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Abstract

This paper presents theoretical modelling of the sound transmission loss through double-leaf lightweight
partitions stiffened with periodically placed studs. First, by assuming that the effect of the studs can be
replaced with elastic springs uniformly distributed between the sheathing panels, a simple smeared model is
established. Second, periodic structure theory is used to develop a more accurate model taking account of
the discrete placing of the studs. Both models treat incident sound waves in the horizontal plane only, for
simplicity. The predictions of the two models are compared, to reveal the physical mechanisms determining
sound transmission. The smeared model predicts relatively simple behaviour, in which the only conspicuous
features are associated with coincidence effects with the two types of structural wave allowed by the
partition model, and internal resonances of the air between the panels. In the periodic model, many more
features are evident, associated with the structure of pass- and stop-bands for structural waves in the
partition. The models are used to explain the effects of incidence angle and of the various system
parameters. The predictions are compared with existing test data for steel plates with wooden stiffeners,
and good agreement is obtained.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

A1, A2 amplitudes of waves in cavity
c0 sound speed in air
cB bending wave speed in panel
Di bending stiffness of panel
Ei Young’s modulus
f frequency
hi panel thickness
H separation distance between panels
I incident wave amplitude
Ii incident sound intensity
It transmitted sound intensity
Iz second moment of area about z-axis of

stud
j

ffiffiffiffiffiffiffi
�1

p

kx, ky wavenumber in x- and y-direction
Kt translational stiffness of stud
K 0

t uniformly distributed translational stiff-
ness of stud

K 0
r uniformly distributed rotational stiffness

of stud
Kr rotational stiffness of stud
l web length of stud
L stud spacing
mpi panel’s mass per unit area
M half stud mass per unit length
Mb bending moment
p pressure perturbation
R reflection wave amplitude

RL transmission loss
s0 equivalent stiffness of air
t0 wall thickness of stud
t time
T transmitted wave amplitude
ui fluid velocity of the sound wave
Wi panel deflections
Ŵ i amplitude of panel deflections
ai,n deflection amplitudes of panels
bn amplitudes of reflected waves in the

incident half-space
�n amplitudes of transmitted waves

through the front panel
zn amplitudes of reflected waves from the

rear panel
xn amplitudes of transmitted waves to the

transmitted half-space incidence angle,
normally from 0 to 78

yb rotation angle
nI Poisson’s ratio
r0 air density
ri density of material
FI velocity potentials
tðyÞ transmission coefficient at incidence

angle y
t averaged transmission coefficient for all

possible incidence angles
o angular frequency
Zi material loss factors
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1. Introduction

Partition walls consisting of cold-formed steel frames clad with plasterboard are widely used in
building construction. Compared with traditional masonry constructions, they are lighter, easier,
and quicker to assemble, and leave a cleaner building site. However, they need greater skill to
design and construct, because the overall design (including strength, stiffness, and buckling) is
much more complex. It is also more difficult to predict sound transmission loss (STL).

The simplest acoustic partitioning that has been studied is a double-leaf wall without structural
connections [1–5]. This type of structure, if it could be built, would provide high STL. However,
vertical beams called ‘‘studs’’ are needed for practical partitions to support structural loads, and
these decrease the STL and also complicate theoretical modelling. A typical lightweight partition
without sound-absorbent infill material is depicted in Fig. 1. Sound can travel through the air-gap
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Fig. 1. Illustration of a double-leaf partition wall with studs.
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between the two boards, and also the steel frame provides a structural route for sound
transmission. The frame alters the dynamic and sound radiation properties of each panel, and
thus changes the sound transmission of the partition wall as a whole [4]. Although a real structure
will never be precisely periodic, periodic structure theory offers the most natural way to develop a
theoretical model that takes account of the dominant features of the system [6–8]. Simple
modelling of this kind will be presented in this paper. The aim of the research is to establish
physically based models of sufficient accuracy that they can in due course be used in conjunction
with optimisation techniques to design more efficient soundproofing partitions. The present paper
represents only the first stage of this endeavour, since there are limitations to the models
developed here which will be explained later.

Sharp [9] has discussed sound transmission through a double panel with sound bridges, by
analysing the power radiated from a point- or line-loaded panel based on Cremer and Heckl’s
theory [10] using the impedance method, leading to an empirical method for predicting the STL.
However, this method does not provide a sufficiently complete understanding of STL mechanisms
to allow acoustic optimisation to be performed. Desmet and Sas [11] presented a method of
finding sound transmission properties of a finite double-leaf partition at low frequencies, by
experimental measurements as well as theoretical modelling based on Dowell’s modal coupling
theory [12]. Limited to low frequencies, this method is also not convenient for carrying out
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optimisation studies. Lin and Garrelick [13], inspired by the work of Evseev [14], made use of
Green’s functions to solve the problem. In their work, the stud is assumed to be a rigid and
massless coupling between the panels. Later, Urusovskii [15] pointed out that the basic equations
of Lin and Garrelick [13] do not include the phase factor associated with the force exerted on the
plates by the stud as a result of oblique incidence of a plane wave on the plates, nor is the mass
reactance of the stud taken into account. The method adopted in Ref. [15] to describe the flexural
deflection of the plates has some common aspects with the space-harmonic approach proposed by
Mead [16] and Mead and Pujara [17]. However, the method still assumes that the studs join the
plates rigidly, and does not take advantage of the periodicity of the system. In addition, no
solution procedure or numerical results for the STL were presented. Takahashi [18] discussed
sound radiation from periodically connected double-plate structures under mechanical excitation
forces. Three different types of structure are considered: point connected, point connected with
rib-stiffening, and rib-connected. However, acoustic loading as well as resonances in the cavity
were ignored. Therefore, the results of Ref. [18] cannot be directly used to calculate sound
transmission through double-leaf partitions.

Mead [16,19] studied the vibration response and wave propagation in periodic structures
and discussed the characteristics of their propagation constants. Mead and Pujara
[17] subsequently proposed to use space-harmonic expansions to study periodic partitions: they
used a two-dimensional (2D) model in which the panel is represented as a beam supported b
y regularly spaced elastic supports, which oppose both transverse displacement and rotation.
This model is suitable for wave propagation perpendicular to the studs, i.e. in the horizontal plane
for a partition wall. The response of the beam subjected to a homogeneous random convected
pressure field was then solved. However, Mead and Pujara [17] pointed out that although the
method has been devised for the estimation of sound radiation, acoustic effects were not actually
included.

The space-harmonic method expresses the panel displacement and pressure field in terms of a
series of travelling-wave harmonic terms. For a double-leaf partition, the system equations can be
developed by combining the wave equation for sound waves in the incident, cavity and
transmitted regions with the two beam equations, the latter including lumped masses and springs
(translational and torsional) to represent the stud effects. By coupling the acoustic and structural
vibrations with appropriate boundary conditions and then employing the virtual work principle,
complete governing equations can be derived.

Mathur et al. [8] presented a theoretical model based on the space-harmonic approach to
calculate STL through periodically stiffened panels and stiffened double-leaf structures:
schemes to impose the structure-acoustic interactions and convergence criteria of the solution
were developed. However, no solution procedure was given nor were any numerical results
presented.

Lee and Kim [20] adopted the approach proposed by Mead and Pujara [17] and the schemes
developed by Mathur et al. [8] to solve the vibro-acoustic equation of a single stiffened plate
subjected to a plane wave input. An exact analysis procedure was developed to calculate the STL
through an infinitely long elastic panel stiffened by periodic parallel beams. The present work
extends this approach to double-leaf partitions stiffened with studs. For simplicity in this initial
study, Mead’s assumption of a 2D model is retained. A complete, predictive model would need to
allow for general oblique incidence of sound waves, but this is deferred to future work.
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The overall aim of this research is to develop deterministic analytical tools, focusing on the
performance of key individual components and validated with experimental data, that can
provide a better physical understanding of the STL mechanisms in double-leaf partitions. For
simplicity, the system is considered to be of infinite extent in the direction of the frames, and a
harmonic incident wave in the horizontal plane is considered so that 1D periodic structure theory
can be applied. Two analytical models are developed, one based on replacing the studs with
uniformly distributed elastic springs and the other with periodically placed discrete masses, and
translational and rotational springs. For periodic modelling, the space-harmonic method is
employed. Material damping is introduced by using a complex Young’s modulus.
2. Smeared model

2.1. Derivation of smeared model

The smeared model for stud connections follows the approach used by Cremer and Heckl [10]
to study impact sound insulation of floating floors; a similar but simpler model has been used by
Kropp and Rebillard [5] to study the airborne sound insulation of double wall constructions. This
earlier work is extended here to give a consistent model which will relate in a very direct way to the
more elaborate periodic model to be developed in the next section. For double-leaf partitions, the
smeared model assumes that the studs can be replaced by translational and rotational springs
uniformly distributed between the two panels. The stud mass is also distributed over the panels.
The model is directly relevant if the stud spacing is sufficiently small (smaller than half the
wavelength). Furthermore, as becomes clear later, it can provide approximate ‘‘backbone’’
solutions for the full problem.

2.1.1. System equations

For a stud of depth l, wall thickness t0; and Young’s modulus E, the force per unit length due to
a stretch of the stud in the y-direction (see Figs. 1 and 2) by a distance Dl is Et0Dl=l: Consequently,
each stud can be modelled as a spring of translational stiffness Kt ¼ Et0=l per unit length.
Similarly, the stud has a rotational stiffness Kr which is estimated in this study by considering the
web bending of the stud:

Mb ¼ EIzyb=l � Kryb; (1)

where Iz ¼ t30=12 is the second moment of area about the z-axis, Mb is the bending moment, and
yb is the rotation angle.

Fig. 2 depicts the double wall partition with stud connections and the corresponding smeared
model. For simplicity, it is assumed that the studs are periodically distributed between two
infinitely large panels, and not connected to each other in the transverse direction.

As illustrated in Fig. 2a, in the smeared model the studs are replaced by translational and
rotational springs of stiffness K 0

t and K 0
r per unit area, uniformly distributed between the two

board panels. If the spacing between the studs is L, then K 0
t ¼ Kt=L ¼ Et0=Ll and K 0

r ¼ Kr=L ¼

EIz=Ll: The panels are taken to be isotropic, with thickness ðh1; h2Þ; and mass per unit area (mp1;
mp2), respectively (Fig. 2b). Under these assumptions, the governing equations of motion for the
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two panels are given by [5,21]

D1
q4W 1ðx; tÞ

qx4
þ mp1 þ

M

L

� �
q2W 1ðx; tÞ

qt2
þ K 0

tðW 1ðx; tÞ � W 2ðx; tÞÞ

� K 0
r

q2

qx2
ðW 1ðx; tÞ � W 2ðx; tÞÞ � jor0ðF1 � F2Þ ¼ 0; ð2aÞ

D2
q4W 2ðx; tÞ

qx4
þ mp2 þ

M

L

� �
q2W 2ðx; tÞ

qt2
þ K 0

tðW 2ðx; tÞ � W 1ðx; tÞÞ

� K 0
r

q2

qx2
ðW 2ðx; tÞ � W 1ðx; tÞÞ � jor0 F2 � F3ð Þ ¼ 0; ð2bÞ

where Fi describes the velocity potentials of the acoustic fields, as will be defined shortly, and Di is
the flexural stiffness of the panel:

Di ¼
Eih

3
i ð1 þ jZiÞ

12ð1 � n2
i Þ

: (2c)

Here, Zi is the loss factor of the panel material [20], and Ei; ni are the Young’s modulus and
Poisson’s ratio of the panel material. The loss factor depends strongly upon the type of material of
interest: typical values from the literature are 0.00073–0.00153 for steel, 0.1–0.3 for plasterboard,
and 0.0045–0.115 for wood [22]. It is also likely to depend on frequency. Significant terms in Eqs.
(2a) and (b) are the third and fourth terms representing structural coupling, and the fifth term
representing air loading as well as airborne coupling.

The waves in the incident, cavity, and transmission regions can be expressed in terms of their
respective velocity potentials:

F1 ¼ e�jkxxðIe�jkyy þ RejkyyÞejot; (3a)
Fig. 2. Side view of a double-leaf partition wall with studs: (a) schematic of the smearing process and (b) notation used

in the analysis.
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F2 ¼ e�jkxxðA1e
�jkyy þ A2e

jkyyÞejot; (3b)

F3 ¼ e�jkxxðTe�jkyyÞejot; (3c)

where o is the angular frequency, I, R, and T are, respectively, the amplitude of the incident,
reflected, and transmitted waves, and A1; A2 are the amplitudes of waves in the air cavity. The
particle speed of the wave is related to the velocity potential by ui ¼ �rFi ði ¼ 1; 2; 3Þ: The
corresponding pressure perturbation can be expressed as [4,7]

p ¼ r0

qF
qt

¼ jor0F (4)

as used in Eqs. (2a) and (b). The wavenumber components kx; ky are given in terms of the angle of
incidence y via

kx ¼ k sin y; ky ¼ k cos y; (5)

where k ¼ o=c0 and c0 is the speed of sound in air.
Because the system is assumed to be infinite and homogeneous, the deflection of the two panels

takes the following forms:

W 1ðx; tÞ ¼ Ŵ 1e
�jðkxx�otÞ; (6a)

W 2ðx; tÞ ¼ Ŵ 2e
�jðkxx�otÞ: (6b)

At the air–panel interface the normal velocity is continuous, resulting in the following coupling
equations:

�
qF1

qy
¼ joW 1; �

qF2

qy
¼ joW 1 at y ¼ 0; (7a)

�
qF2

qy
¼ joW 2; �

qF3

qy
¼ joW 2 at y ¼ H: (7b)
2.1.2. Solution to the system equations

The sound transmission coefficient is defined by

tðyÞ ¼
T

I

����
����
2

: (8)

The procedure to calculate tðyÞ is as follows. Firstly, the boundary conditions, Eq. (7), are
rewritten as

ðo=kyÞŴ 1 þ R ¼ I ;

ðo=kyÞŴ 1 � A1 þ A2 ¼ 0;

ðo=kyÞŴ 2 � A1e
�jkyH þ A2e

jkyH ¼ 0;

ðo=kyÞŴ 2 � Te�jkyH ¼ 0:

(9)
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Eq. (2) then become

½D1k4
x � o2mp1 þ K 0

t þ K 0
rk

2
x � Mo2

�
L�Ŵ 1 � ðK 0

t þ K 0
rk

2
xÞŴ 2

� jor0R þ jor0ðA1 þ A2Þ ¼ jor0I

and

� ðK 0
t þ K 0

rk
2
xÞŴ 1 þ ½D2k4

x � o2mp2 þ K 0
t þ K 0

tk
2
x � Mo2

�
L�Ŵ 2

� jor0ðA1e
�jkyH þ A2e

jkyHÞ þ jor0Te�jkyH ¼ 0:

By introducing

a11 ¼ D1k4
x � o2mp1 þ K 0

t þ K 0
rk

2
x � Mo2

�
L �

2jo2r0e
jkyH

kyðe�jkyH � ejkyHÞ
; (10a)

a12 ¼
2jo2r0

kyðe�jkyH � ejkyHÞ
� K 0

t � K 0
rk

2
x ¼ a21; (10b)

a22 ¼ D2k4
x � o2mp2 þ K 0

t þ K 0
rk

2
x � Mo2

�
L �

2jo2r0e
jkyH

kyðe�jkyH � ejkyHÞ
; (10c)

the governing equations for panel motion can be expressed in matrix form as

a11 a12

a21 a22

" #
Ŵ 1

Ŵ 2

( )
¼

2jor0I

0


 �
: (11)

Finally, from Eq. (11),

Ŵ 2 ¼
�2a12jor0I

a11a22 � a12a21

and

T ¼ ðo=kyÞŴ 2e
jkyH ¼

�2a12jo2r0IejkyH

kyða11a22 � a12a21Þ

and hence

tðyÞ ¼
�2a12jo2r0e

jkyH

kyða11a22 � a12a21Þ

����
����
2

: (12)

The diffuse field transmission coefficient averaged over all angles of incidence within the
incident plane is [4]

t ¼

Rp=2
0

tðyÞ sin y cos ydy

Rp=2
0

sin y cos ydy

: (13)

Once t is found, the transmission loss may be calculated:

RL ¼ �10 log10 t: (14)
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2.2. Results of smeared model

Fig. 3 shows an example of the predicted STL using the smeared model for a plane wave at 451
incidence angle. The partition system consists of two identical 12.5mm thick gypsum boards
(Young’s modulus E ¼ 7 � 109 N=m2; Poisson’s ratio n ¼ 0:3; density r ¼ 1200kg=m3) and
periodically distributed C-section steel studs (Young’s modulus Estud ¼ 210 � 109 N=m2; wall
thickness t0 ¼ 0.5 mm). The distance between the two panels is H ¼ 50mm and the stud spacing is
L ¼ 600mm. The translational stiffness of this particular design of the steel stud is given by

Kt ¼ Et0=l ¼ 2:1 � 109 N=m: (15)

The rotational stiffness of the stud is estimated as

Kr ¼ EIz=l ¼ 39:1Nm=rad: (16)

For uniformly distributed studs, the corresponding stiffnesses K 0
t and K 0

r are

K 0
t ¼ ðEt0Þ=ðlLÞ ¼ 3:125 � 109 N=m3; (17a)

K 0
r ¼ ðEIzÞ=ðlLÞ ¼ 65:2N=rad: (17b)

The distributed mass of the studs is

M 0 ¼ 2M=L ¼ 0:884 kg=m2: (17c)

For this particular design the rotational stiffness and the stud mass have only a rather minor
influence, but they are included for completeness.

Fig. 3 shows three curves of STL against frequency for this partition: the prediction of the
complete smeared model, the prediction of the model with the stud properties (17) set to zero so
that only airborne sound transmission is possible, and, for comparison, the ‘‘mass-law’’ curve [4].
As anticipated, both smeared model predictions follow the mass law at low frequencies, until a
resonant phenomenon of one kind or another occurs which changes the sound transmission.
Within the frequency range plotted, four frequencies of ‘‘resonance’’ occur, labelled
f 1; f 2; f 3; and f 4: All four will be functions of the angle of incidence of the sound wave driving
the partition.

The frequency f 1 is apparent only in the curve with airborne transmission alone. This is the so-
called ‘‘mass-air-mass’’ resonance, at which the two panels move in opposite phase, bouncing on
the ‘‘spring’’ of the air in the gap with equivalent stiffness s0 ¼ ðr0c2

0Þ=H: If the sound wave
exciting the partition had been at normal incidence, this resonance would therefore have occurred
at the frequency

f 1ð0Þ ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0ðmp1 þ mp2Þ

mp1mp2

s
: (18)

With the assumed angle of incidence of 451 the frequency is raised somewhat, as will be illustrated
shortly.

The frequency f 2 occurs in both smeared model curves. This is the ‘‘coincidence frequency’’ for
the panels, the frequency at which the wavelength of bending waves in the panels matches the
trace wavelength of the incident wave [23]. The lowest value of this frequency occurs for a sound
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Fig. 3. STL for the smeared model for a wave incident at y ¼ 451. The system properties are given in Table 1. Solid line:

full smeared model; dotted line: smeared model without structural coupling; dashed line: mass-law transmission.
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wave at grazing incidence, in which case the value would be

f 2ðp=2Þ ¼
c2
0

2p
12rð1 � n2Þ

Et2


 �1=2

: (19)

The frequency is a little higher than this in Fig. 3, because of the assumed incidence angle.
Finally, the two frequencies f 3; f 4 correspond to a different physical phenomenon again: they

are acoustic standing-wave resonances in the air-gap between the panels. There is a sequence of
such resonances, having successive integer numbers of half-wavelengths in the width of the gap.
The lowest resonance will have one half-wavelength, and will occur (for normal incidence of the
sound wave) at

f 3ð0Þ ¼ c0=ð2HÞ: (20)

Again, the resonance appears at a slightly higher frequency in the plots because of the assumed
angle of incidence.

Fig. 4 shows the result of varying the incidence angle in the full smeared model, plotted both as
a surface and a contour map. The solid curve of Fig. 3 corresponds to the section through the
surface of Fig. 4a at the incidence angle 451. It is clear from this figure that there are four curves
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Fig. 4. (a) The variation of the STL with incidence angle and frequency for the smeared model. (b) Contour map of

Fig. 4a.
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that correspond to low STL, labelled A, B, C, and D in Fig. 4b. Curves A and B correspond to the
acoustic resonances f 3; f 4: Curve C corresponds to the coincidence frequency f 2:

Curve D does not reach the angle 451, so it was not seen in Fig. 3. To understand the origin of
this curve it is convenient to examine the dispersion curves for bending waves travelling in the
partition. Since the two panels can move independently, coupled through the distributed springs,
there are two types of possible travelling waves. Since for this example the partition is symmetric
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with respect to its centre plane, these two wave types consist of motion which is symmetric
with respect to this plane, and motion which is antisymmetric. Antisymmetric motion simply
implies that the two panels move in synchrony, with no relative motion across the springs. The
dispersion characteristic is thus the same as for a single panel, as is plotted as the dash-dot curve in
Fig. 5.

Symmetric motion involves ‘‘breathing’’ displacements of the two panels. Waves of this kind
cannot propagate below a cut-on frequency at the equivalent of the ‘‘mass-air-mass’’ frequency,
which will be significantly higher than the expression (18) because of the stiffening effect of the
springs. Above this cut-on, the dispersion curve will show an approximately parabolic form
similar to the curve for antisymmetric motion, and at very high frequencies, as panel bending
comes to dominate the effect of the springs, the two curves tend to the same shape. The result is
plotted as the solid line in Fig. 5.

Now consider an incident wave at a particular angle. The associated trace wavenumber
will appear as a straight line in this plot as frequency is varied: an example for an incidence
angle of 301 is shown as the dashed line in the figure. Wherever this straight line intersects
one of the panel dispersion curves, a ‘‘coincidence’’ effect occurs. The intersection with the
dash-dot curve is the normal coincidence frequency, already discussed. Intersections with
the solid curve will correspond to coincidence with the symmetric waves in the partition,
and this is the condition which generates the curve D in Fig. 4b. The shape of this curve can now
be understood with reference to Fig. 5. As the angle of incidence is varied, the slope of the
straight line varies from zero (at normal incidence) to a slope equal to the inverse of the
speed of sound, shown as the dotted line in the figure. When the slope is low it
intersects the dispersion curve twice and produces two ‘‘coincidence frequencies’’, whereas
for steeper slopes there are no intersections. The re-entrant shape of curve D is thus
explained.
3. Periodic model

3.1. Derivation of periodic model

Fig. 6 illustrates the periodic model of the partition. Each stud is modelled by translational and
rotational springs together with lumped masses. A plane wave is incident on the left panel in area
1, which induces reflected waves, panel vibration, and transmitted waves into the cavity (area 2).
The motion of the left panel is transferred to the right panel through the mechanical springs. In
addition, the transmitted waves in the cavity become the incident waves on the right panel, which
induce reflected waves in the cavity, motion of the right panel, and the final transmitted wave
(area 3) through the partition.

To represent the panel vibration we make use of the key result of periodic structure theory, the
Bloch or Floquet theorem [6]. The free motion of such a system can be represented as the product
of two functions: a spatially periodic function with a period L (the stud spacing), and a bay-to-bay
multiplicative factor, linking the motion of corresponding points in adjacent bays. A convenient
form for the present problem is to express the motion of each panel as a ‘‘space-harmonic
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expansion’’, following Mead and Pujara [17]:

W 1ðx; tÞ ¼
Xþ1

n¼�1

a1;ne
�j½kxþ2np=L�xejot; (21a)

W 2ðx; tÞ ¼
Xþ1

n¼�1

a2;ne
�j½kxþ2np=L�xejot; (21b)

where W iðx; tÞ is the transverse displacement of the panel, coefficient ai;n is the amplitude of the
nth ‘‘space harmonic’’, and kx is the component of the incident wavenumber in the x-direction,
given by Eq. (5) as before. In Eq. (21), the terms with ½kx þ 2np=L�40 denote forward-travelling
harmonic waves, while the terms with ½kx þ 2np=L�o0 denote backward-travelling waves.

In a similar fashion, velocity potentials in the three different areas can be represented by space-
harmonic series [17]. The velocity potential at an arbitrary point in the incident half-space is given by

F1ðx; y; tÞ ¼ Ie�j½kxxþkyy�ot� þ
Xþ1

�1

bne
�j½ðkxþ2np=LÞx�kyny�ot�; (22)

where the first and second terms represent the velocity potential of the incident and reflected waves,
respectively. Similarly, the velocity potential in the cavity can be written as

F2ðx; y; tÞ ¼
Xþ1

n¼�1

�ne
�j kxþ2np=Lð Þx�kyny�ot½ � þ

Xþ1
n¼�1

zne
�j kxþ2np=Lð Þx�kyny�ot½ �: (23)
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In the transmitted area there is no reflected wave, so that

F3ðx; y; tÞ ¼
Xþ1

n¼�1

xne
�j kxþ2np=Lð Þx�kyny�ot½ �: (24)

Here, kyn is the wavenumber in the y-direction, which can be calculated from [8,20]

kyn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
c

� �2

� kx þ
2np
L

� �2
s

: (25)

When o=cojkx þ 2np=Lj the corresponding pressure waves become evanescent, and then the

appropriate sign convention is to replace jkyny in the exponent of Eq. (22) by þgyny; where gyn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx þ 2np=LÞ2 � ðo=cÞ2

q
: Corresponding changes are made to Eqs. (23) and (24).

By substituting Eqs. (21)–(24) into the continuity conditions, Eq. (7) and cancelling the factor
ejot one arrives at

kyIe�jkxx �
Xþ1

�1

ðkynbn þ a1;nÞe
�j kxþ2np=Lð Þx ¼ 0; (26a)

Xþ1

n¼�1

½kynð�n � znÞ � oa1;n�e
�j kxþ2np=Lð Þx ¼ 0; (26b)

Xþ1

n¼�1

½kynð�ne
�jkynH � zne

jkynHÞ � oa2;n�e
�j kxþ2np=Lð Þx ¼ 0; (26c)

Xþ1

n¼�1

½kynxne
�jkynH � oa2;n�e

�j kxþ2np=Lð Þx ¼ 0: (26d)
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Because Eq. (26) should be valid at all values of x, the following relationships between the
modal amplitudes are obtained:

b0 ¼ I � oa1;0

�
ky; (27a)

bn ¼ �oa1;n

�
kyn at na0; (27b)

�n ¼
oða2;ne

jkynH � a1;ne
2jkynHÞ

kynð1 � e2jkynHÞ
; (27c)

zn ¼
oða2;ne

jkynH � a1;nÞ

kynð1 � e2jkynHÞ
; (27d)

xn ¼ oa2;ne
jkynH

�
kyn: (27e)

The coefficients ai;n can be found by solving the system equations derived using the principle of
virtual work for one bay of the partition [17,20]. The principle of virtual work states that the sum
of the work done by all the elements in one bay of the system must equal zero when the system is
subjected to any one of the virtual displacements [20]:

dW i ¼ dai;me�j kxþ2np=Lð Þx: (28)

The total virtual work is the sum of the virtual work of the two panel elements, the virtual work
by the translational and rotational springs, and a contribution from the lumped mass of studs.
3.1.1. Virtual work of panel elements
The equations governing the motion of the two panels are

D1
q4W 1

qx4
þ mp1

q2W 1

qt2
� jor0ðF1 � F2Þ ¼ 0; (29a)

D2
q4W 2

qx4
þ mp2

q2W 2

qt2
� jor0ðF2 � F3Þ ¼ 0; (29b)

where mpi is the panel mass per unit area. The virtual work contributed by the two panel elements
can then be represented as

dPp1 ¼

ZL

x¼0

D1
q4W 1

qx4
þ mp1

q2W 1

qt2
� jor0ðF1 � F2Þ

� �
dW �

1 dx at y ¼ 0; (30a)

dPp2 ¼

ZL

x¼0

D2
q4W 2

qx4
þ mp2

q2W 2

qt2
� jor0ðF2 � F3Þ

� �
dW �

2 dx at y ¼ H; (30b)
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where dW �
i represents the complex conjugate of the virtual displacement in Eq. (28). With Eqs.

(21)–(24), Eq. (30) can be rewritten in terms of the amplitudes ai;n;bn; �n; zn:
3.1.2. Virtual work of translational springs

dPt1 ¼ KtðW 1ð0Þ � W 2ð0ÞÞda�1;m ¼ Kt

Xþ1

n¼�1

a1;n �
Xþ1

n¼�1

a2;n

" #
da�1;m; (31a)

dPt2 ¼ KtðW 2ð0Þ � W 1ð0ÞÞda�2;m ¼ Kt

Xþ1

n¼�1

a2;n �
Xþ1

n¼�1

a1;n

" #
da�2;m: (31b)
3.1.3. Virtual work of rotational springs

dPr1 ¼ KrðW
0
1ð0Þ � W 0

2ð0ÞÞj kx þ
2mp

L

� �
da�1m

¼ Kr

Xþ1

n¼�1

a1;n kx þ
2np
L

� �
�
Xþ1

n¼�1

a2;n kx þ
2np
L

� �" #
kx þ

2mp
L

� �
da�1;m; ð32aÞ

dPr2 ¼ KrðW
0
2ð0Þ � W 0

1ð0ÞÞj kx þ
2mp

L

� �
da�2m

¼ Kr

Xþ1

n¼�1

a2;n kx þ
2np
L

� �
�
Xþ1

n¼�1

a1;n kx þ
2np
L

� �" #
kx þ

2mp
L

� �
da�2m; ð32bÞ

where W 0
ið0Þ ¼ qW ið0Þ=qx:
3.1.4. Virtual work of lumped masses

dPm1 ¼ �o2MW 1ð0Þda�1;m ¼ �o2M
Xþ1

n¼�1

a1;n

" #
da�1;m; (33a)

dPm2 ¼ �o2MW 2ð0Þda�2;m ¼ �o2M
Xþ1

n¼�1

a2;n

" #
da�2;m; (33b)

where 2M is the total mass of the stud per unit length.
3.1.5. Combined equation

Finally, from the principle of virtual work,

dPpi þ dPti þ dPri þ dPMi ¼ 0 ði ¼ 1; 2Þ; (34)
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one obtains

D1 kx þ
2mp

L

� �4

� mp1o2 �
2jo2r0e

2jkymH

kymð1 � e2jkymHÞ

" #
a1;m

þ
Kt � o2M

L

Xþ1

n¼�1

a1;n

 !
þ

Kr

L

Xþ1

n¼�1

a1;n kx þ
2np
L

� �" #
kx þ

2mp
L

� �

�
Kt

L

Xþ1

n¼�1

a2;n

 !
�

Kr

L

Xþ1

n¼�1

a2;n kx þ
2np
L

� �" #
kx þ

2mp
L

� �

þ
2jo2r0e

jkymH

kymð1 � e2jkymHÞ
a2;m ¼

2jor0I ; m ¼ 0;

0; ma0

(
ð35Þ

and

D2 kx þ
2mp

L

� �4

� mp2o2 �
2jo2r0e

2jkymH

kymð1 � e2jkymHÞ

" #
a2;m þ

Kt � o2M

L

Xþ1

n¼�1

a2;n

 !

þ
Kr

L

Xþ1

n¼�1

a2;n kx þ
2np
L

� �" #
kx þ

2mp
L

� �
�

Kt

L

Xþ1

n¼�1

a1;n

 !

�
Kr

L

Xþ1

n¼�1

a1;n kx þ
2np
L

� �" #
kx þ

2mp
L

� �
þ

2jo2r0e
jkymH

kymð1 � e2jkymHÞ
a1;m ¼ 0; ð36Þ

where use has been made of the coupling relations between the modal amplitudes of waves in air
and flexural motion in panels defined in Eq. (27).

Eqs. (35) and (36), although a little messy, give a coupled set of linear equations which
determine the coefficients ai;m: Once these coefficients are known, the remaining unknown
coefficients bn; �n; zn; and xn are found by using Eq. (27). The power transmission coefficient can
then be calculated as in Section 2.1.2, using

tðyÞ ¼

Pn¼þ1

n¼�1

jxnj
2ReðkynÞ

jI j2ky

: (37)

This result is based on the fact that the group velocity of the nth acoustic component in the y-
direction is qo=qkyn ¼ ðkyn=kyÞc:
3.2. Relation between the two models

The smeared model derived in Section 2.1 is based on the assumption that uniformly distributed
translational springs can be used in place of the discrete studs to link the two panels. It will be
demonstrated below that, when the reflection of flexural waves in the panels at the stud joints is
ignored, the periodic model reduces to the smeared model.
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Following the same procedure as in Section 3.1 for the periodic model but replacing each
summation over space harmonics by the single term n ¼ 0; we obtain equations identical to Eqs.
(3) and (6). After applying the coupling (boundary) conditions, Eq. (7), the unknown amplitudes
R;A1;A2; and T can be obtained as

R ¼ I � o=kyŴ 1; (38a)

A1 ¼
oðŴ 2 � Ŵ 1e

jkyHÞ

kyðe�jkyH � ejkyHÞ
; (38b)

A2 ¼
oðŴ 2 � Ŵ 1e

�jkyHÞ

kyðe�jkyH � ejkyHÞ
; (38c)

T ¼ oŴ 2e
jkyH
�

ky: (38d)

Again, the amplitudes Ŵ i are obtained by employing the principle of virtual work. The virtual
displacement is defined as

dW i ¼ dŴ ie
�jðkxx�otÞ: (39)

The total virtual work is comprised of the following components:
Panels

dPp1 ¼

ZL

x¼0

D1
q4W 1

qx4
þ mp1

q2W 1

qt2
� jor0ðF1 � F2Þ

� �
dW �

1 dx

¼ LfD1k4
xŴ 1 � m1o2Ŵ 1 � jor0½I þ R � A1 � A2�g dŴ

�

1; ð40aÞ

dPp2 ¼

ZL

x¼0

D2
q4W 2

qx4
þ mp2

q2W 2

qt2
� jor0ðF2 � F3Þ

� �
dW �

2 dx

¼ LfD2k4
xŴ 2 � m2o2Ŵ 2 � jor0½A1e

�jkyH þ A2e
jkyH � Te�jkyH �g dŴ

�

2: ð40bÞ

Translational springs

dPti ¼ KtðW ið0Þ � W nð0ÞÞdW �
i ¼ Kt½Ŵ i � Ŵ n�dŴ

�

i ;

i; n ¼ 1; 2; ian: ð41Þ

Rotational springs

dPri ¼ KrðW
0
ið0Þ � W 0

nð0ÞÞjðkxÞ dW �
i ¼ Kr½Ŵ i � Ŵ n�ðkxÞ

2 dŴ
�

i ;

i; n ¼ 1; 2; ian: ð42Þ

Lumped mass

dPmi ¼ �o2MW ið0Þ dW �
i ¼ �o2MŴ i dŴ

�

i ; i ¼ 1; 2: (43)

Substitution of Eqs. (41)–(44) into the principle of virtual work

dPpi þ dPti þ dPri þ dPMi ¼ 0; i ¼ 1; 2 (44)

leads to the same equation as that given by Eq. (11).



ARTICLE IN PRESS

J. Wang et al. / Journal of Sound and Vibration 286 (2005) 817–847 835
The above manipulation demonstrates that, when the reflected flexural wave at each stud point
is ignored, the periodic model is equivalent to the smeared model with air loading. Physically,
when the studs are uniformly distributed across the whole panel area, the partition system
becomes homogeneous and all the reflected flexural waves from the stud points disappear.

3.3. Convergence check

The first stage of numerical calculation using the periodic model is to establish how many terms
are needed to ensure convergence of the solution. Fig. 7a shows the plots of STL versus frequency
for various numbers of terms, for a particular partition structure whose parameters are listed in
Table 1. About 30 terms are needed for the solution to converge. To further demonstrate the
convergence, the following frequencies, f ¼ 200, 1000, 5000, and 10,000Hz are chosen and their
convergence curves are shown in Figs. 7b. The number of terms needed in the calculation
increases with the frequency. At low frequencies, a few terms are enough to ensure the
convergence. At higher frequencies (�10,000Hz), 33 terms are needed to ensure the resulting error
(�0.008 dB) is less than the pre-set error band of 0.01 dB.

Following Lee and Kim [20], it is assumed that once the solution converges at a given
frequency, it converges for all lower frequencies. This assumption is valid for the example shown
in Fig. 7, where the number of terms, 33, determined at the highest frequency of interest,
10,000Hz, ensures that the solution converges for all other lower frequencies. The following
iteration strategy is thence employed. The STL is first calculated at the highest frequency of
interest, with progressively more terms in the series expansion. The solution is deemed to have
converged once the difference between the STLs calculated at two successive calculations falls
within a pre-set error band: the corresponding number of terms is then used to calculate the STL
at all other frequencies.
4. Results and discussion

The predictions from the smeared model are first compared with those from the periodic model,
to explain the new physical phenomena introduced by the periodicity. To emphasise the main
effects, material damping is ignored in both models. Next, effects of the incidence angle are
presented for both models. Finally, to demonstrate the predictive capability of the periodic model,
comparisons are made with recent experimental data on steel plates with wooden studs from
Hongisto et al. [24].

4.1. Periodic model versus smeared model

Using the same partition system considered earlier, with parameter values as listed in Table 1,
Fig. 8 shows the STL at 451 incidence angle predicted by the periodic model compared with
that predicted by the smeared model. The periodic model follows the general trend of the
smeared model, but it shows significant new features: peaks and dips in the STL relative to
the smooth variation of the simpler model. The studs are necessary components of the partition
in order to carry the structural loads, but it is clear that they behave like short circuits and cause
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angles plotted against frequency. Solid line: 33 terms used; dash-dotted line: 15 terms; dotted line: seven terms; dashed

line: one term. (b) STL averaged over all possible incidence angles plotted against number of terms used in the

calculation. Solid line: 200 Hz; dot-dashed line: 1000 Hz; dashed line: 5000Hz; dotted line: 10,000 Hz.

J. Wang et al. / Journal of Sound and Vibration 286 (2005) 817–847836
an increase of sound transmission in some frequency bands. The dips caused by the periodic
properties of the structure are very significant for STL of partitions, and it is important to
understand their physical origin.
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Table 1

Panel dimensions and simulation data

Kt (N/m) 2.1� 109 Kr (Nm/rad) 39.1 M (kg) 0.265

L (m) 0.600 E1 (Pa) 7.0� 109 E2 (Pa) 7.0� 109

r0 (kg/m3) 1.21 r1 (kg/m3) 1200 r2 (kg/m3) 1200

h2 (m) 12.5� 10�3 h1 (m) 12.5� 10�3 Z1 0.1

Z2 0.1 n1 0.3 n2 0.3

c0 (m/s) 343
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Fig. 8. Comparison of the STL yielded by the smeared and periodic models for the parameters listed in Table 1. Solid

line: smeared model; dashed line: periodic model.
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The dips in the STL curve correspond to frequencies where the incident sound wave undergoes
a kind of resonance with the free-wave propagation of vibration in the panel. The effect is
analogous to the familiar ‘‘coincidence frequency’’ discussed in Section 2.2, but the spatial
harmonics created by wave reflection at the studs introduce multiple possibilities for wavenumber
matching and ‘‘coincidence’’. To see what is happening it is necessary to examine briefly the
structure-borne vibration response of the periodic system. For simplicity, the effects of air loading
on the structural behaviour will be ignored for the moment. To include such effects makes the
modelling more complicated without changing the qualitative picture.

Since the partition studied here has a symmetrical construction, the problem of structural
vibration transmission in the partition can be decomposed into two parts, one in which the two
panels move in a symmetrical way and one in which they move in an antisymmetrical way. The
same argument was used earlier, in discussing Figs. 4 and 5. Symmetric motion (with respect to
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the symmetry plane running through the centre of the partition) means that the panels move in
‘‘breathing’’ motion, both in or both out at a given position and a given time. For such motion,
the stiffness of the studs imposes a strong constraint. Antisymmetric motion, on the other hand,
involves the two panels moving in step. The studs are carried along by the panel motion, but since
there is no relative motion at the two ends of a stud, the stud stiffness imposes no constraint. The
mass of the studs has some influence on the motion, but this is small enough to be ignored for the
present purpose.

The result is that the vibration propagation characteristics for antisymmetric motion are
approximately the same as for a single panel with no studs, but for symmetric motion they are
altered very significantly by the periodic studs. For the former case, a sinusoidal vibration can
propagate along the partition at any frequency, with a wavenumber/frequency relation, or
dispersion curve, which is parabolic as seen in Fig. 5. For the latter case, the most important effect
of the periodicity is to divide the frequency range into a sequence of ‘‘pass bands’’, where
vibration can propagate, and ‘‘stop bands’’, where it cannot (see, e.g., Refs. [6,7]). It is this pattern
of stop and pass bands that is responsible for the peaks and dips in the STL shown in Fig. 8.

The rotational stiffness of these particular studs produces a negligible effect, so that by far the
strongest effect, and the only one which need be kept here, is the translational stiffness of the
studs. The resulting model of symmetrical vibration of the partition is very simple: relative to the
centre plane of the partition, each panel vibrates as a beam restrained by periodically placed
springs to ‘‘ground’’. This problem can be solved easily, for example by the transfer matrix
method as used by Mead [16] for similar problems. The result of the calculation is shown in Fig.
9a, in which wavenumber is plotted against frequency. The pass bands for symmetrical motion
appear as sinuous lines, because at a given frequency the travelling wave consists of a mixture of
related wavenumbers having the same general form as Eq. (21). The dispersion curve for
antisymmetric motion is also shown. The sloping dashed line indicates the behaviour of the
incident sound wave at 451. The shaded wedge indicates the region of the frequency/wavenumber
plane in which waves in the partition can radiate sound. This wedge is bounded by the sound-
speed lines corresponding to grazing incidence, parallel to the partition.

It is clear from Fig. 9a that within the frequency range plotted, the incident sound waves can
never excite the antisymmetric motion strongly enough to be resonant—this does not occur until
the coincidence frequency. For the symmetric motion, though, there are intersections of the
dispersion curves, one per pass band. At each of these intersections the incident sound wave can
excite panel vibration of sufficient amplitude that very strong sound transmission occurs, and this
is the cause of the dips in the STL curve. This is demonstrated in Figs. 9b and c. Fig. 9b shows the
‘‘wrapped’’ version of Fig. 9a, obtained by ‘‘folding’’ the segments into the range 02p: This
folding process gives a compact diagram which is often useful in periodic structure theory [7]. It is
analogous to the effect of aliasing on the frequency spectrum of a sampled waveform: we are
‘‘sampling’’ the spatial structure once per bay. Fig. 9c, on the same frequency scale, shows the
STL plot for this simplified problem with no stud mass or rotational stiffness, and no air coupling
between the panels. It is immediately clear that the intersections labelled A, B, C, and D
correspond to the positions of dips in Fig. 9c.

The intersections labelled A0, B0, C0, and D0 correspond to the peaks in the STL curve. The
reason for this is much less obvious, since it is clear from Fig. 9a that these intersections are in
some sense ‘‘not real’’, but an artefact of the wrapped plot. However, at these frequencies the
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Fig. 9. (a) Normalised wavenumber kxL=p plotted against frequency. Solid line: the pass bands for symmetric motion;

dot-dashed line: the dispersion curve for antisymmetric motion; dashed line: the dispersion curve for the incident sound
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Solid line: the pass bands for symmetric motion; dot-dashed line: the dispersion curve for antisymmetric motion; dashed

line: the dispersion curve for the incident sound at y ¼ 451. (c) STL plotted for the problem presented in Fig. 9a.
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response of the panel exposed to the incident sound wave takes a particularly simple form in
which only two terms of the sum in Eq. (21a) are needed: the directly driven term n ¼ 0 and the
term that satisfies the ‘‘coincidence’’ condition

D1½kx þ 2Np=L�4 ¼ mp1o2: (45)

The displacement of the driven panel is then

W 1 ¼ I jor0e
jote�jkxx 1 � e�j2Npx=L

D1k4
x � mp1o2

" #
: (46)

This has nodal points at all the studs, so that no force is transmitted to the other panel, and
therefore no sound is radiated.

The panel becomes a perfect reflector of sound at these frequencies. Fig. 10 shows the patterns
of panel displacement (at t ¼ nT ; where T ¼ 2p=o is the period of vibration) corresponding to the
first few frequencies of peaks and dips in Fig. 9c. It is not a surprise that this symmetrical partition
model exhibits a sequence of frequencies of perfect reflection and perfect transmission: this is an
example of a rather general result for wave transmission through symmetrical coupling systems
[25].

When the coupling through the internal air is added back into the model the picture becomes
somewhat more complicated, as shown in Fig. 11. The same qualitative features can be seen as in
Fig. 9c: the main change is that there are extra dips in the STL curve, because the additional
coupling through the air has made the structure of stop and pass bands more complicated. The
physical explanation just given remains broadly correct.

Fig. 12 shows a series of STL calculations with the periodic model in which the stud spacing
is varied while keeping the equivalent distributed stud stiffness K 0

t fixed at 3.125� 109 N/m3.
The rotational stiffness is set to zero because it has virtually no influence on the STL results
for this particular design of stud. The curves are separated for clarity in the plot, and the result
of the smeared model is included at the bottom. As the stud spacing decreases the system
approaches, as expected, the case represented by uniformly distributed stud stiffness, i.e. the
smeared model.
4.2. Effect of the incidence angle

For practical prediction of sound transmission performance, the results for a single angle of
incidence are only of limited significance. What is needed is an appropriate average over all
incidence angles. Ideally, this should be an average over all angles in a 3D sense, but the theory
presented here only allows an average to be taken over angles in the plane normal to the studs.
Fig. 13a shows the variation of STL with angle for the periodic mode for the same partition
discussed above. This figure can be compared with Fig. 4a, for the smeared model. Fig. 13b shows
the results of averaging over angle in both models.

It can be seen in Fig. 13a that the detailed features of the periodic model, discussed in
the previous section, vary with incidence angle. The pattern can be understood with reference to
Fig. 9b. The dips in the surface of Fig. 13a trace out portions of the pass bands, since the
intersection points A, B, etc. move along the bands as the incidence angle is varied. Similarly, the
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ridges in the surface trace out patterns recognisably related to the ‘‘wrapped’’ version of the
panel dispersion curve, like the dot-dashed line in Fig. 9b. Much of this detail is lost when
an average is taken over incidence angles, and the resulting curve in Fig. 13b follows the curve for
the smeared model much more closely than did the curves for individual incidence angles, such as
seen in Fig. 8.
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Fig. 11. STL plotted for the problem presented in Fig. 9a, with the addition of air in the cavity.
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4.3. Comparison with measurements

Fig. 14 shows a comparison of the predictions from the periodic and smeared models developed
here with test data taken from Fig. 12 of Hongisto et al. [24] for a double-leaf partition consisting
of two identical 2 mm thick steel plates (Young’s modulus 210 � 109 N=m2 and density
7800 kg=m3) and wooden studs (thickness 120 nm and width 42 nm). The wooden studs are
periodically distributed, with stud spacing of 1100mm, and there is no sound absorbent present in
the cavity. The air density is r0 ¼ 1:25 kg=m3; and speed of sound is c0 ¼ 343m=s: The simulation
conditions are listed in Table 2. The predicted STL is obtained by averaging over all incidence
angles.

From Fig. 14 it is seen that, although the STL curve predicted by the periodic theory is
undulating due to the periodic nature of the model, it follows the correct trend of test data and,
overall, the prediction agrees well with the data. Wooden studs are normally considered as rigid,
since they have very high translational and rotational stiffness. The high stud stiffness causes
strong wave reflections, which is the underlying reason for the ‘‘wavy’’ shape of the STL curve
predicted by the periodic model. The smeared model yields a poor prediction of the STL for this
case, as can be seen in Fig. 14. Better agreement of the present theories with experiment should
probably not be expected because of the 2D nature of the models. In the measurement, the sound
field was a fully diffuse 3D field.
5. Concluding remarks

Two analytic models have been developed to predict STL through double-leaf partition walls
stiffened with studs. The smeared model assumes that the studs can be modelled using uniformly
distributed springs and mass. In the periodic model, the studs are modelled as a set of periodically
distributed lumped masses attached to the two panels, together with a set of periodically spaced
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springs with rotational and translational stiffness. The dynamic equations that describe the vibro-
acoustic responses of the system were established by using space-harmonic series expansions and
the principle of virtual work. The periodic model was shown to reduce to the smeared model if the
reflected flexural waves at each stud connection are ignored. Convergence of the solution was
checked, and the minimum number of terms needed in the series expansion for the solution to
converge was obtained as a function of frequency. The predictions were compared with existing
test data for steel plates with wooden stiffeners, and reasonable agreement was obtained.

By studying representative numerical results from the two models, the various physical
mechanisms influencing STL were explored. The smeared model predicts relatively simple
behaviour, in which the only conspicuous features were associated with coincidence effects with
the two types of structural wave allowed by partition model, and internal resonances of the air
between the panels. In the periodic model, many more features were evident, associated with the
structure of pass- and stop-bands for structural waves in the partition.
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Fig. 13. (a) The variation of the STL with incidence angle for the periodic model. (b) The average of the STL over

incidence angle for both the periodic and smeared models. Solid line: smeared model; dashed line: periodic model.

J. Wang et al. / Journal of Sound and Vibration 286 (2005) 817–847844
The main aim of the present investigation has been to establish analytical modelling for the
study of sound transmission across double-leaf partitions, and to understand the underlying
physics of the results obtained. The models presented here have made many simplifications. The
sound field was assumed to be restricted to the horizontal plane only, and many complicating
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Table 2

Simulation data for steel plates with wooden studs

Kt (N/m) 2.99� 1010 Kr (Nm/rad) 1.5� 106 M (kg) 1.942

L (m) 1.100 E1 (Pa) 2� 1011 E2 (Pa) 2� 1011

r0 (kg/m3) 1.21 r1 (kg/m3) 7800 r2 (kg/m3) 7800

h2 (m) 2� 10�3 h1 (m) 2� 10�3 Z1 0.0006

Z2 0.0006 n1 0.28 n2 0.28

c0 (m/s) 343
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features of real partitions were disregarded: finite size of wall, connection details around the edges,
joins between board panels, discrete screw fixings of panels to studs, exact periodicity of stud
spacings, and so on.

It is intended that these important details will be considered in future work which will extend
this study and open the way to optimisation of partition design for most effective soundproofing.
Some of the features are relatively easy to incorporate, but others will require significant changes.
In particular, relaxing the assumption of periodicity is difficult. Given the current state of theories
of vibration of such structures, it would force the model either to become purely numerical, or else
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to become statistical in nature: see, e.g., Refs. [26,27]. Nevertheless, the qualitative effects expected
from non-periodicity are understood, so-called ‘‘Anderson localisation’’, and it will be an
interesting target for future research to quantify whether such effects are important for realistic
building structures.
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