �0.74 �0.74

7 Out 801 811 0.36 0.26 0.26 1.82 �1.08 �0.01 1.38 0.25

8 In 1250 1293 0.17 �0.97 �0.98 �0.78 0.08 0.02 �0.99 �0.99

9 Out 1304 1308 0.42 �0.08 �0.09 5.82 �0.08 0.01 5.53 �0.09

10 Out 1544 1613 0.32 0.03 0.03 11.46 �3.84 �0.01 11.83 0.02

Commercial code results, Cosserat results, in-plane solutions [22] (T&A) and out-of-plane solutions [21] (T&D). The error parameter e is defined in

Eq. (4.3).
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Table 3

Frequencies for clamped–clamped boundary conditions

Mode Mode Exp. ANSYS ANSYS ANSYS I-DEAS I-DEAS Cosserat Cosserat T&A T&A

No. type (Hz) Solid95 Solid45 Beam4 Beam-Linear Beam-Parabolic ay ¼ 0:0 ay ¼ 0:95 T&D T&D

(Plane) 8 
 4 
 120 8 
 4 
 120 128 128 128 N ¼ 128 N ¼ 128 Ip ¼ Jp

dof dof dof dof dof dof dof

63,381 17,145 762 762 1530 1143 1143

(Hz) e (%) e (%) e (%) e (%) e (%) e (%) e (%) e (%)

1 Out 145 149 0.17 �0.49 �0.49 �0.50 �0.78 �0.73 �0.44 �0.50

2 Out 448 425 0.25 �0.08 �0.09 0.14 �0.57 �0.44 0.05 �0.09

3 In 568 555 0.15 �0.97 �0.97 �0.94 �0.17 �0.13 �0.98 �0.98

4 Out 876 877 0.31 0.04 0.03 0.09 �0.40 �0.20 0.20 0.02

5 In 1176 1143 0.18 �1.15 �1.15 �1.06 0.22 0.33 �1.16 �1.16

6 Out 1504 1477 0.41 0.09 0.08 0.03 �0.23 0.05 0.27 0.08

7 Out 1864 1998 0.63 �1.21 �1.22 a
�9.93 �1.23 10.79 �1.22

8 In 1960 2068 0.26 �1.16 �1.16 �0.98 0.45 0.67 �1.17 �1.17

9 Out 2033 2208 0.52 0.10 0.09 �0.20 �0.06 0.32 8.37 0.08

10 In 2256 2416 0.09 �0.65 �0.66 �0.56 0.10 0.19 �0.66 �0.66

Commercial code results, Cosserat solutions, in-plane solutions [22] (T&A) and out-of-plane solutions [21] (T&D).
aI-DEAS Beam-Parabolic element misses the out-of-plane mode number 7. The error parameter e is defined in Eq. (4.3).
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The calculations of the Cosserat theory were performed using the program Matlab. For free
vibrations, body force is neglected, the lateral surfaces of the arch are free from surface tractions,
and the concentrated loads IM

i
 vanish so that

I Bi ¼ 0; I Mi
 ¼ 0: (4.5)

Next, by specifying the nodal director displacements in the forms

Id


i ðtÞ ¼ I d̄




i sinðotÞ (4.6)

the equations of motion (3.3) and the boundary conditions (3.7), (3.8) yield a system of linear
algebraic equations for the unknown amplitudes I d̄




i ; with the coefficient matrix being a function
of the vibrational frequency o: Then, standard analysis yields the natural frequencies and shapes
of the vibrational modes predicted by the discrete model. In particular, it is noted that these
natural frequencies depend on the specification of the parameter ay in Eq. (2.23) for the director
inertia coefficients.
In all tables the deformation is considered to be in-plane or out-of-plane if the (ID2 	 I D3)

component of the strain tensor IE (i.e. the out-out plane component of the rod’s center line) in the
Cosserat solution is zero or nonzero, respectively. Furthermore, it is noted that the out-of-plane
modes include a significant amount of torsional deformation.
From these tables it can be seen that the largest errors in the Cosserat solution with ay ¼ 0

occur for the out-of-plane modes 5, 6, 8 in the free–free case, and the out-of-plane mode 7 for the
clamped–clamped case. An attempt was made to reduce this error by adjusting the value of ay in
Eq. (2.23) until the error for the out-of-plane mode 5 in the free–free case nearly vanished. With
this value of ay ¼ 0:95 it can be seen that the Cosserat solutions for N ¼ 128 predict accurate
results for the first 10 frequencies for all three boundary conditions since the error is limited to
around 1.0%. Additional calculations were performed which indicate that the Cosserat solution is
reasonably well converged for N ¼ 32:
With regard to the specification of ay ¼ 0:95; it should be recalled that within the context of the

direct approach to the Cosserat theory the director inertia coefficients need to be specified by
constitutive equations. The determination of the values of these coefficients in Ref. [24] by
comparison with exact solutions for vibrations of a rectangular parallelepiped indicates that these
coefficients actually characterize the distribution of inertia in specific modes and not just the
distribution of mass in the rod’s cross-section. Moreover, the stiffness to torsion of a beam with a
rectangular cross-section was used to determine the constitutive coefficient for static torsion in the
arch [11]. This coefficient accounts for the softening effect of warping of the cross-section even
though the Cosserat theory does not model the kinematics of warping explicitly. For the torsional
vibrations of the arch under consideration here it is expected that the effect of warping of the
cross-section is reduced since there is limited time for stress relief to propagate from the
boundaries. This suggests that the actual stiffness to torsional vibration should be higher than that
to static torsion, especially for the higher modes. Although this cannot be modeled directly in the
Cosserat theory without warping it is possible to model the effect on the free vibrational frequency
by adjusting the constant ay: Specifically, by setting ay ¼ 0:95; the effective inertia of the cross-
section to torsion is decreased, which compensates for the softer static stiffness, resulting in an
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improved match with the free vibrational frequency of torsional modes. Furthermore, it is
interesting to note that the frequencies of many of the modes of vibration are nearly unaffected by
this modification of the director inertia coefficients.
As mentioned earlier, the Beam-Linear and the Beam-Parabolic elements in I-DEAS

automatically calculate the values of the quantities

fIb; In; Ip; Jpg: (4.7)

When the cross-section of the beam is specified to be rectangular, I-DEAS calculates the correct
values (1.5) of Eq. (4.7). In particular, the results in Tables 1–3 indicate that when the stiffnesses
and rotary inertia terms are specified by Eq. (1.5), the exact solution (T&A and T&D), ANSYS
Beam4 and I-DEAS Beam-Linear element predict accurate results for all three boundary
conditions. However, the Beam-Parabolic element in I-DEAS predicts inaccurate results for out-
of-plane modes even though it has more degrees of freedom than the Beam-Linear element.
Furthermore, it is seen that the use of the incorrect specification of the rotary inertia (4.4) in the
analytical solution causes significant errors in the predictions of out-of-plane modes 8 in Table 1
and 9 and 10 in Table 2, which are similar to the errors predicted by the element I-DEAS Beam-
Parabolic. This suggests that the source of the error in the Beam-Parabolic element might be
related to incorrect modeling of rotary inertia.
5. Conclusions

In conclusion, small deformation three-dimensional free vibrations of a circular arch with
uniform rectangular cross-section have been investigated by using different theoretical approaches
and by experimental verification. The results indicate that when the value of rotary inertia is
properly specified, the theory of a Cosserat point, the exact solution of Tufekci and Arpaci [22]
and Tufekci and Dogruer [21], the Beam4 element in ANSYS and the Beam-Linear element in
I-DEAS are all capable of predicting accurate values of the frequencies of free vibration for all
three boundary conditions considered. However, the Beam-Parabolic element in I-DEAS predicts
inaccurate frequencies for out-of-plane modes.
Moreover, in its general form [11] the theory of a Cosserat point is a fully nonlinear theory that

has already been tested for buckling of beams [12] and arches [14]. Therefore, the success of the
Cosserat theory for the dynamic problem considered in this paper suggests that the theory of a
Cosserat point can be used for more complicated nonlinear dynamic problems like those of
rotating turbine and helicopter blades.
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