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Abstract

Beams carrying various lumped attachments have been studied extensively over the years. In this paper, a
simple approach is proposed that can be used to readily determine the eigenvalues of an arbitrarily
supported single-span or multi-span beam carrying any combination of lumped mass, rotary inertia,
grounded translational or torsional spring, grounded translational or torsional viscous damper, an
undamped or damped oscillator with or without a rigid body degree of freedom. Rather than solving a
generalized eigenvalue problem to obtain the eigenvalues of the system, a frequency equation is formulated
instead whose solution can be easily solved either numerically or graphically. The proposed scheme is easy
to code, and can be easily modified to accommodate beams with arbitrary supports and carrying any
number of miscellaneous lumped attachments.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Frequency analysis of combined dynamical systems consisting of beams carrying lumped
attachments has been studied extensively over the years, and hence only a few selected recent
references are given here [1–25]. Commonly used analytical approaches include the assumed-
modes method [21,25], the Lagrange multipliers formalism [9,16,18,20], dynamic Green’s function
approach [10,17,19], Laplace transform with respect to the spatial variable approach [8,24], and
the analytical-and-numerical-combined method [12,22].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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In most of the previous work, the lumped attachments are often of the same type, i.e., all point
masses, undamped oscillators or damped spring–mass systems. Moreover, most authors
considered only beams with a single-span. Posiada"a [18] analyzed the free vibration of a beam
with various translational and torsional lumped attachments. He derived the frequency equation
for the combined system by means of the Lagrange multiplier approach. This method is based on
using the spatial functions of the unconstrained structure in a Rayleigh–Ritz analysis with the
constraint conditions enforced by means of Lagrange multipliers. Using this particular approach,
S Lagrange multipliers and S constraint equations are introduced in the analysis, where S

corresponds to the number of attachments the beam is carrying. Manipulating the equations of
motion, the eigenvalues must satisfy the zeros of the S constraint equations in matrix form. While
the final results obtained by the Lagrange multiplier approach are usually concise, the scheme is
rather laborious to apply, because Lagrange multipliers are required and constraint equations are
imposed. Due to its complexity, the method of Lagrange multipliers seems to have been used less
for free vibration than other methods. While Posiada"a included various elements in his analysis,
he did not include any damping elements nor did he generalize his findings to a beam carrying
different combinations of attachments.
In this paper, the discretized governing equations for an arbitrarily supported single-span or

multi-span beam structure carrying various attachments, including point masses, inertia elements,
translational/torsional springs and dampers, undamped and damped oscillators with and without
rigid body degree of freedom (dof), etc., are first obtained by using the common assumed-modes
method. It will be shown that the characteristic determinants governing the free vibration of
beams carrying miscellaneous attachments all have the same form. With proper algebraic
manipulations, each characteristic determinant can be reduced to one of a smaller size, thus
providing an alternative means to solve for the eigenvalues of the combined system. A look-up
table will be provided that can be used to help code the proposed algorithm, and a graphical
procedure will be outlined to assist with the estimation of the solution. The benefits of the
proposed scheme will be discussed and highlighted, and numerous numerical examples will be
provided to illustrate the utility of the new formalism.
2. Theory

Consider the free vibration of an arbitrarily supported beam carrying a grounded translational
spring of stiffness k at x1; a lumped mass m at x2; a grounded torsional spring of stiffness kt at x3; a
grounded viscous damper of coefficient c at x4; a damped oscillator with a rigid body dof with
parameters m1; c1 and k1 at x5; a grounded torsional viscous damper of coefficient ct at x6; and an
element with rotary inertia J at x7; as shown in Fig. 1. Using assumed-modes method [26], the lateral
displacement of the combined system at point x can be expressed in the form of a finite series as

wðx; tÞ ¼
XN

i¼1

fiðxÞZiðtÞ; (1)

where N represents the number of modes used in the expansion, fiðxÞ are the eigenfunctions of the
unconstrained beam (i.e., the beam without any attachment), that serve as the basis functions for this
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Fig. 1. An arbitrarily supported beam carrying various lumped elements.
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approximate solution, and ZiðtÞ are the generalized coordinates. The total kinetic energy of the system
is

T ¼
1

2

XN

i¼1

Mi _Z2i ðtÞ þ
1

2
m _w2ðx2; tÞ þ

1

2
m1 _z

2ðtÞ þ
1

2
J _y
2
ðx7; tÞ; (2)

whereMi are the generalized masses of the unconstrained beam, an overdot denotes a derivative with
respect to t; zðtÞ denotes the lateral displacement of the damped oscillator, and yðx; tÞ represents the
rotational displacement of the beam, and is given by

yðx; tÞ ¼
qw

qx
ðx; tÞ ¼

XN

i¼1

f0
iðxÞZiðtÞ; (3)

where the prime denotes a derivative with respect to x: The total potential energy of the system is

V ¼
1

2

XN

i¼1

KiZ2i ðtÞ þ
1

2
kw2ðx1; tÞ þ

1

2
kty

2
ðx3; tÞ þ

1

2
k1½zðtÞ � wðx5; tÞ�

2; (4)

where Ki are the generalized stiffnesses of the unconstrained beam. Finally, the Rayleigh’s dissipation
function is

R ¼
1

2
c _w2ðx4; tÞ þ

1

2
c1½_zðtÞ � _wðx5; tÞ�

2 þ
1

2
ct
_y
2
ðx6; tÞ: (5)
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Substituting Eqs. (1) and (3) into Eqs. (2), (4) and (5), and applying Lagrange’s equations,

d

dt

qT

q_Zi

� �
�
qT

qZi

þ
qV

qZi

þ
qR

q_Zi

¼ 0; i ¼ 1; 2; . . . ;N (6)

and

d

dt

qT

q_z

� �
�

qT

qz
þ

qV

qz
þ

qR

q_z
¼ 0; (7)

the following equations of motion are obtained:

½M� 0

0T m1

" #
€Z

€z

� �
þ

½C� �c1f5
�c1f

T

5
c1

2
4

3
5 _Z

_z

� �
þ

½K� �k1f5
�k1f

T

5
k1

2
4

3
5 Z

z

� �
¼

0

0

� �
; (8)

where f
i
is a vector of the eigenfunctions evaluated at the attachment location, xi; as follows:

f
i
¼ ½f1ðxiÞ; . . . ;fjðxiÞ; . . . ;fNðxiÞ�

T (9)

and

½M� ¼ ½Md � þ mf
2
fT
2
þ Jf0

7
f0

7

T
; ½K� ¼ ½Kd � þ kf

1
fT
1
þ ktf

0

3
f0

3

T
;þk1f5f

T

5

½C� ¼ cf
4
fT
4
þ ctf

0

6
f0

6

T
þ c1f5f

T

5
: ð10Þ

Matrices ½Kd � and ½Md � are both diagonal, whose ith elements are given by Ki and Mi; respectively.
Eq. (8) can be expressed as

½Ms� €qþ½Cs� _qþ½Ks� q ¼ 0; (11)

where ½Ms�; ½Cs� and ½Ks� are the mass, damping and stiffness matrices, respectively, of the system,
and q ¼ ½ZT z�T: The system matrices are all of size Ns 	 Ns and the vector q is of length Ns; where
Ns ¼ N þ 1: The free response behavior of system (11) can determined by using a state matrix
approach, which effectively replaces the Ns coupled second-order differential equations by 2Ns

coupled first-order ordinary differential equations as follows [26]. A state vector of length 2Ns is
introduced,

y ¼
_q

q

" #
; (12)

such that Eq. (11) can be rewritten in a form that consists of 2Ns simultaneous first-order ordinary
differential equations:

½A� _y�½B� y ¼ 0; (13)

where matrices ½A� and ½B� are both symmetric and are given by

½A� ¼
½0� ½Ms�

½Ms� ½Cs�

" #
and ½B� ¼

½Ms� ½0�

½0� �½Ks�

" #
: (14)
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Because Eq. (13) is homogeneous, its solution is given by

y ¼ ȳ elt; (15)

where the constant exponent l is also known as the eigenvalue of the system. Substituting Eq. (15)
into Eq. (13) yields the 2Ns 	 2Ns generalized eigenvalue problem

½B� ȳ ¼ l½A� ȳ; (16)

where l corresponds to the exponent or the eigenvalue of the system. Eq. (16) can be readily solved by
using any existing prepackaged code such as rsg in EISPACK or eig in MATLAB.
Alternatively, an exponential solution can be assumed from the outset, in which case

Z

z

� �
¼

Z̄

z̄

� �
elt (17)

and Eq. (8) becomes

l2
½M� 0

0T m1

" #
þ l

½C� �c1f5
�c1f

T

5
c1

2
4

3
5þ

½K� �k1f5
�k1f

T

5
k1

2
4

3
5

0
@

1
A Z̄

z̄

� �
¼

0

0

� �
: (18)

Using the last equation of Eq. (18) to obtain an expression for z̄ in terms of Z̄ yields

z̄ ¼
k1 þ c1l

k1 þ c1lþ m1l
2
fT
5
Z̄ : (19)

Substituting Eq. (19) into the top equation of Eq. (18) leads to

l2½M� þ l½C� þ ½K� �
ðk1 þ c1lÞ

2

k1 þ c1lþ m1l
2
f
5
fT
5

� �
Z̄ ¼ 0 : (20)

Finally, substituting Eq. (10) into Eq. (20) gives

l2½Md � þ ½Kd � þ
X7
i¼1

siuiu
T
i

 !
Z̄ ¼ 0; (21)

where

s1 ¼ k; s2 ¼ ml2; s3 ¼ kt; s4 ¼ cl; s5 ¼
ðk1 þ c1lÞm1l

2

k1 þ c1lþ m1l
2
; s6 ¼ ctl; s7 ¼ Jl2 (22)

and ui is a vector of length N; given by

ui ¼ fðxiÞ for i ¼ 1; 2; 4; 5; ui ¼ f0
ðxiÞ for i ¼ 3; 6; 7: (23)

Note that the coefficient matrix of Eq. (21) consists of a diagonal matrix (l2½Md � þ ½Kd �) modified
by a series of rank one matrices. For a nontrivial solution, the eigenvalue l must satisfy

det l2½Md � þ ½Kd � þ
X7
i¼1

siuiu
T
i

 !
¼ 0: (24)
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For an undamped system, the eigenvalue l is purely imaginary, implying that the system executes
simple harmonic motion, consistent with physical intuition. In this case, l ¼ jo; where j ¼

ffiffiffiffiffiffiffi
�1

p

and o represents the undamped natural frequency of the system. When damping is present, the
eigenvalues may now be complex of the form

l ¼ lr þ jli; (25)

where lr and li correspond to the real and imaginary parts of l; respectively.

2.1. Single attachment

Suppose the beam is only carrying one lumped attachment at x1; in which case Eq. (24)
simplifies to

detð½Kd � þ l2½Md � þ su1u
T
1 Þ ¼ 0; (26)

where s and u1 depend on the element type. Table 1 summarizes the expressions for s and u1 for
various lumped attachments. Because the matrix of Eq. (26) consists of a diagonal matrix
modified by a simple rank one matrix, it can be reduced to a simple secular equation as follows:

detðl2½Md � þ ½Kd � þ su1u
T
1 Þ ¼ detðl2½Md � þ ½Kd �Þ detð½I � þ sðl2½Md � þ ½Kd �Þ

�1u1u
T
1 Þ

¼
YN
i¼1

ðl2Mi þ KiÞ

 !
1þ s

XN

i¼1

u2i ðx1Þ

l2Mi þ Ki

 !
¼ 0: ð27Þ

The eigenvalues correspond to the zeros of Eq. (27), which can be determined either graphically or
numerically using any standard root solvers routine such as fsolve in MATLAB. The product
terms in Eq. (27) are significant because they serve as a reminder that when the attachment
location for the lumped element coincides with the node of any component modes, uiðxÞ; of the
unconstrained beam, then some of the eigenvalues of the combined system will be identical to the
Table 1

Expression for s and u1 for any lumped attachment at x1

Lumped attachment s u1 ¼ uðx1Þ

Point mass ml2 f
1

Rotary inertia Jl2 f0

1

Grounded translational spring k f
1

Grounded torsional spring kt f0

1

Grounded translational viscous damper cl f
1

Grounded torsional viscous damper ctl f0

1

Undamped oscillator with no rigid dof k þ ml2 f
1

Undamped oscillator with rigid dof kml2

kþml2
f
1

Damped oscillator with no rigid dof k þ clþ ml2 f
1

Damped oscillator with rigid dof ðkþclÞml2

kþclþml2
f
1

In-span simple support k ! 1 f
1

dof stands for degree of freedom.
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natural frequencies of the beam without any attachment. Moreover, when the attachment location
is in the vicinity of a node of the beam’s normal mode, then one of the eigenvalues of the
combined system will be a perturbation of the beam’s natural frequency corresponding to that
particular mode. Finally, when the attachment location x1 does not coincide with a node of any of
the normal modes of the beam, then l2Mi þ Kia0; and Eq. (27) reduces to

1þ s
XN

i¼1

u2i ðx1Þ

l2Mi þ Ki

¼ 0: (28)

To demonstrate how Table 1 can be used to formulate the appropriate frequency equation of a
beam carrying a single attachment, consider the case where the lumped element consists of an
undamped oscillator of parameters m and k with a rigid body dof (see Fig. 2). From Table 1, one
immediately finds

s ¼
kml2

k þ ml2
and u1 ¼ f

1
: (29)

Substituting Eq. (29) into Eq. (27), one obtains the frequency equation of Fig. 2. For this
particular case, note that as k ! 1; Eq. (29) reduces to s ¼ ml2 (a beam carrying a point mass),
and as m ! 1; Eq. (29) simplifies to s ¼ k (a beam carrying a grounded translational spring).
Both limiting cases are in complete agreement with the results of Table 1. Interestingly, Eq. (27)
can also be extended to find the eigenvalues of a two span beam (see Fig. 3), where the in-span
simple support can be modeled as a grounded translational spring whose stiffness tends to infinity.
Thus, for an in-span simple support,

s ¼ k ! 1 and u1 ¼ f
1
: (30)
Fig. 2. An arbitrarily supported beam carrying an undamped oscillator with a rigid body dof x1:

Fig. 3. An arbitrarily supported two span beam with a simple support at x1:
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2.2. Multiple attachments

Expressions for s and u1 depend on the lumped attachments, and are given in Table 1, for i ¼ 1:
The results of Table 1, however, can be easily extended to an arbitrarily supported beam carrying
S lumped attachments at locations xi (i ¼ 1; . . . ;S), where the corresponding si and ui are
obtained directly from Table 1. For this general case, the eigenvalues are given by the solution of
the characteristic determinant

det l2½Md � þ ½Kd � þ
XS

i¼1

siuiu
T
i

 !
¼ 0; (31)

where the vector ui is evaluated at xi: Eq. (31) can be shown [21,27] to be identical to

detðl2½Md � þ ½Kd �Þ det½B� ¼
YN
i¼1

ðl2Mi þ KiÞ

 !
det½B� ¼ 0; (32)

where the ði; jÞth element of ½B�; of size S 	 S; is given by

bij ¼
XN

r¼1

urðxiÞurðxjÞ

l2Mr þ Kr

þ
1

si

dj
i; i; j ¼ 1; 2; . . . ;S (33)

and dj
i represents the Kronecker delta. The eigenvalues of the system with multiple attachments

are given by the roots of Eq. (32), which can be readily solved using any existing prepackaged
code such as fsolve in MATLAB. Finally, when l2Mi þ Kia0; i.e., when the attachment locations
do not coincide with the nodes of any normal modes of the unconstrained beam, then Eq. (32)
reduces to

det½B� ¼ 0: (34)

Incidentally, many different approaches can be used to arrive at the frequency equations given
by Eqs. (28) and (32). Weissenburger [2] generated similar characteristic equations using the
method of localized modifications. Jacquot and Gibson [5] found a expression nearly identical to
Eq. (28) for an undamped simply supported beam with rotational end restraint and a cantilever
beam with tip mass and stiffness. Their approach consisted of expanding the time-dependent
deflection curve in terms of the eigenfunctions of the beam and then solving a set of linear
equations for the natural frequencies. Using component mode analysis, Dowell [6] obtained the
frequency equation for a system consisting of a beam or a plate on spring supports by means of
Lagrange multipliers. Gürgöze [20] obtained Eq. (32) for a beam carrying multiple spring–mass
systems in-span using the Lagrange multipliers formalism. Clearly, expressions similar to Eqs.
(28) and (32) can be derived using other methods. In this paper, they are obtained by the direct
manipulation of the characteristic determinant associated with a diagonal matrix modified by one
or multiple rank one matrices.
The proposed scheme of determining the eigenvalues of a beam carrying an assortment of

lumped elements is easy to apply with the aid of Table 1. To illustrate how to properly use this
table, consider the system of Fig. 4, which consists of an arbitrarily supported beam carrying a
grounded translational spring of stiffness k1 at x1; a lumped mass m1 at x2; a damped oscillator
with a rigid dof with parameters m2; c and k2 at x3; and a grounded torsional spring of stiffness kt
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Fig. 4. An arbitrarily supported beam carrying a grounded spring at x1; a lumped mass at x2; a damped oscillator with
a rigid dof at x3; and a grounded torsional spring at x4:
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at x4: For this beam system, S ¼ 4 and mapping each element to the appropriate si and ui using
Table 1, one finds

s1 ¼ k1; s2 ¼ m1l
2; s3 ¼

ðk2 þ clÞm2l
2

m2l
2
þ clþ k2

; s4 ¼ kt (35)

and

ui ¼ fðxiÞ for i ¼ 1; 2; 3; u4 ¼ f0
ðx4Þ: (36)

Substituting Eqs. (35) and (36) into Eq. (32) and expanding the resulting characteristic
determinant yields the frequency equation for the system of Fig. 4, which can be easily solved
graphically or numerically.
3. Results

The proposed scheme of calculating the eigenvalues of a beam carrying one or multiple lumped
elements offers numerous advantages. Firstly, Eqs. (27) and (32) are simple to code. Given the
eigenfunctions, fiðxÞ; of the arbitrarily supported beam, the parameters for the lumped
attachments and their locations, xi; Eqs. (27) and (32) can be easily programmed and solved
either graphically or numerically using any existing root solvers. Secondly, the proposed approach
can be extended to determine the eigenvalues of a beam with any arbitrary boundary conditions
by simply using the appropriate generalized masses, stiffnesses and eigenfunctions. Finally,
Eq. (32) can be easily modified to analyze a beam carrying any combination of lumped
attachments.
To show the versatility of the proposed scheme, the eigenvalues of a uniform fixed-free (or

cantilever) and simply supported Euler–Bernoulli beam carrying various lumped attachments are
computed by solving Eq. (27) or (32), and the results are compared to those obtained by using the
finite element method. Instead of solving the generalized eigenvalue problem (16), the finite
element method was chosen because it offers a completely different approach of verifying the
solutions. In all of the subsequent numerical examples, when the finite element method was used,
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the beam was discretized into 100 finite elements. For the proposed scheme, the MATLAB routine
fsolve was used to compute the eigenvalues of Eq. (27) or (32), depending on the number of
attachments the beam is carrying.
The MATLAB routine fsolve requires an initial guess of the unknown eigenvalue to be provided.

When the beam is not carrying any damped attachments, an estimation of the eigenvalues can be
established by plotting Eq. (27) or (32) as a function of the eigenvalue l: The zeros of the curve are
the system’s eigenvalues, or they can be used as the required initial guesses for fsolve if more
accuracy is desired. When the system is damped, an estimation of the solution can be obtained by
means of simultaneous contour plots of the real and imaginary parts of the system’s characteristic
equation, obtained by expanding Eq. (27) or (32). These approximate locations can be used as an
estimation of the eigenvalues of the combined system, or if greater accuracy is desired, they can be
used as inputs to fsolve. Finally, this graphical procedure of determining the approximate solutions
can be used to locate the eigenvalues within any desired range.
The eigenfunctions used in the assumed-modes method depend on the boundary conditions of

the beam with no attachments. For a uniform fixed-free beam, its normalized (with respect to the
mass per unit length, r; of the beam) eigenfunctions are given by

fiðxÞ ¼
1ffiffiffiffiffiffi
rL

p cos bix � cosh bix þ
sin biL � sinh biL

cos biL þ cosh biL
ðsin bix � sinh bixÞ

� �
(37)

such that the generalized masses and stiffnesses of the beam are

Mi ¼ 1 and Ki ¼ ðbiLÞ
4EI=ðrL4Þ; (38)

where E is the Young’s modulus, I is the moment of inertia of the cross-section of the beam, and
biL satisfies the following transcendental equation:

cos biL cosh biL ¼ �1: (39)

For a uniform simply supported beam, its normalized eigenfunctions are given by

fiðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

ipx

L
(40)

such that the generalized masses and stiffnesses of the beam become

Mi ¼ 1 and Ki ¼ ðipÞ4EI=ðrL4Þ: (41)

Eqs. (27) (for one lumped attachment) and (32) (for multiple attachments) can be used to solve
for the eigenvalues of the system regardless of the attachment locations. However, if the
attachment locations do not coincide with the nodes of any normal modes, then Eqs. (28) and (34)
are recommended because they are much simpler to solve. Thus, it is imperative to first compare
the attachment locations with the node locations of the unconstrained beam, and whenever
possible, solve Eqs. (28) and (34) instead. Table 2 shows the node locations for the second to the
fifth component modes of a fixed-free and a simply supported Euler–Bernoulli beam.
As the first example, consider a simply supported, uniform Euler–Bernoulli beam carrying an

undamped oscillator with no rigid body dof at x1 ¼ 0:30L (see Fig. 5). When the system is
undamped, the eigenvalues correspond to the natural frequencies of the system. The oscillator
parameters are m ¼ 1:0rL and k ¼ 3:0EI=L3: When the beam is simply supported, fiðxÞ is given
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Table 2

Location of nodes for the component modes of a fixed-free (ff) and a simply supported (ss) Euler–Bernoulli beam

Mode number xffn xssn

2 0:7834L 0:5000L
3 0:5035L 0:8677L 0:3333L 0:6667L
4 0:3583L 0:6441L 0:9056L 0:2500L 0:5000L 0:7500L
5 0:2788L 0:4999L 0:7232L 0:9265L 0:2000L 0:4000L 0:6000L 0:8000L

Fig. 5. An arbitrarily supported beam carrying an undamped oscillator with no rigid body dof at x1:
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by Eq. (40), and the Ki and Mi are given by Eq. (41). Using the proposed scheme, the number of
modes used in the analysis is N ¼ 20 to ensure sufficient convergence of the results. When the
beam is discretized into 100 elements, the finite element approach requires solving a generalized
eigenvalue problem of size 200	 200: Table 3 compares the first five natural frequencies of the
system obtained by the proposed formalism and the finite element method. Because the
attachment location does not coincide with a node of any of the first five normal modes of a
simply supported beam (see Table 2), Eq. (28) was used to compute the natural frequencies using
the proposed scheme, where the initial guesses for fsolve are obtained by simply plotting the
characteristic equation as a function of l: Note the excellent agreement between the proposed and
the finite element results. Finally, note that because the attachment location is near a node of the
third normal mode of a simply supported beam (see Table 2), the third eigenvalue of the combined
system is merely a perturbation of the third natural frequency of the simply supported beam.
Table 4 displays the first five natural frequencies for a system consisting of an undamped oscillator

with a rigid body dof attached to a fixed-free beam at x1 ¼ 0:90L (see Fig. 2). The spring–mass
parameters are m ¼ 5:0rL and k ¼ 4:0EI=L3: Because the beam is cantilevered, fiðxÞ is given by Eq.
(37), and the Ki and Mi are given by Eq. (38). The number of modes used in the analysis is N ¼ 14
for the proposed approach. Using the finite element method, a generalized eigenvalue problem of size
201	 201 needs to be solved. Because the attachment location, x1; does not coincide with any nodes
of the eigenfunctions of the fixed-free beam (see Table 2), Eq. (28) becomes

1þ
kml2

k þ ml2
XN

i¼1

f2i ðx1Þ

l2Mi þ Ki

¼ 0; (42)
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Table 4

The first five natural frequencies of a fixed-free, uniform Euler–Bernoulli beam carrying an undamped oscillator with a

rigid body dof at x1 ¼ 0:90L

Nat. freq. Beam only FEM Eq. (28) ðN ¼ 14Þ

1 3.516015 0.631804 0.631805

2 22.034492 4.953629 4.953637

3 61.697214 22.136523 22.136523

4 120.901916 61.704017 61.704015

5 199.859530 120.902108 120.902095

The oscillator parameters are m ¼ 5:0rL and k ¼ 4:0EI=L3: The first natural frequencies of a fixed-free beam are also
shown.

Table 3

The first five natural frequencies of a simply supported, uniform Euler–Bernoulli beam carrying an undamped oscillator

with no rigid body dof at x1 ¼ 0:30L

Nat. freq. Beam only FEM Eq. (28) ðN ¼ 20Þ

1 9.869604 6.532205 6.532235

2 39.478418 29.759095 29.760059

3 88.826440 86.729607 86.731226

4 157.913671 143.226510 143.257055

5 246.740110 209.374306 209.463777

The oscillator parameters are m ¼ 1:0rL and k ¼ 3:0EI=L3: The first five natural frequencies of a simply supported

beam are also given. The natural frequencies are nondimensionalized by dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

q
:
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which is identical to Eq. (7a) that Dowell derived in [9]. Dowell [9] noted that if an undamped
oscillator with a rigid body dof is attached to a beam, a new natural frequency appears between the
original pair of beam frequencies nearest the oscillator frequency. Thus as expected, for the
spring–mass parameters chosen, a new natural frequency appears before the first natural frequency of
the cantilever beam. The first five natural frequencies of a cantilever beam are also shown. From Table
4, note the excellent agreement between the finite element results and the solution of Eq. (42). For this
system, the attachment location is near the node of the fourth normal mode of a cantilever beam (see
Table 2). Thus, the fifth natural frequency of the combined system is nearly identical to the fourth
natural frequency of the fixed-free beam. Finally, the chosen set of lumped parameters only affects the
lower natural frequencies. Specifically, it can be shown that the ith natural frequency of the combined
system, for iX3; is merely a perturbation of the ði � 1Þth natural frequency of the fixed-free beam
only. Table 4 confirms the previous observation. In particular, note that the third and fourth natural
frequencies of the combined system deviate slightly from the second and third natural frequencies of
the cantilever beam, respectively.
Table 5 shows the first five natural frequencies of a two span cantilever beam (see Fig. 3). The

in-span simple support is located at x1 ¼ 0:65L: For the proposed approach, Eq. (28) was used to
determine the natural frequencies of the two span beam. Because the stiffness cannot be set to
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Table 5

The first five natural frequencies of a two span, fixed-free, uniform Euler–Bernoulli beam

Nat. freq. FEM Eq. (28) (N ¼ 14) Eq. (43) ðN ¼ 14Þ

1 16.156817 16.157823 16.157910

2 46.910570 46.921507 46.922455

3 120.724293 120.725348 120.725440

4 162.408975 162.656676 162.677995

5 267.456193 267.767897 267.794470

The in-span simple support is located at x1 ¼ 0:65L: Using Eq. (28), k ¼ 1:0	 107EI=L3 to model the simple support.

Table 6

The first five natural frequencies of simply supported, uniform beam carrying a grounded torsional spring kt ¼

10:0EI=L at x1 ¼ 0:75L

Nat. freq. FEM Eq. (28) ðN ¼ 20Þ

1 12.866415 12.912249

2 39.478418 39.478418

3 92.341021 92.402763

4 166.058365 166.223907

5 251.321762 251.427177
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infinity, to solve Eq. (28) numerically, k ¼ 1:0	 107EI=L3 to model the simple support.
Alternatively, by letting k ! 1; Eq. (28) can be approximated by

XN

i¼1

f2i ðx1Þ

l2Mi þ Ki


 0: (43)

Table 5 shows the results obtained by solving Eqs. (28) and (43). Note how well they track one
another and the finite element results.
Table 6 lists the first five natural frequencies of a simply supported beam carrying a grounded

torsional spring at x1 ¼ 0:75L (see Fig. 6). The chosen attachment point coincides with a location
of zero angular displacement for the second eigenfunction of a simply supported beam. Thus, the
grounded torsional spring does not alter the second natural frequency of the simply supported
beam, and as expected, the second natural frequency of the combined system is exactly
4p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
: Incidentally, it should be noted that Eq. (28) fails to produce the second natural

frequency of the system because the restoring torque at this point is exactly zero. In this case,
sound engineering judgment must be applied to identify the ‘‘missing’’ natural frequency.
Alternatively, Eq. (27) can be used and it will yield all of the natural frequencies of the combined
system. From Table 6, note the excellent agree between the finite element results and the proposed
solution scheme.
Consider now the system of Fig. 7, where the beam is simply supported and the oscillator

parameters are m ¼ 1:0rL; c ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIr=L2

p
; and k ¼ 5:0EI=L3: The attachment location is at

x1 ¼ 0:23L: When damping is present, the finite element approach requires the solution of a
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Fig. 6. An arbitrarily supported beam carrying a grounded torsional spring at x1:

Fig. 7. An arbitrarily supported beam carrying a damped oscillator with no rigid body dof at x1:
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generalized eigenvalue problem of size 400	 400 (when the beam is discretized into 100 elements).
For the proposed scheme, one only needs to solve a secular equation consisting of the sum of N
terms, where N is the number of terms used in the assumed modes analysis. Note that when the
system is damped, the number of terms within the summation remains the same as that of
undamped system of Fig. 4. Table 7 shows the first five eigenvalues for the system of Fig. 7. Note
the excellent agreement between the two completely different approaches.
Table 8 displays the first five eigenvalues for a cantilever beam carrying a damped oscillator

with a rigid body dof at x1 ¼ 1:0L (see Fig. 8). The oscillator parameters are m ¼ 1:0rL; c ¼

0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIr=L2

p
; and k ¼ 0:5EI=L3: Like before, the two results track one another very well.

Consider now a beam carrying multiple lumped elements. Fig. 4 consists of a simply supported
beam carrying an assorted attachments, including a grounded translational spring k1 ¼ 5:0EI=L3

at x1 ¼ 0:2L; a lumped mass m1 ¼ 1:75rL at x2 ¼ 0:35L; a damped oscillator with a rigid body
dof and system parameters m2 ¼ 5:0rL; c ¼ 2:0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIr=L2

p
; k2 ¼ 4:0EI=L3 at x3 ¼ 0:5L; and a

grounded torsional spring kt ¼ 10:0EI=L at x4 ¼ 0:75L: This problem can be solved by using
many different methods. Lagrange multipliers approach also leads to Eq. (34), but it can be
laborious to apply, because one needs to introduce S Lagrange multipliers and to formulate S

constraint equations. The assumed-modes can also be employed to obtain the system mass,
damping and stiffness matrices. To find the eigenvalues of the system, one needs to solve a
generalized eigenvalue problem of size 2ðN þ 1Þ 	 2ðN þ 1Þ; where N is the number of modes used
in the analysis. The finite element method can also be used, in which case one needs to solve an
eigenvalue problem of size ð2Ne þ 1Þ 	 ð2Ne þ 1Þ; where Ne corresponds to the number of finite
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Table 8

The first five eigenvalues of a fixed-free, uniform Euler–Bernoulli beam carrying a damped oscillator with a rigid body

dof at x1 ¼ 1:0L

Eigenvalues FEM Eq. (27) ðN ¼ 20Þ

1 �0.072937+0.651957j �0.072938+0.651958j

2 �0.423076+3.760568j �0.423079+3.760566j

3 �0.403063+22.060788j �0.403065+22.060772j

4 �0.400606+61.702601j �0.400605+61.702557j

5 �0.400197+120.902586j �0.400200+120.902502j

The oscillator parameters are m ¼ 1:0rL; c ¼ 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIr=L2

p
; and k ¼ 0:5EI=L3:

Fig. 8. An arbitrarily supported beam carrying an damped oscillator with a rigid body dof at x1:

Table 7

The first five eigenvalues of a simply supported, uniform Euler–Bernoulli beam carrying a damped oscillator with no

rigid body dof at x1 ¼ 0:23L

Eigenvalues FEM Eq. (27) ðN ¼ 20Þ

1 �0.125894+7.249135j �0.125892+7.249162j

2 �0.064985+27.430152j �0.064977+27.431101j

3 �0.013154+77.364868j �0.013147+77.369087j

4 �0.001212+155.982214j �0.001206+155.985457j

5 �0.006637+233.490158j �0.006582+233.548199j

The oscillator parameters are m ¼ 1:0rL; c ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIr=L2

p
; and k ¼ 5:0EI=L3: The eigenvalues are nondimensionalized

by dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrL4Þ

p
:
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elements used. Clearly, as Ne becomes large, the resulting generalized eigenvalue problem
becomes prohibitive to solve.
Consider now the approach proposed in this paper. For this system with multiple attachments,

Eq. (34) was used to find the eigenvalues of the system, because the attachment locations do not
coincide simultaneously to the nodes of the first five normal modes of a simply supported beam
(see Table 2). The MATLAB routine fsolve requires an initial guess to be provided. For a beam
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Fig. 9. Contour plots for the system of Fig. 4. The system parameters are given in Table 9.
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carrying multiple attachments, an approximation of the eigenvalues can be established by means
of simultaneous contour plots of the real and imaginary parts of the characteristic equation
obtained by expanding Eq. (34). Once the approximate eigenvalues are known, fsolve can be used
to quickly converge to the desired results.
When damping is present, the characteristic determinant of matrix ½B� yields a frequency

equation f ðlÞ that is complex,

det½B� ¼ f ðlÞ ¼ f ðlr þ jliÞ ¼ f r þ j f i ¼ 0; (44)

where l denotes a complex eigenvalue of the system, and f r and f i are the real and imaginary parts
of the function f ðlÞ; respectively. To find the eigenvalues graphically, the contour plots for f r ¼ 0
and f i ¼ 0 are generated using the MATLAB command contour, with the level set to zero. Fig. 9
shows the two-dimensional contour plots for the system of Fig. 4 with the given set of system
parameters. The intersections of the curves are the solution to the simultaneous equations f r ¼ 0
and f i ¼ 0; and they correspond to the approximate eigenvalues of the system, which can then be
used as the initial guesses for fsolve. Table 9 shows the first five eigenvalues of the system. Note the
excellent results between the proposed scheme and the finite element results.
The proposed approach is highly versatile and can be used to find the eigenvalues of an

arbitrarily supported beam carrying any number of lumped attachments. Because the assumed-
modes method was used, the approach can be easily extended to find the eigenvalues of a bar in
longitudinal vibration carrying any number of lumped elements by simply modifying the
eigenfunctions and the generalized masses and stiffnesses [28]. It can also be used to find the
eigenvalues of any linear structure carrying a chain of oscillators [29], as well as a plate with beam
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Table 9

The first five eigenvalues of a simply supported, uniform Euler–Bernoulli beam carrying a grounded spring k1 ¼

5:0EI=L3 at x1 ¼ 0:2L; a lumped mass m1 ¼ 1:75rL at x2 ¼ 0:35L; a damped oscillator with a rigid body dof at
x3 ¼ 0:5L; and a grounded torsional spring kt ¼ 10:0EI=L at x4 ¼ 0:75L

Eigenvalues FEM Eq. (32) ðN ¼ 40Þ

1 �0.183674+0.858271j �0.183792+0.858374j

2 �0.466497+6.596888j �0.465642+6.617391j

3 �0.599650+31.748922j �0.599389+31.755864j

4 �1.402122+90.725528j �1.400479+90.766378j

5 �1.544674+131.646158j �1.556103+131.778924j

The damped oscillator parameters are m2 ¼ 5:0rL; c ¼ 2:0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIr=L2

q
; k2 ¼ 4:0EI=L3:
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stiffeners [6] and a plate carrying lumped masses and grounded translational springs [30]. The
approach can also be used to investigate the sensitivity of the eigenvalues of a combined system on
the attachment parameters [31]. Finally, the proposed scheme can be used to easily solve
an inverse problem of imposing nodes at specified locations for any normal mode of a linear
structure [32].
4. Conclusions

An alternative formulation is proposed that can be used to determine the eigenvalues of any
arbitrarily supported beam carrying any number of lumped attachments, including point masses,
rotary inertias, grounded translational or torsional springs, grounded translational or torsional
viscous dampers, undamped and damped oscillators with no rigid body degree of freedom, and
undamped and damped oscillators with a rigid body degree of freedom. The proposed scheme is
versatile and leads to several noticeable advantages. Specifically, the proposed approach is simple
to code, and leads to a frequency equation that can be solved either graphically or numerically; it
can be easily extended to accommodate any beam with any boundary conditions; it can be easily
modified to analyze a beam carrying any combination of miscellaneous attachments; and finally, it
can be used to analyze multi-span beams with lumped attachments. Numerical experiments were
performed to validate the proposed approach, and excellent agreements were found between the
proposed scheme and the finite element solutions.
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[31] M. Gürgöze, On the sensitivities of the eigenvalues of a viscously damped cantilever carrying a tip mass, Journal of

Sound and Vibration 216 (1998) 215–225.

[32] P.D. Cha, Specifying nodes at multiple locations for any normal mode of a linear elastic structure, Journal of

Sound and Vibration 250 (2002) 923–934.


	A general approach to formulating the frequency equation for a beam carrying miscellaneous attachments
	Introduction
	Theory
	Single attachment
	Multiple attachments

	Results
	Conclusions
	References


