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Abstract

The role of surfaces in the mechanism of sound generation by low Mach number flows interacting with
solid nonvibrating surfaces is well established by the classical aeroacoustic papers by Powell, Doak, Ffowcs
Williams, Crighton, or Howe. It can be formulated as a problem of diffraction of the flow sources by the
rigid body. The present study illustrates this statement in the case of flow-induced cylinder noise. Curle’s
formulation is analytically and numerically compared to a formulation based on an exact Green’s function
tailored to a cylindrical geometry. The surface integral of Curle’s formulation represents exactly the
diffraction effects by the rigid body. The direct and scattered parts of the sound field are studied. In this low
Mach number configuration, the cylinder is compact, and the scattered (dipole) field dominates the direct
(quadrupole) field. The classical properties of the scattering by a cylinder are retrieved by considering a
point quadripole source near the cylinder surface.
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1. Introduction

The sound generated by a non-vibrating cylinder in a flow, also known as the @olian tone, is
one of the most fundamental aeroacoustic phenomena. The purpose of this paper is to clarify the
influence of the cylinder surface in the noise generation mechanism and particularly to point out
the role of the diffraction in a low Mach number configuration.

In the most common view, the noise is produced by a fluctuating force exerted by the cylinder
on the surrounding fluid, leading to a dipole-like acoustic field. This fluctuating force is associated
with the periodic vortex shedding from opposite sides of the cylinder, arranging themselves into a
double row called the von Karman street. This interpretation is closely linked to the formal work
of Curle [1] who extended, in 1955, Lighthill’s analogy to bounded flows. Curle showed how the
role of the surface can be formulated in terms of surface-dipoles and his theory applied
successfully to the case of the cylinder flow. In low Mach number compact configurations, i.e.
where the size of the body is small compared to the acoustic wavelength, the surface term of
Curle’s formulation is greater than the volume term. What is the physical role of this surface term?
The interpretation of Yudin [2], Curle [1], Phillips [3], Goldstein [4], or Blake [5], relating the noise
to the fluctuating acrodynamic force on the obstacle, is not clear considering Powell’s remark [6]:
the fluctuating force itself, in the real situations, cannot possibly generate acoustic energy, since it
acts at a rigid surface. So the aforementioned force is only of the nature of an equivalent source,
and the acoustic energy should rather come from the unsteady flow itself.

The origin of this acoustic energy has been studied by Doak [17], Ffowcs Williams [7], Ffowcs
Williams and Hall [8], Crighton and Leppington [9], Crighton [10], who clearly identified the
diffraction of the volume-sources radiation as a very efficient phenomenon in compact cases.
Considering the case of the cylinder at low Mach number, Powell [6], Howe [11], Dowling [12], or
Hardin and Lamkin [13] have recovered the dipolar character of the cylinder noise using formulations
based on the vortical fluctuations in the flow, with no use of the surface pressure fluctuations.

In the present paper, the mechanism of diffraction by the cylinder is illustrated. The analytical
expressions of Lighthill’s analogy first in the Curle form (free-field Green function), then based on
a tailored Green’s function, verifying the rigidity condition on the cylinder 0G/0n = 0, are derived
in Section 2. A numerical illustration is then presented in Section 3. A two-dimensional (2-D)
incompressible RANS (Reynolds Averaged Navier—Stokes) aerodynamic simulation is performed
to provide both the T; and the pressure distribution p at the cylinder surface. The results obtained
with Curle’s formulation and the formulation based on the tailored Green function are compared.
In Section 4, the sound radiated by a point quadrupole source near the cylinder illustrates the
mechanism by which the noise is enhanced. This analysis is quite similar to that of Davies [14] for
the case of a rigid sphere. In particular, the dipole-like radiation is recovered both numerically and
analytically.

2. Analytical formulae

In this section, the equivalence between the surface integral of Curle’s formulation and the
diffraction of the volume sources by the cylinder is derived in the 2-D frequency-domain, by
taking the Green formula as a common starting point.
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2.1. The acoustic analogy

The aim is to predict the acoustic field radiated by an unsteady flow confined to a bounded
region. An acoustic analogy for this problem consists of a forced wave equation:

, 1@
<V - CT @) ¢(X7 t) = Q(X, Z)a (1)

where ¢y, is the sound speed, and ¢ a field variable which can be the pressure or density
perturbation in the acoustic region. The source ¢ can be estimated independently from a
knowledge of the unsteady flow. Many choices are possible for the expression of ¢ [15], and
Lighthill’s analogy [16] is followed here. The inhomogeneous wave equation for the density is
obtained by an exact recombination of the continuity and momentum equations, yielding to:

1 Ty
2, Ox;0x;”

defines Lighthill’s tensor in terms of velocity components u;, compressive stress tensor Pj;, and
density p. P; = poj; if viscous terms are neglected.

The 2-D formulations are written in the frequency domain by using the Fourier transform,
defined as

d(x, ) = / P(x, H)e” dr. 3)

This choice makes easier the derivations in cylindrical coordinates, and avoids the time
integration by solving the problem harmonically. This is convenient for 2-D applications, where
no simple retarded time solution is available. Moreover, this approach avoids numerical
differentiations of flow quantities, and accordingly increases the accuracy of the results. Its use is
well-justified for the 2-D cylinder flow, characterized by a pseudoperiodic vortex shedding.

2.2. Formulations in presence of surfaces

2.2.1. Green’s formula A

In a first step, the problem of determining the field ¢ at an observer point x in a finite volume V/
bounded by a surface X is considered. Inside V, the field ¢ satisfies the inhomogeneous Helmholtz
equation:

(V2 + I2)p(x, 0) = §(x, w), (4)

where k = w/cx 1s the wavenumber, and ¢ is the source field. The surface 2 is defined by the
equation f = 0: f is such that />0 inside V' and f <0 outside. Eq. (4) is multiplied by the
Heaviside function H(f) to obtain a form valid over all space, and the wave equation for H¢ is
formed:

(V2 +I>)H$)=Hi+VH -V + V- (pVH). (5)
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An integral solution is generated by convoluting Eq. (5) with the Green function G satisfying the
equation:

(V2 + k) G(xly, 0) = 3(x — y) (6)

representing the response in x due to a point source in y. The Green function is not uniquely
defined by Eq. (6); any solution of the homogeneous problem can be added. The convolution
product yields:

HOdx.o) = [ H i)y dy
+ [ Gty onvir- i+ V- GVm)ay.

The Heaviside function reduces the first integral on the volume (surface in 2-D) V' (f>0). The
second one is modified by including G inside the gradient operators, integrating by parts, and
using the relation VH = Vfo(f):

1o = [ ity ] { - ayl}afl 5(7) dy.

The function f'is scaled so that Vf'/|Vf| is the surface normal n, pointing inside V' (f >0). By using
Green’s theorem, the second integral is evaluated on the surface (line in 2-D) X:

o) = [ itoréay.ordy+ [ { % _ gf} 4x(y). )

This is the Green formula in the frequency domain, which can be solved with any desired Green

function.

2.2.2. Formulation A: Curle’s analogy .
Curle’s method [1] consists in using the free-field Green function Gy in the Green formula,
written for the density.

A I Jad a Aaé
o) = [ = a, GodY+/{Goa—p—p - }n,dZ(y)
v Vi

The differentiations in the volume integral are transferred on Go by applying integration by parts

twice:
62G0 . 0T . 3G,
H()A D , Go —Ln; — T dx
i =[] Ty +/Z{ o } o
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Using the definition of T,j, and its symmetry property, it yields:

. °G .. pu; + Py)
o = - [[ yaaod-+LG-JLé7—Lmdﬂw

/(pu,u] + P,j) n d2(y).

The previous expression is simplified in the case of a rigid surface, where 0p/0n = 0, the viscous
terms are neglected, and the no-slip condition #; = 0 applies:

G . 0G
e [ el
j i

which is Curle’s extension of Lighthill’s analogy for a rigid body in a medium at rest.

n; d2(y), ®)

2.2.3. Formulation B: Tailored Green’s function
An alternative to solve Green’s formula (7) is to consider a tailored Green’s function, which
satisfies a prescribed boundary condition on 2. Eq. (8) for a tailored Green’s function G is

. G, oG,
Hpx, o =_// 7, 2O g _/A
7 ) v / ayiayj y zp oy;

For a hard surface, Gl is determined such that 6@1 /on = 0 on X. The entire surface (line in 2-D)
term vanishes to leave the solution as a volume (surface in 2-D) integral:

62
(o =~ ([ 755k ay. ©)
iV

The difficulty is now transferred on the construction of a tailored Green function G Comparing
formulations (8) and (9), it yields:

aGO * ndX(y) / / p 6yl Y. (10)

where G, is the part of G representing the presence of the cyhnder. Thus, the surface (line in 2-D)
integral in the Curle analogy represents the scattering of the aerodynamic source by the cylinder,
as discussed for instance by Doak [17].

 d2(y).

2.3. Two-dimensional free-field Green’s function in frequency-domain

2.3.1. Rectangular coordinate system
With the conventions for the Fourier transform (3), the 2-D free-field Green function of Eq. (6)
is

Goxly. ) = 3 HYGkr) with 7= /(e =) + (2 — ) ()

where Hgl) is the Hankel functlon of the first kind of order zero. (x;,x,) and (y,,y,) are the
components of x and y in the rectangular coordinate system, as sketched in Fig. 1.
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Fig. 1. Notations and coordinate systems used for the acoustic formulations.

2.3.2. Cylindrical coordinate system

The previous Green function can also be expressed in cylindrical coordinates, x = (ry, 6,) and
y = (ry,0,). The expansion is given by Morse and Ingard [18]:
Hgyll)(er)*]m(kry), ry <y,

. 1 &2
Golxly, @) = 4 Zo ém cos m(ly, = 0.) x {Jm(er)Hf,l)(kry), Fy =Ty, (12)

where ¢,, = 1 for m =0 and ¢,, = 2 for m>0, J,, is the Bessel function of mth order, and HS) is
the mth order Hankel function of the first kind.

2.4. Scattering from a cylinder

The problem of scattering from a cylinder of radius a is now considered. The total pressure p is
usually split into the undisturbed pressure p,, which would be present if the cylinder were not
there, and the scattered pressure p,, as

P =Py + Dy (13)
The source field of amplitude A is expressed in terms of cylindrical waves as
R A +00
Po = Z mX:;) &n COS M(Qy — Bx)Hirll)(er)Jm(kVy) (14)

When the cylinder is present, it distorts this incident wave, and, in addition to the source field, there
is a scattered outgoing wave of such size and shape as to make the normal pressure gradient of the
combination zero at r, = a. If the form of this outgoing wave is chosen to be the infinite sum:

+00
p(x,0) = E emAmH D (kr,) cos m(0, — 0,),
m=0
the condition 0p/0r, = 0 at r, = a yields:
A Jn1(ka) = Ty (ka)

A, = HOD(kr,).

A HL) (ka) — L (ka)
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The scattered pressure is then:

m 1 (ka) m+1 (ka)

HOD(kr )H D (ker ). (15)
H,, L (ke = H, (ka) '

m

= ——Zem cos m(0, — 0,) x

A particular form of the result given by Morris [19] for the diffraction of a cylindrical line source by a
cylinder is recovered for the case of a rigid cylinder.

2.5. Construction of a tailored Green function

The use of an exact Green’s function tailored to body geometry has the nice feature of a simple
integral equation (9), and is well-suited to simple geometries. The first application was in 1960 by
Powell [20], or Doak [17], to the case of an infinite plane boundary. Ffowcs Williams and Hall [§]
and Jones [21] treated the case of a sharp-edged large surface. Davies [14] considered the case of a
rigid sphere. This case is also studied by Crighton and Leppington [9] together with the semi-
infinite plane and the wedge problems. This kind of approaches is generalized with the
introduction of compact Green’s function [22] in the vortex sound theory. For the case of cylinder
flow, Powell [6] recovered the dipole character of the sound field by using the images of the
periodically shed vortices by the cylinder surface. Hardin and Lamkin [13] and Howe [11] applied
the vortex sound theory to the @®olian tone by considering the appropriate compact Green
function. Dowling [12] also applied this formalism by using a vector Green’s function in
Mohring’s formulation.

In general, the construction of the tailored Green function is equivalent to considering the
acoustic response of the body. In the present study, to obtain a tailored Green’s function, any
solution of the homogeneous Helmholtz equation can be added to the free-field Green function.
This additional term can serve to fit the boundary condition at the surface of the cylinder.
Following the previous section, the additional Green function is made up of Hankel functions of
the first kind, which represent waves going outward:

Gy(ry, Oxry, 0,, ) = Z emBnH\(kr,) cos m(0, — 0.). (16)
m=0

The term GS is a solution of the homogeneous Helmholtz equation, and G = GO + Gg is also a
Green’s function for Eq. (6). As previously, the condition aél/ﬁry =0 at r, = a yields:

Im—1(ka) — J i1 (ka) g
HY (ka)— HD (ka) "

m—+1

m — =

H,,) (kry),

G, is caused by the presence of the cylinder, and is thus termed the scattered part of the tailored
Green’s function, written as

Jm—l (ka) Jm-‘rl (ka)
HY \(ka) — HY,), (ka)

. 1
B ) )
G, = ~x mgzo &m cos m(0, — 0) x H, ) (kr)H, (kry) (17)
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and the tailored Green él function reads:
. 1 400 |
Gi(xly, ) = - > am cos m(0y — 0.) | HY (kr) w(kry)
m=0

_ Jmmika) = i1 (ka)
H) (k) - H).  (ka)

Hg>(er)Hg>(kr},)] . (18)

A similar expression is obtained by Davies [14] for a rigid sphere.

3. Numerical illustration
3.1. Aerodynamic simulation

3.1.1. Configuration and numerical method

The 3-D simulations of cylinder flow for high Reynolds numbers are still hardly achievable
because the meshgrid should resolve precisely the transition of the boundary layers on the cylinder
surface. To obtain a sufficiently representative flow at Rep ~ 10°, a 2-D circular cylinder is
simulated by solving the incompressible unsteady Reynolds Averaged Navier—Stokes (U-RANS)
equations. Even if the flow behind a cylinder is 3-D for Rep =200, the 2-D approach can give an
acceptable representation of the flow-field, dominated by alternately and periodically vortex
shedding from opposite sides of the cylinder.

Moreover, since the analytical formulae (8) and (9) are 2-D, the choice of a 2-D approach is
convenient and allows to keep tractable simulation times and database sizes. This incompressible
flow solution will provide the aerodynamic sources, namely the quadrupoles 7'; and the pressure
at the cylinder surface.

The cylinder diameter D is 3.81 cm (1.5in), and the Mach number of the uniform flow in x;
direction is M = 0.12, corresponding to a Reynolds number Rep~ 1.1 x 10°. A U-RANS
simulation using the Reynolds Stress Model was performed with the FLUENT CFD code on an
unstructured meshgrid of about 55,000 points. The computational domain extends from —8.5D to
16.5D in the streamwise direction, and from —10.5D and 10.5D vertically. The two-layer method
is used near the cylinder wall. In the inner layer, the boundary layer equation is integrated to the
wall, so that grids with minimum spacings on the order of Ay™ >~ 1 must be employed to ensure
adequate resolution. The cylinder surface is discretized with 350 points giving values of Ay™
between 0.3 and 1.1 on the cylinder circumference. The initial free-stream turbulent level is around
1%; the time step is Az = 10™*s, yielding to about 35A¢ per shedding cycle.

3.1.2. Validation of aerodynamic results

When Rep > 47, vortices are shed alternately and periodically from opposite sides of the cylinder.
It is the onset of the von Karman vortex street. The increase in Reynolds number is accompanied
with various regimes, resulting from the successive transition of the wake, the shear layers, and the
boundary layers on the cylinder [23]. In the present simulation, the chosen Reynolds number of
1.1 x 10° is located in the transition regime of the boundary layer, which is very sensitive to small
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disturbances, such as free-stream turbulence and surface roughness [24,25]. The onset of this critical
region can vary between 10° and 5 x 10°, depending on the special flow conditions.

For the present simulation, the simple eddy viscosity model used for the turbulent closure is not
able to describe a transitional state, and the boundary layers around the cylinder are considered
fully turbulent. The direct consequence is the position of the separation point located near an
angle of 0 = 110° instead of 6 = 80°. This angle corresponds to a more turbulent flow. The wake is
then narrower, and the mean drag coefficient is reduced to Cp = 0.47. Consequently, the Strouhal
number of the global von Karman mode is increased to St = f,D/Us = 0.24. The equivalent
Reynolds number would be that of a transcritical regime, as described by Roshko [26] for
Reynolds numbers of roughly 4 million.

Fig. 2(a) shows the mean pressure coefficient C, distribution on the cylinder. Its shape agrees
well with the measurements of Batham [24] for the same Reynolds number but with a high-level of
incoming turbulence (grid turbulence). For comparison, the results of Batham for a uniform
stream across the cylinder is also plotted, and shows the expected behaviour for a subcritical flow,
as reported by Revell et al. [27] (Rep = 9 x 10%), Achenbach [28] (Rep = 10°), or Cantwell and
Coles [29] (Rep = 1.4 x 10°). The mean drag coefficient is 1.17 for the configuration of Batham
with a uniform incoming stream, and drops to 0.41 in the turbulent flow.

Fig. 2(b) shows portions of the time histories of the drag and lift coefficient, noted respectively
Cp and C;. The lift coefficient varies with a Strouhal number of 0.24. The drag is also pseudo-
periodic with twice the frequency of the lift. It is however modulated by the frequency of the
shedding cycle, indicating a slight asymmetry of the flow.

he coherent structures are plotted in Fig. 3, showing the alternate vortex shedding from upper
and lower edge of the cylinder, and their appearance about x;/D ~ 1.5, behind the cylinder.
Averaged Reynolds stresses are shown in Fig. 4. Both components reach their maximum values
near the end of the vortex-formation region, defining the formation length, Ly ~ 1.5D. Their
global shape is similar to the corresponding experimental contours of the Reynolds stresses for the
periodic part of the motion at Rep, = 1.4 x 10°, reported by Cantwell and Coles [29]. The levels of
turbulent intensities are also in reasonably good agreement. The highest experimental contours

0.3
0.2 0.48
0.1
o 0 047 §
-0.1
-0.2 0.46
- .50 60 120 180 240 300 360 _0.30 0_; 1 l.; 2
@ 0 (deg) (b) t/T,
Fig. 2. (a) Distribution of mean pressure coefficient around the cylinder: (——), present simulation at Rep = 1.1 x 10%;

symbols, experimental data at Rep = 1.11 x 10°, from Batham [24], (o o o), smooth cylinder in turbulent stream, and
(A A A), smooth cylinder in uniform stream. (b) Time histories of the adimensionalized surface pressure forces: ( )
drag coefficient defined as Cp = fOan cos 0d0/p, Uf,o; (= — —) lift coefficient, C; = oznp sin 0d0/p, Ugo.
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15

X2/D
o

-1.5

Fig. 3. Vorticity snapshot. 16 contours between QD/U, = —4.43 and 4.43: (——) negative contours, ( ) positive
contours. Zoom around the cylinder wake.

15 15
[a) [a)
-15 -15
1 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6
@ x,/D (b) x,/D

Fig. 4. (a) Contours for mean streamwise Reynolds stress u;,_ /U (isocontour values: 0.1, 0.15, 0.2, 0.3, 0.4). (b)
Contours for mean crossflow Reynolds stress ;. /Us (isocontour values: 0.1, 0.2, 0.3, 0.4, 0.48).

are 0.28 and 0.48 for the streamwise and crossflow components. The predicted levels are
up,, /Uoo =04, and uy /Uq >~ 0.48.

To summarize, the characteristics of the simulation correspond to a transcritical flow because of
the forced turbulent state of the boundary layer. This trend has been identified in previous
numerical studies [30,31]. Even oversimplified by the 2-D approach, a coherent aerodynamic field
including the structures responsible for the @olian tone phenomenon is obtained. These data can
now be used to apply the two formulations of aerodynamic sound derived in Section 2.

3.2. Application of formulation A
3.2.1. Integration method

Curle’s formulation (8) gives the pressure for an observation point situated in the acoustic field
as the sum in 2-D of a surface and a line integral:

pr(x.0) = —p // s 200 g (19)
e =) v v ayiayj
and R
. . 0G
prx,0) = — [ p—2n;dX(y). (20)
> aJ/i

The convection and refraction effects by the mean flow are neglected as usual in Lighthill’s
analogy. These effects are weak for the low Mach number considered (M = 0.12), and can be
taken into account by the use of a convected wave equation. The Doppler effect is described for
example in the study by Inoue and Hatakeyama [32].
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The first step is the storage of the aerodynamic quantities during two periods of the CFD
simulation, that is to say 73At. The velocity components, needed for Eq. (19), are recorded on the
whole computational domain. The line pressure appearing in Eq. (20) is recorded on the 350 grid
points of the cylinder circumference. The ambient properties are those used in the aerodynamic
computation, namely ¢o, = 340m/s and p,, = 1.225kg/m?. Second, the source terms w;u; and p
are transformed into the frequency domain using the Fourier transform defined by Eq. (3). The
spatial derivatives are applied on the Green function, by using analytical formulae (given in
Appendix A.1). The integration is then carried out for the eleven first frequencies and for each
point of an acoustic meshgrid, which is a polar grid with 101 grid points radially and 72 grid
points in the 6 direction. It extends from r, = 0 to about r, = 100D. For the surface integration
on the unstructured mesh, a Gauss method of the third order is employed, and the line integral is
evaluated with the trapezoidal rule. Lastly, an inverse Fourier transform is used to recover the
acoustic signal in the time domain.

3.2.2. Results

The solution of Curle’s analogy is plotted in Fig. 5(a) and (b), which, respectively, represent the
pressure obtained by the surface integral on the whole computational domain and the line integral
on the cylinder boundary. The integral over the flowfield is the most difficult to evaluate and is
generally not calculated, with the exception of Cox et al. [31], who show a directivity but no
validation was provided. Fig. 5(a) depicts a lateral quadrupole field at frequency f), and with level
10 times lower than the crossflow dipole-like field of Fig. 5(b). These results are expected since the
dipole contribution is of order M>/? whereas the quadrupole term is of order M’/2. Moreover, the
origin of the radiation for the surface integral is not the centre of the cylinder, but is at about
x1/D =1 —2 behind.

The total sound field is then dominated by the crossflow dipole with a frequency equal to the
shedding cycle frequency f,, corresponding to the period of fluctuation of the lift coefficient. The
transverse component of the dipole can be separated from its longitudinal component, as shown,
respectively, in Fig. 6(a) and (b). This separation is somehow artificial but allows to distinguish
the contribution of the drag and lift forces. Fig. 6(a) depicts a dipole field with a direction at right

100 100

M

S £ S 0 -
N =
\ \—/
-100 L : , ) “100h ‘ ;
-100 -50 0 50 100 -100 -50 0 S0 100
(a) %,/D (b) x,/D

Fig. 5. Acoustic pressure predicted by the Curle analogy: (a) contribution of the surface integral (19) (levels of pressure
between —0.5 and +0.5Pa); (b) contribution of the line integral (20) (levels of pressure between —5 and +5 Pa).



140 X. Gloerfelt et al. | Journal of Sound and Vibration 287 (2005) 129-151

100 100

sof 6 N 50

3, o : H(©)
> v » /
e _50
——

55 0 50 10

-100 \./ -100

~-100 - 0 -100  -50 0 50 100

(@) x,/D (b) x,/D

Fig. 6. (a) Acoustic pressure obtained by integrating the x;-component of the surface pressure (levels are between —5
and +5Pa). (b) Acoustic pressure obtained by integrating the x;-component of the surface pressure (levels are between
—0.5 and +0.5Pa).

angles to the flow direction, and a frequency equal to the shedding cycle frequency f,. The dipole
in Fig. 6(b) is parallel to the direction of the flow, and the sound frequency is doubled. The
acoustic level of the longitudinal contribution is about 5% of that of the transverse contribution.
The radiation in the streamwise direction is essentially due to the longitudinal component, while
the global directivity is pronounced in the direction perpendicular to the flow, largely dominated
by the transverse component at the fundamental frequency f|,. These results are similar to those
obtained by Cox et al. [31], or more recently by Inoue and Hatakeyama [32].

3.3. Application of formulation B

3.3.1. Numerical implementation
With the use of the tailored Green function (18), only the knowledge of velocity components is
required. The general formulation (9) can be split in a direct and a scattered part:

%G,
po(X, ) = —p uu; ——— dy, 21
oo = o] a5 ay &)
and
%G,
puxow) = —poo// g 2 gy, (22)
14 ]ayl@yj

where G is the free-field Green function in cylindrical coordinates (12), and G, the scattering part
defined by Eq. (17). The integration procedure is identical to that used in the previous section, and
the second derivatives of the tailored Green function are given in Appendix A.2. The m = 12 first
terms of the sum in Eq. (9) are sufficient to obtain a good estimation of the tailored Green
function.
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3.3.2. Results and comparisons

Fig. 7(a) and (b) represent the pressure field obtained by using the direct and scattered parts of
the tailored Green function. The similarities with the results of the Curle method in Fig. 5(a) and
(b) are underlined in Fig. 8. The profiles of the pressure radiated in free-field (without the cylinder)
are in very good agreement for the two angles plotted in Fig. 8(a). This agreement was expected
since the only difference for this part between the formulations A and B is the coordinate system
in which the free-field Green function is expressed. The profiles in Fig. 8(b), corresponding to the
pressure field induced by the cylinder surface are also consistent. The signals are perfectly in
phase, but the results of the Curle analogy are about 10% higher than those from the formulation
using the tailored Green function. This difference in amplitude is difficult to interpret, and only
some conjectures can be made. First, when the domain for the surface integration has been
chosen, the influence of the location of the domain boundaries was noticed. The whole CFD
domain has therefore been retained, but a truncature effect may still be present. It would affect all
the surface integrals (the 7' integration of the Curle method, and the two parts of the formulation
based on the tailored Green function). Another explanation may be associated with the accuracy
of the evaluation of the surface pressure in the CFD code. The eventual errors would then affect
the line integration of Curle’s method. As suggested by a referee, the fact that no account is taken
of viscous stresses can explain a part of the observed difference, even if the explicit integration of
viscous terms generally lead to a negligible influence to the radiated noise. Nevertheless, despite
this small discrepancy, the equivalence of both methods is clearly disclosed in Fig. 9, where the
directivity of the far-field sound at 64D is plotted.

From a numerical point of view, the Curle method is obviously advantageous insofar
as the surface effects are represented by a line integral in 2-D reducing by one dimension
the integration to be solved. It is interesting to note that, in the analytical developments of
Section 2, no assumption has been made concerning the compactness of the surface. The two
formulations are therefore valid in all configurations with either compact or non-compact surfaces
in the flow.
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Fig. 7. Acoustic pressure predicted with the tailored Green function: (a) contribution of the free-field part (21) (levels of
pressure between —0.5 and +0.5Pa); (b) contribution of the scattered part (22) (levels of pressure between —5 and
+5Pa).
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Fig. 8. (a) Profiles of the incident pressure field in the radial direction: ( ) direct part of the tailored Green function
at 0 = 45°; (e e @) surface integral part of the Curle method at 6 = 45°; ( ) direct part of the tailored Green function
at 0 =90°; ( ) surface integral part of the Curle method at 0 = 90°. (b) Profiles of the pressure induced by the
surface in the radial direction: (——) scattered part of the tailored Green function at 6 = 90°; (e e e) line integral part
of the Curle method at 0 = 90°; ( ) scattered part of the tailored Green function at 6 = 0°; ( ) line integral part
of the Curle method at 0 = 0°.
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Fig. 9. Overall sound pressure level directivity patterns at r, = 64D: (— — —), surface integral part of the Curle
method; (——), line integral part of the Curle method; (e e e), direct part of the tailored Green function; (o o o),
scattered part of the tailored Green function.

3.3.3. The nature of cylinder noise sources

Since the integral over the aerodynamic sources is of quadrupole type and is negligible, this is
the scattered sound field from the cylinder that is heard even if the acoustic energy comes from the
vorticity itself. Howe [11] suggests that the principal event is the sudden acceleration of the
vorticity as it leaves the cylinder influence. The vortices grow in strength until they are released
into the flow and rapidly accelerate to the convection velocity at the end of the formation region.
The deformation and/or the acceleration of the vorticity should occur at the frequency /|, and may
be related to the interactions of two counter-rotating vortices as they encounter together after the
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formation length. Further investigation is required to define more precisely the particular vortical
event generating the near-field energy.

The principal feature ignored by the 2-D approach is the fully 3-D turbulent state of the wake.
The consequence on the acoustic field would be a finite axial correlation length whereas this length
is infinite in the present acoustic calculations. In practice, this will not affect the previous analysis
since the axial coherence length is of the order of the diameter D for a turbulent wake, so that each
correlated element of the wake near the cylinder can be assumed to be acoustically compact.
Besides, no attempt is made in this paper to predict the additional turbulent broadband noise.

4. Description of the diffraction
4.1. A modelling of the diffraction by a cylinder

In order to give further insight into the physical process giving rise to the enhancement of the
flow noise, a simple modelling of the diffraction by a cylinder is proposed. Assuming that vorticity
is compact, the quadrupoles originating from the unsteady flow are in phase and are equivalent to
a point quadrupole. This modelling is a purely formal one and may need very careful
interpretation if ambiguous results are to be avoided. The artificial acoustic quadrupole used for
the illustration of the diffraction problem is only an equivalent source. A similar analysis has been
conducted by Davies [14] who considered multipole point sources near a sphere.

The quadrupole can be obtained by adding up four simple sources, two identical positive
sources at (a+L+1/2,1/2) and at (a+ L—1/2,—1/2) and two negative sources at
(a+L+1/2,-1/2) and at (a+ L —1/2,1/2), with the same strength, the origin of the Cartesian
coordinates being the centre of the cylinder of radius a. L is the distance between the end of the
cylinder and the centre of the four sources group, and / denotes the separation between the simple
sources. The notations are summarized in Fig. 10. The frequency of the sources is that calculated
in Section 3, f, = 274 Hz. Their strength is scaled to match the amplitude of the quadrupole field
obtained from the T; contribution with the free-field Green function. The diffraction of the
quadrupole field is computed by adding the scattered pressure of the four individual sources, as
defined by Eq. (15). A value / = 0.5mm for the separation between the sources ensures k/ =
2.5 x 1072 <1, so that the quadrupole is compact. The distance L between the quadrupole and the

X2
|
| |
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—_— —__— e — — — — . — >
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Fig. 10. Notations used for the definition of the quadrupole source.
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cylinder is varied until the scattered amplitude reaches that of the scattered field obtained
numerically by integrating the 7; with the scattering part of the tailored Green function G.

4.2. Pressure field in the vicinity of the cylinder

The results for L = 1.4 cm are presented in Figs. 11 and 12. The quadrupole radiation in
Fig. 11(a) agrees well with that of Figs. 5(a) or 7(a), except that the sound is harmonic and the
small effect of the higher frequencies is not represented. In particular, the radiated field associated
with the drag fluctuations at 2f|, (see Fig. 6(b)) cannot be reproduced. The scattered field in
Fig. 11(b) is of dipole type with axis perpendicular to the stream direction, confirming that the
diffraction of a single lateral quadrupole by a cylinder is a crossflow dipole. The amplitude of the
pressure fluctuations is compared with that obtained from the formulation based on the tailored
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Fig. 11. (a) Acoustic pressure radiated by the single lateral quadrupole (levels are between —0.5 and +0.5Pa). (b)
Acoustic pressure scattered from the cylinder (levels are between —5 and +5 Pa).
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Fig. 12. (a) Pressure profiles in the radial direction for 6, = 90°, obtained by: (— — —) direct field from the lateral

quadrupole, (o o o) direct field from aerodynamic sources 7; with the free-field Green function Gy, (——) scattered
field of the single quadrupole by the cylinder, (e o o) scattered field of the T; with the Green function Gy. (b)
Fluctuating lift coefficient obtained by: ( ), scattering of the equivalent quadrupole by the cylinder; ( ) direct
field from the quadrupole; (——), total field (scattered + direct); (o o o), CFD simulation of Section 3.
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Green function in Fig. 12(a). Remembering that the amplitude, the frequency of the quadrupole,
and the distance L have been adjusted, the directivity and the amplitude of the scattered pressure
agree fairly well with that computed in Section 3.

The pressure at the cylinder surface is investigated by plotting the contributions of the direct
and scattered fields to the pressure at the cylinder wall in Fig. 12(b). The two contributions are
equal since the rigid condition 0p/0n = 0 implies a perfect reflection of the incident pressure at the
wall. When the two contributions are added to obtain the total field (13), the amplitude and phase
of the fluctuating pressure are in reasonably good agreement with the computed results of Section
3, dominated by the oscillations of the lift force.

The pressure in the vicinity of the wall is not an acoustic one since it occurs within a wavelength
of the radiated sound. In this region, the propagation factor exp(ikr) is almost constant, and the
motion is essentially incompressible (kK — 0). The Helmholtz equation formally reduces to
Laplace’s equation in the limit of very low wavenumber, and, as a first approximation, it is typical
that the corresponding static problem (k = 0) has to be solved. The conversion process of near-
field energy into far-field energy is the same whether the pressure originates from an artificial
quadrupole source or from the flow itself. The pressure is directly related to the velocity field by a
Poisson’s equation. The amplification process generating @olian tones is thus determined by the
aerodynamic pressure in the vicinity of the cylinder, responding immediately to any vorticity
change. The extent to which this increase of sound energy is effected depends crucially upon the
boundary condition associated with the scattering body (0p/0n = 0 for a rigid surface), and upon
its shape. This is illustrated by varying two parameters, namely the distance L and the radius a of
the cylinder.

4.3. Influence of the parameters

Since the exact Green function (18) is valid for both compact and non compact cylinders, the
parameters characteristic of the model can be varied in order to recover the classical diffraction
properties in the short- and long-wavelength limits.

For this 2-D case, the acoustic power is estimated on a circle of radius ry, = 64D = 2.44m,
enclosing the source:

2n

(P — Pso)’ Oy

xo

P=7{(p—poo)u-ndS:
PooCoo Jo

for locally plane waves. The overline denotes the time average over one shedding period. Py

designates the power of the direct field, that of the quadrupole alone, and Py is the scattered power

from the cylinder.

First, the influence of the distance between the cylinder and the quadrupole source is depicted in
Fig. 13(a). The surface and the source are both compact (ka<1 and k/<1 respectively). For
kL <0.3, the power is enhanced by the diffraction process. The configuration chosen to match the
numerical results of Section 3, is marked by an asterisk, and corresponds to an increase of 18 dB.
When the quadrupole is not close to the cylinder on the wavelength scale, the surface radiates a
genuine dipole field but the scattered power is negligible compared with the power of the incident
field from the quadrupole. This illustrates the fact that the acoustic power delivered by the source
is determined by conditions within a wavelength [17,10]. If the cylinder is compact, a very much
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Fig. 13. Evolution of the difference of the acoustic power in dB induced by the diffraction as a function of the distance
L between the cylinder and the quadrupole (a) (¢ = 1.9 cm); the radius a of the cylinder (b) (L = 1.4cm, i.e. kKL >~ 0.07),
obtained from the numerical result ( ), and from the asymptotic form Eq. (B.1) (— — —).

larger dipole field is radiated. Coming back to the @®olian tone problem, the influence of L
corresponds to the effect of varying the formation length Ly for a fixed frequency. In a control
perspective, a lengthening of the formation region will therefore reduce the diffraction
enhancement.

Finally, the radius a of the cylinder is varied. The evolution curve of Fig. 13(b) indicates a well-
defined maximum for the scattered power, which is very close to the value chosen for the
comparison with Section 3 (marked by an asterisk). In the long-wavelength limit (ka<1), as
shown by the limiting values derived in Appendix B, little is scattered and this is scattered in a
dipole-like pattern with the radiation direction perpendicular to the x;-axis. When the radius is
large relative to the wavelength (typically ka > 2n), the dependence of the scattered power on the
observation angle becomes more and more complex. The approximation of geometrical acoustics
then applies. Reflection doubles the radiation on the source side, and there is a shadow zone
behind the cylinder. The total power radiated remains the same, being merely redistributed in the
different directions.

5. Conclusion

Curle’s formulation shows how the sound radiated by a flow past a cylinder may be associated
to the unsteady pressure force on the body, resulting in a dipole-like acoustic source. The
construction of a tailored Green’s function, satisfying the boundary condition 0p/on =0,
indicates that Curle’s dipoles are not physical sources but only equivalent sources modelling the
diffraction of the quadrupole sound. This is illustrated numerically by comparing the two
formulations with the unsteady flow from an incompressible simulation as input. The diffraction
process, occurring within a wavelength of the radiated sound, is responsible for the enhancement
of the flow noise by converting near-field energy into the form of acoustic waves. As in the simple
acoustic modelling presented in the last section, the near-field pressure is primarily aerodynamic.
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In the @olian tone problem, the only physical sound source is the flow itself, and this source is
closely linked to a particular vortical event in the near wake, just after the formation region.
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Appendix A. Derivatives of the Green functions
A.1. Derivatives of the 2-D free-field Green function in frequency domain

A.1.1. First derivatives
0Gy(xly, ) ki

o =4 H(l)(kr) where r; = |x; — y;|. (A.1)
A.1.2. Second derivatives
2 ~ .e
AL L Ga"(’;'y’ s i.{ I " e +k<2”f 5”) Hﬁ”(kr)}. (A.2)
Y0y, 41 r

A.2. Derivatives of the tailored Green function

The second derivatives of Eq. (18) are:

?Gi(xly,w) 1 <X 00, 00,
. = mH(l) X - A
.y, 41;)8 o (K1) X a a o, oy,
— mkesin(mepy (22 8% 4 290 g
ry Oy, 1y ayj
k costmey| (22 B, 1k ’yfc . (A3
Vy Vy y

where ¢ = 0, — 0., Ay = A2 + A5, B,y = B + B, Cpy = C° + C°, with:

A% = T (kry),

A = —ocmH( )(kry)

BY = —Jp(kry) + kﬂ Tlkry),
ry
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The factors with superscript 0 define the free-field part of the tailored Green function, and the
superscript s denotes the scattered part of the tailored Green function.

Appendix B. Scattering of a lateral quadripole by a cylinder—Long-wavelength limit
B.1. Direct field

The pressure field at an observer x from an incident lateral quadripole (i=1, j =2 in
Eq. (A.2)) of amplitude A at y can be expressed as

A V1l’2

~ kz
Pa= 4i (

With the assumption of a distant sound field (|x| = r, > |y| = r,), the second term is neglected, and

the asymptotic form of the Hankel function is used to get:

iAk? x1x, | 2 i4k? 2
b~ l(k} /4 0 0 l(kr/\—n/4).
Pa 4 72 ner 4 cos(f) sin(0.) nkr,

The intensity of the incident field is then:

s 12 £e )
14(x) = K|py|” = K ——— cos™(0,) sin“(0,),
8mry
where K = 1/(2p,.¢x), and the radiated power can be estimated as

A2k3
32

2
Pd(x):/ Id(r)m x)r‘cdev—K
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B.2. Scattered field

The scattered wave of the lateral quadripole by a cylinder of radius «, located at the origin of
the coordinate system, is deduced from Eq. (A.3). The polar coordinates of the quadripole centre
are (r),0), so that the expression is simplified:

. Jm_1(ka) — J 1 (ka)
px, ) = Z emm sin(m0,)H'D (kr.) 70 l(k ) — H(T)l (ka)

m=0 m—1 m+1

llH(”(ky) H<‘>+1(ky)+ HW(kr))|.
y y

The asymptotic form of the Hankel functions for r, very large is used:

[ 2 . .
nyll)(er) ~ — eler (l/2)17z(m+l/2).
X

Expressing both Bessel and Hankel functions in terms of their amplitude and phase angles,
defined by

In(z) = Cp(2) sinf0,(z)] and  HG)(z) = —iCp(2)e,
it yields [18]:

d
In-1(2) = Jmi1(2) _ &J’”(Z) _ —C,,(2) sin[6,,(2)]
M D = =
H l(z) Hm+1(Z) % H;?(Z) lCm(Z)el‘)m()

= ie %O sin[d/ (2)].

Finally, the scattered field is written as

A 2

27 Wrmzmmmmﬁwwmwmmmwl
y X

Ds(X, ) =

H(‘)(k ry) — H(ll_l(kry)]
y

and the scattered power is estimated as

2n
m®=K/ 1P, )2 dO,
0

2 +oo 2
=K Z m? sin[d), (ka)]|——— H},?(kry) —kHD [(kr))| .
y m=

In the long-wavelength limit, ka <1, values for the derivative of the phase angles d,, are given by
the following approximate formulas [18]:

, mm [(ka\>"
ke = — <7> (m>0),
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so that, for ka< 1, only the cylindrical wave corresponding to m = 1 is important in the scattered
wave, because |0}]> 51,55, .. .

The asymptotic behaviour for the Hankel function H,(,i)(kry) = Jm(kry) + 1N, (kr,) is deduced
from:

m _ ‘ m
Tlkry) = % <@> and  Ny(kr,) ~ — Q (i> (kry <1,m>0).

2 kry,
Taking sin(d),) ~ J,,, the ratio of the acoustic power, Q = P,/P,, for m = 1 reads:
16 16(ka)*
X) &~ —— [0 (ka)PK*[Na(kry)? ~ ————. B.1
0(x) k4r§[ 1(ka)]"k[Na(kry)] (ry)° (B.1)

This expression is similar to that found by Crighton [10] with a different approach of the
diffraction problem. Q becomes very small for k—>0. Moreover, noting that /; has an angular
dependence proportional to cos2(0y)sin’(0y), the direct field is a lateral quadrupole. Similarly,
I, ~ sin’(0y), so that the scattered field is a dipole with a directivity perpendicular to the
xy-direction. For ka <1, little is scattered, and this is scattered in a dipole-like pattern, as shown
in Fig. 13(b).
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