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Abstract

In Part 1 of this paper, the governing equations of geometrically nonlinear, anisotropic composite plates
incorporating magneto-thermo-elastic effects have been derived. In order to gain insight into the
implications of a number of geometrical and physical features of the system, three special cases are
investigated: (i) free vibration of a plate strip immersed in a transversal magnetic field; (ii) free vibration of
the plate strip immersed in an axial magnetic field; (iii) magneto-elastic wave propagations of an infinite
plate. Within each of these cases, a prescribed uniform thermal field is considered. Special coupling
characteristics between the magnetic and elastic fields are put into evidence. Extensive numerical
investigations are conducted and pertinent conclusions which highlight the various effects induced by the
magneto-elastic couplings and the finite electroconductivity, are outlined.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

An encompassing magneto-thermo-elastic model of laminated composite, finitely electro-
conductive plates has been developed in Part 1. This model incorporates the applied magnetic and
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Nomenclature K dimensionless parameter, ki (see Eq.
o (44a))
B, non-dimensional axial magnetic field Ko magnetic permeability of the vacuum
intensity, /2h3g'11 B& (o) Po ;rtlfl;s density (per volume) of the plate
A0 ) ) .
By, non-(.ilmenslonal transversal m(z)ignenc T dimensionless time, see Eq. (12b)
field intensity, (v/3goh//poE0) By, 2 transversal component of the perturbed
Ey reference Young’s modulus magnetic field
9o reference electroconductivity Z dndn — 5
2h thickness of the plate/strip WL dimensionless frequency of the flexural
J V=1 wave
k dimensional wave number, see Eq. (43) o dimensionless frequency of the in-plane
24, width of the plate strip wave
N number of the constituent layers o incident angle of the magneto-elastic
N,,  number of shape functions used in wave
Spatial discretization EGM the EXtended Galerkin,s Method
Zk x3 coordinate of the lower surface of the TS the transversely shearable plate model
kth constituent layer NTS  the unshearable plate model
[0n,/0ny/ - - -] sequence of lamination (), () = @(-)/d1,8%(-) /%)
e dimensionless temperature parameter, ALR
Ot} /1 () () = B()/0,8%()/02%)
A . . = (O(- .
e dimensionless buckling temperature ( );1’ ( /);2) = (0()/8x1, 8(-)/0x2)
Lod  Parameter ((),()) =@()/8¢,0°() /o))
dimensionless temperature parameter

which separates the regions of damped/
over-damped vibrations

the in-plane electric current, both considered to feature arbitrary directions. Such generalities
contribute to the full coupling among the magnetic, thermal and elastic fields. Furthermore, the
interaction between the induced magnetic field inside and outside the plate is governed by a
singular integral equation, whose solution is highly challenging even through a numerical
procedure (see, e.g., Ref. [2, pp. 228-229)).
In order to get insight into the magneto-thermo-elastic behavior of laminated composite plates
with finite electroconductivity, we will restrict our attention to some special cases of the magnetic
and electric current fields: the magnetic field is considered to be either transversal or longitudinal,
while the applied electric current field is restricted to be zero. Furthermore, the geometry of the
plate will be restricted to either a plate strip or an infinite plate. It is further assumed that the plate
strip is subjected to a uniformly distributed temperature change, i.e., @y = const. and @; = 0.
The special cases to be investigated in this article include:

e free vibrational behavior of a plate strip in a transversal magnetic field;
e free vibrational behavior of a plate strip in an axial magnetic field;
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® magneto-elastic wave propagation of an infinite plate in a transversal magnetic field;

The influence of the transverse shear, lay-up scheme, and of the finite electroconductivity on the
free vibration and the dispersion relations will be specifically addressed.

2. Case I: free vibration of a plate strip in a transversal magnetic field
2.1. Governing equations

The case of a plate strip, infinite in the x, direction is considered. For this case, By = By, =
0, Bo3 #0, and the whole set of the 10 basic unknowns v; (i = 1,2,3),5, (« =1,2), %, ¢ and
become functions of (xy,¢) only. Moreover, due to its definition, y, becomes zero as well. The
Lorentz forces f; (see Part 1 for its expressions) can be represented as

S =j2383, fr= —j1383, f3=0, (la—c)

in which the induced electric current components j, and j, are defined as
ji = 90 + 62B351 + ¢\ — 618031+ xslgf1 B — 9121 1B, (2a)
J2 = 900 + 02831+ g0 — 01 B5] + 3908, — 918D (2b)

In Egs. (2a, b), x3 € [z;,zi11). As a result, the generalized forces of electrodynamical origin
become:

h
/ s = @B+ 52B5) + sl — 1 BB (3a)
h
2 = =G+ 12B) + G — BB, (3b)
h . . 2
/ e = [l — Chp ) (3¢)
h . . 5
/ s di = [=Chhy + Chf B, (3d)
where
Cgﬁ = 2h‘%2[gaﬁ]’ g-o'ﬁ = %O[Qyﬁ]’ (OC, ﬁ) = 1, 23 (4aa b)

and zx = —h+ (k— 1)2h/Np,(k = 1, Np). It is recalled that the operators .#, and .#, are defined
in Appendix C, Part 1.
The diffusion equation which governs the induced magnetic field y now reduces to

[

- | =
gnkn = =HL= G 57 721 + E01,1 By )
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of Part 1.
The exact solution of v, is [3]
0 — s
1) = / V! (o101
\/ —x3

Substitution of Eq. (6) into Eq. (5) yields the following differential-singular integral equation

/[1 /i s

The quantity y, in Eq. (5) should be determined from Eq. (42) and the boundary condition (40b)
(6)

governing y:
Juzi — Eug+an
hy /[52 ]3
4 — S :
,1 =50, B 7
nh\/ﬁa)ﬂ/ /(Sl ) Sl Ull 03" ( )
It is worth noting that the full solution of y depends only on v;
The solutions of ¢ and y reduce to
Gol=d1102 + 312011803 + 1 [X] + (G102 — 9_22131)383}
T (8)
— (G — 922”1)303}

®
Jalgiioa — G12011B + gy [ X1 +

W N
Within the linear theory of shearable plates, the corresponding governing equations can be
=0, (9a)

[y —

{

(9b)

g-lz(lp - 1)1303)]383 =0
(9¢)

simplified as
51)1
ovy : A16v1,11 + Aesv2,11 — Lot
AasPy gy + Ass(Byy + v311) — A7 Ovs 1 — Loiis =0
By — (383)2ng.81 =0,
(9d)

51)3 .
Ass(By + vs1) — Ify + (B3> Cl Py

Ao + Aigvain — Lobr + Qh)[G1a(¢ + 62BY3) + Gon(Y — 61B;)]1B; = 0
0 _

Qh)[Gy (@ + B2BY) —

opy : DuiPiar + DisPaiy — AasP,
Ags(By + v3.0) — L, (BY3)*C{ By + (BY) Clo3, = 0
(%¢)

0By : Di6fi 11 + DesBary — AaaPr —
(10)

Herein, A}, is defined as
h
(Ao + Ao + Aieoti2) dxs

A5, =
—h
Since y depends on vy, see Egs. (5) and (6), from Eq. (8) it can be seen that ¢ and i depend only
on v; and vp. Therefore, from Egs. (9a—e), it is concluded that the in-plane magneto-elastic



Z. Qin et al. | Journal of Sound and Vibration 287 (2005) 177-201 181

vibrations associated with v; and v, are completely decoupled from the flexural ones associated
with v3, f; and f3,. In the following, the study will be restricted to flexural vibrations.

If transverse shear effects are further discarded, implying f; — —vs3; and f, = —v3, = 0, then
the flexural vibration is entirely governed by v3;. As a result, the governing equations reduce to

D13 1111 + (A7,0)v3,11 — (B3)* Chytn 11 — Loz 11 +obs = 0. (11)
a ‘br C

In Eq. (11), it is noted that the term labelled by “a” can be viewed as corresponding to a
compressive edge load that can yield buckling; the term indicated by “b” provides damping; while
the term labelled by “c” is associated with the rotary inertia. It is further remarked that in the case
of a single-layered plate (i.e., Np=1), CJ, — 2h3g22/3 and Eq. (11) exactly reduces to the
equation used in Ref. [4].

2.2. Flexural vibration analysis of a clamped—clamped plate strip

Using the following non-dimensional parameters:

D
H=x/6, t=1 ]2 b =uvs/h (12a—c)
Eq. (11) becomes
'y, o OOy (BY)'CY, Oy L d'hy | 0%

et T, 0c2  /Dily 8&0r o3 0&30r T2 =0 (13)
In order to solve Eq. (13), the Extended Galerkin’s Method (EGM) will be used. The
underlying idea of such method is that the adopted shape functions should only satisfy the
geometric boundary conditions, while the natural boundary conditions that may not be satisfied
appear as a residual in the functional that should be minimized in the Galerkin sense.
We introduce the spatial discretization:

B3 = Y(ED§(D), (14)

in which, the shape function vector q(&;) needs only fulfill the geometric boundary conditions.
Then Eq. (13) reduces to a set of ordinary differential equations:

qué + qu‘i + qu(l =0. (15)

In Eq. (15), as well as in the following ones, no summation convention over a repeated index is
implied; the entries of the mass, damping and stiffness matrices M,,, C,y, K4, respectively, are
defined in Appendix A. We note that the matrix C,, is a function of B);, while K, is a function of
®. From Eq. (15), the condition for the plate strip to be thermally buckled can be expressed by
det(K,y) = 0.

q
(s "

Further, casting Eq. (15) in the state-space form, we get

q 0 |
Q[ |~y Ky —(MCyp)
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Eqgs. (14) and (16) are related to the numerical solution of the unshearable plate model. Toward
the numerical solution of the transversely shearable model, we start with Egs. (9c—¢) and use the
following spatial discretization:

b= W, (4,0, B =¥y €Dy (D By =Wy (6D, (). (17a—c)

As a result, Egs. (9c—e) can be cast as:

M, 0 0 q, 0 0 0 q,

0 Mgy 0 QG b+ |0 Cpp Cpp |4 G,

0 0 My ] |G, 0 Cupy Cpps | | i,
Ko Ky Kg (6 0

+ | Koo Kpip Kpp, [ @5 3 =05, (18)
Kpo Kpp Kppp, | | g, 0

In Eq. (18), the entries of the submatrices are defined in Appendix A.
For the clamped—clamped plate strip, the shape function vector ¥ in Eq. (14) and v, ‘I‘/gl, ‘I’/;2
in Eq. (17) can be taken as

= {cosné; + 1,cos2né; —1,...,cos N,,mé — (—l)N"’}, (19a)
‘i’:: {cos fl,cos3zn§1,...,cosw fl}, (19b)
‘i’; = {sinné,sin2né;,...,sin N,,m&}, (19¢)
W, = (sinngy,sin2ng,, ..., sin Ny ). (19d)

We note that the shape functions in Eq. (19¢) are taken in such a way that for the unshearable
model, f; and 03 have the same shape function space representation.

2.3. Characteristics of flexural vibration of the plate strip

As discussed for Eq. (11) and also revealed by Eqgs. (15) and (18), the transversal magnetic
field 383 plays only the role of damping. For the purpose of clarifying the vibrational behavior
of the plate strip, the unshearable model will be adopted and the one-term shape function
Y = c0s(2.365¢) 4+ 0.133 cosh(2.365¢), which is the exact first-order eigenmode of a clamped—
clamped beam, will be used. Assuming the synchronous solution §(z) = ¢’ exp(it), Eq. (15)
reduces to

Myg? + cggh+ kg =0, (20)
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2 (h\?
1+3(£1>] (21a)

in which

Mgy = 3.127

Mg WE
Cgg = 1.042(B),)’ 2192/ (2 0)1 g (21b)
{M[Q1,]/(h”Eo)}
() (1) () (z) (t) (z)
ko, = 31.851 — 3.1270 i [ + Q12 2+ Qi6%iel/(Ni2o) (21¢)

MH[0),1/ 1

In Egs. (2la—c), gy, 2o and E, are the reference electric conductivity, thermaol expansion
coefficient and elastic constant, respectively, while the non-dimensional parameters B,; and © are
defined as

12

A0 3g0h ~ Ouyl?

By, = B, ( \/pLEJ , 0= hg L (22a, b)
0

Based on Eq. (20), one obtains the vibrational behavior that can be summarized as follows (see
Fig. 1, and Ref. [4]):

(i) For k,, =0, the thermal buckling occurs. The critical temperature parameter & can be
represented as

A 2
@* = 10.186 () (1) %Z(Z)Q(II;]/h A () (1)
Z 1019 + 0o + O 16]/(NLO‘0)
When ©>6 , the plate strip is in the state of post-thermal buckling (within the region
denoted by & in Fig. 1).
(i) For k4, >0 and cqu — 4myqk 4, =0 (or when @ € [@ , 0 ]) the (Bilate strip experiences over-

damped vibration (within the region denoted by &), in which @ is the critical overdamped
temperature below which damped oscillation occurs and is defined as

(23)

6 =10.186 e ls
- N (@) (i ~0) (i (l) i
Z | [Q11 (11) 2% (25 16 (1%]/(NLOC0)
1 {M]g22/90)/ I}

0
(By)*. (24)
i) (i (1) (i (1) (i 3
36 Z (1;0‘(11) + Q12)°‘(2§ + Ot (lé]/(NLEOOCO)

(iii) For kqf,>0 apd.céq - 4mq51qu<0 (or when @<@Od)., the plate strip experiences damped
oscillation (within the region denoted by &3). The eigensolution 4 in such a case can be
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Fig. 1. Qualitative picture of the vibrational behavior of the magneto-thermo-elastic plate strip as influenced by the
magnetic and thermal fields (the three reglons ldbelled as &1, &, and &5 are defined in Section 2.3). The boundary of the

thermal buckling is indicated by ------ , o ;and O o (

) separates the regions &, and &3.

represented as

A —£ (Boy)? it [922} + ]{30.55&/%2 [@] / >
90 Ey

o
N, A0 (z) (i) (z) A() (1) 2
+ 0 1 92
_3@ 11%11 2% 22 16%12 - B Y h2
Z EoyN . ( 03) ? Jo

1/2

3. Case II: free vibration of a plate strip in an axial magnetic field

(25)

In this case, B), = const., B); = 0. It is further assumed that @, = 0. We are still considering
the clamped-—clamped plate strip. The generalized forces of electrodynamical origin that are

displayed in Appendix B of Part 1 reduce to:

h
f2 dX3 = 0,
—h

h
Syda = (=B 121G 120 + Gox¥ + Gryt3 By ] = —BY\[12 — 2hy,1],

h
1 . .
/1 X3f,dxs = 5 Bgl[c‘ﬁ(/’,l + CL(, + 03,1B0))].
—h

(26a)

(26b)

(26¢)



Z. Qin et al. | Journal of Sound and Vibration 287 (2005) 177-201 185

In Egs. (26¢), ¢ ; and ¥ ; can be expressed as

¢ = g_—lz [uj — 01 By, Wy = —ui (27a, b)
11
where y is governed by the following diffusion equations:
- = = —- 1
Jura — kEj; = —E631 By, + gy TREAR (28a)

=2 / ! Vfl_s x(s1, 1) dsi. (28b)
TN e =3

From Eqgs. (28a, b), it is readily seen that y and y, are determined by v3, and from Egs. (27a, b),
it becomes clear that ¢ and y are determined by v; only. Therefore, similar to the governing
equations in the preceding Case I, the in-plane magneto-elastic vibrations v, are completely
decoupled from the flexural ones described in terms of v3 and f,.

In short, the flexural vibrations are governed by

v AasPyy + Ass(Byy + vs11) — ToBis — By (p, — 2hy;) = 0, (29a)

0By : DuPiar + DisPair — AasPy — Ass(By +v3,1) — L =0, (29b)

|
0B, = D161 11 + DeoPriy — Aaafy — Aas(By +v31) — Ifr + 5 BOICII(PI
1 .
+5 B Cla( + 03,1 B5y) = 0. (29¢)

where y and 7y, are governed by Egs. (28a,b), while ¢ and s are governed by Egs. (27a,b), respectively.

It is noted that unlike the transverse magnetic field in Case I, which provides only a damping
effect on the motion, in the present Case II, the axial magnetic field modifies both the damping
and stiffness coefficients of the plate. In the limiting case of the infinite electroconductivity, from
Eq. (28a), y > H 8103,1. As a result, the damping effect becomes immaterial and the magnetic field
only influences the stiffness coefficient.

As to the non-dimensionlization, besides the parameters in Eq. (12), the following ones are
further defined:

. dn . 9-11
I=—= 5 "h=—= 37> (30a, b)
Bgl.:a)()hz 01._, th

in which Wy = 4/ Dll/(f?lo)
In order to apply the EGM [5,8] for solving the governing equations (29a—) and (28a,b), spatial
discretization is carried out via Eq. (14) and

7 =¥ ()q,0). (31)

Similar to the choice of the shape functions of f3;, we select the shape functions of } in such a
way that in the limit of infinite electroconductivity, y and v3; have the same shape function space
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representation. As a result,

~T

‘I’X = {sin &, sin2né,...,sin N,mé}. (32)

Then, the governing equations (29a—) and (28a) can be cast in the state-space form

(;iv B 0 0 0 0 1 0 07 (’iv
e 0 0 0 0 0 1o,
U, 0 0 0 0 0 o 1|4,
az = 0 0 0 _A;IBX ijlcz 00 q,
(.iv _M;ule‘v _Mvauﬂ] _M;leUﬁz _MLTUlKUZ 0 0 0 (iL
. 71 71 71 A
ay, M Ko =My Kpip =My Ky, 0 0 0 0|4,
. -1 —1 -1 -1 -1 A
qﬁz L _MﬁZﬁZ Ko _M[fz[fsz”z/fl _M/32/32K/32/32 _Mﬁzﬁz Koy _Mﬁzﬁz Cpo 00 1 (9

(33)
The entries of each submatrix in Eq. (33) are defined in Appendix B. We further note that in order
to eliminate the strong singularity present in the last term in Eq. (28a), the following result is used:

1

1 1
- / §5,dE = — / e (34)
-1 — —

1

1
/ 2196 = 7

4. Case II1: magneto-elastic wave propagation in an infinite plate immersed in a transversal magnetic
field

4.1. Governing system

The linear counterpart of the equations of motion of the geometrically nonlinear plate theory
developed in Part 1 will be used to investigate the wave propagation of infinite plates in a
transversal magnetic field. It is assumed that ®y = 0. As a result, the electrodynamic equations
become

9-11</’+g_12‘//:%,2—£—;l—r1, (35a)
- - Y
Ju@ + ¥ = —1,1 + j — I, (35b)

_ _ _ =, _ 1 |1
Juxa +2dnxa2 + Gntn — BEL = din [_E i+l — Fz,z] +dn [ﬂ“/z,l - Fz,l]

1
+ g [— 512 + Fl,z} . (35¢)
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In Eq. (35¢), the relation defined by Eq. (35¢) of Part 1 is used and y,, y, are given as [4]

1 [ [ (x2 — )51, 52, 1) dsy dsy
yl:__/ / 2 293/2° (363')
—oo [(x1 = 51)” + (X2 — $2)7]
o - f)ds; d
/ / (1 = s)x(s1, 82, 1) ds 35/22’ (36b)
[(x1 — 51)° + (x2 — $)7]
while I'y, I’ can be represented as
Iy = dy02BY; — Giot1BY,  Ta = G1202B0; — dont1 BYs. (37a, b)
From Egs. (35) and (37), it is readily seen that y, ¢ and ¥ are functions of v;, v, only.
The ponderomotive forces f; (i = 1,2, 3) are
S =j2383, fa= —j1383, f3=0, (38a—c)

where, j, and j, reduce to:

1 = g\ + 62B%1 + gl — 01 B + x3[g\) By — d0B11BY;, X3 € [z zin1), (392)

Jo = g2l + 62B%] + gl — 01 B3]+ x3[6\0 B> — gnBi1BY, X3 € [z zig1)- (39b)

As a result, the ponderomotive forces can be expressed as

h N Zit1
[ frax=3 [ rids = 2n[-g+ 22— D] B+ (B2t~ 2], @00
- k=1 Y 7Zi

2h

h Ni o rzig
/ Sads = 3 fydxs = —2h [x % - rz] B — (B 2h[Gy 62 — Gotn], (40b)
—h k=1 Y Zi

h . . h . .
/ hxsfl dxs = [C),B, — C5P1(BL), / xifydxs = [ CY By + CHLBI(BY) . (40c.d)

—h
In Eqgs. (40a—d), the parameters C‘Zﬁ (o, ) = 1,2 are defined by Eq. (4a).
Associated to this case, the linear governing equations of the infinite plate become:

v1 (Ao + 24160102 + Aesvi22) + [Aisva, 11 + (Aia + Ags)va,12 + Azsv222]
— Loty + (2hy, — Vz)ng =0, (41a)

o0y : [A16v111 + (A12 + Aee)vi12 + AoV 22] + (Aesva,11 + 24260212 + A20222)
— oy — (2hy, —7,)B; = 0, (41b)

0v3 : Assvy11 + Aasva 1o + Aaavs + AssPy + AsaPars + Aas(Bay + o)
—Ioi}3 = 0, (41C)

0By : (D1ifya1 + 2D16P1 12 + DesPra2) + [Di6Ba11 + (D12 + Des)Ba12 + DasfPaanl
— Aas(By + v32) — Ass(By + v31) — Ly + (BY3)  CloBy — (B Cop1 =0, (41d)
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0P, : [D16P.11 + (D16 + Des) P12 + D2sPr2a] + (D22fr00 + 2D26P 12 + DesPo11)
— Asa(By + v32) = Aas(By + v3.1) = Doy — (B CY By + (B Clofy = 0. (dle)
Substituting Egs. (37a,b) into Eq. (35¢), the governing equation associated with y can be
simplified as
- _ _ . 1_ 1 _ 1 _
Juxn +2gux02 + 9ok — =L = 9120 + 5591721 T 5392712
+ 5383(131,1 + 022). (42)

Egs. (41a—e), (42), together with Egs. (36a,b) constitute the full set of governing equations of
the infinite plate immersed in a transversal magnetic field. It is readily seen that this set of the
governing equations splits into two uncoupled groups: one is associated with the flexural motion
(vs, B,), and the other one associated with the in-plane motion (v,).

4.2. Dispersion relation of the flexural waves

Consider the following solution form related to the flexural motion [1,6,7],

0
U3 U3
Br =< BY % explk(xicos @ + xzsin ) —jo, 1], (43)
B> i

and the following non-dimensional parameters:

k=kh Uwr=+/Di/l, &= ‘ffih, 02 = v3/h. (44a—d)

Ie

Then, the governing equations associated with the bending, as expressed in terms of v3 and f,,
can be cast in the frequency domain in the following state-space form:

(& 0 0o o 1 o o71( &
i 0O 0 0 0 1 0 i
o i L 0 0 0 0 0 I i 5
O 03 Ayr A Az 00 0 &y 03
o Asi Ay A3 0 Ass Asg | | @ po
u &y p ) | Ao Aes 0 Ags Aes | | @1 p3 )
i

The coefficients in the form of A; in matrix A are defined in Appendix C. We note that the
matrix A is function of ¥ and .

Eq. (45) constitutes an eigenvalue problem (with the eigenvalue @, ). Therefore, the dispersion
relation of the flexural waves can be derived from the eigenvalue solution of Eq. (45).
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4.3. Dispersion relation of the in-plane waves

Similar to the solution for the flexural waves as considered in the preceding section, we
postulate the following solution form for the in-plane waves:

v S = vg expl/k (xj cos @ + x;sin @) — jot]. (46)
0
X b

Based on Eq. (46) and the following non-dimensional parameters:

h EJAnTohB)
OIS = SR i) = (o D)/ (47a—0)
Uref g
where U, is defined by Eq. (44b), the governing equations associated with vy, v, and y can be cast

in the following state-space form:

)

(0 00 0 1 07 &)
0 0o 0 0 0 1 0
g 2 p=|0 0 Az Asq Ass Y (48)
o) Ay Ap Az 0 0 &)
\ &0 ) (A5 A, A 0 0 | o0 )
p]

The entries A,J in matrix A are defined in Appendix C. As in the case of flexural waves, also here
the matrix A is function of x and g . It is worth noting that when J.<1, the interactive influence of
the induced outer magnetic field on the in-plane waves can be neglected.

5. Results and discussion

Fig. 2 displays the influence of the ply-angle on the dlmensmnless critical temperature, ® ", and
on the critical overdamped dimensionless temperature o° , which are defined by Egs. (23) and
(24) and give the boundaries of thermal buckling and damped/over-damped vibrations,
respectively. The involved elastic, thermal and electrical parameters are: E\/Ey = 10, E»/Ey =
5, E3/E0 = 5, Glz/E() = 4, G23/E() = 2, G13/E() = 2, Hip = U3 = U3 = 0.25, O(]/O(() = 0.1, 062/060 =
2,03/00=1,E) = 100 N/mz, ag = 1073, go = 10% S/m3. Unless otherwise stated, these prescribed
parameters and the transversely shearable model (TS) will be used throughout Figs. 2—-12. In Fig.
2, we notice the significant influence of lay-up and ply-angle on these two functions, implying that
the tailoring technique can be used to efficiently control the vibrational behaV10r of the plate strip.

Fig. 3 shows the influence of the transversal magnetic field on 6 for different lay-up
configurations. It is remarked that among the four selected lay-up configurations, the one defined
by [90/45/0]; yields the highest sensitivity of O to the change of the magnetic field intensity, while
[06] yields the strongest resistance of @ to the variation of Bos
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Fig. 2. Dependence of 6" and (:)0 on lammatlo}(l and ply angle predicted by ghe NTS model. (2/¢; = 1/50, BQ}
4.5,9,/90 = 3.0,9,/90 = 1 g3/g0 =3.0); ——, @ in the case of [0¢]; - --- - , ©” in the case of [30]; ------ , in
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Fig. 3. Dependence of (:)Od on the magnetic field intensity parameter 383 predicted by the NTS model. (/¢; = 1/50,
91/90 = 3.0, 92/90 = 1.1, g5/99 = 3.0); —— [O¢; -+ -+~ > [306); ------ . [906]; ———, [90/45/0],.

Fig. 4 displays the influence of the magnetic field intensity parameter 323 on the vibration
characteristics. It is recalled that Re[4/wy] corresponds to the damping coefficient, while Im[A/wy]
corresponds to the oscillatory frequency. It is noted that the magnetic field intensity has a
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Fig. 4. Root loci of 1/wg as 383 sweeps from 0 to 5.1 in the complex plane. (NTS model, [90/45/0],, h/{) = 1/50,
g1/90 = 3.0, g2/90 = 1.1, g3/g9 = 3.0); — @ = —1.0; --- - -- ,0=00;------ ,0=05-——,060=10.
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Fig. 5. Root loci of 1/wy as 383 sweeps from 0 to 5.8 in the complex plane (NTS model, 4/¢, = 1/50, g,/g, = 3.0,

92/90 = 1.1, 95/gy = 3.0; —0—, @ =0, [90/45/0]: ---A---, @ = —1, [90/45/0],;—M—, & =0, [30/ — 30/30],;: - --
A---, O =—1, [30/ —30/30],.

significant influence on both the damping coefficient and the frequency. Worthy of noting is also
the fact that in the case @ = 1.0, the plate strip experiences over-damped vibration, as indicated

by the horizontal line segment.
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Fig. 5 displays the influence of the magnetic field intensity parameter Bg3 on the vibration
characteristics of the plate featuring different lay-up configurations. It is noted that among the
selected lay-up configurations, the plate strip featuring [90/45/0], displays the highest sensitivity
tpothe variation of the intensity of the magnetic field. It is recalled in Fig. 3, the separator function
®  configured in the same lay-up experiences also the highest sensitivity to the change of the
magnetic field.

Figs. 6-8 display the influence of transverse shear on plate-strip vibration with different
thickness ratios. The convergence tests of the EGM in the solution of the first three
eigenfrequencies of the plate strip by the TS and unshearable (NTS) models are listed in
Tables 1 and 2, respectively. From Fig. 6, it can be concluded that for //¢; = 1/50, the
transverse shear effect has a negligible influence on both the eigenfrequency and
damping coefficient. However, with the increase of the thickness ratio //¢;, the influence of
transverse shear effect on the eigenfrequency and damping becomes stronger. It is remarkable to
note that in the case /¢, = 1/12.5, with the increase of f?o3 from 0 to 6.3, Im[/; /wo] predicted by
the unshearable model (NTS) drops from 5.56 to 3.94 (29% drop); however, Im[l;/wo]
predicted by the TS model drops only from 5.18 to 5.03 (2.9% drop). This implies that in such a
case, the NTS model is no longer applicable and the transverse shear effect should be accounted
for in the modeling.

Figs. 9-11 display the influence of the electroconductivity on the first three eigenvalues of free
vibration of the plate strip. The significant influence of electroconductivity on the characteristics
of the damped vibration becomes evident: in the case g, = 10°S/m? (see Fig. 9), the increase of
B01 leads to the increase of Im[4;] (i = 1,3), while in the case g, = 10°S/m? (see Fig. 10), the
increase of B01 leads to the decrease of Im[/,], but to the increase of Im[A,] and Im[A3]; however, in

() B

Fig. 6. Comparison of the TS and NTSAOmodels on the prediction of the fundan}e(:)ntal eigenvalue 4; in Case I: (a)
eigenvalue imaginary part Im[4,] versus B; (b) eigenvalue real part Re[4,] versus By;. ([0¢], /¢ = 1/50, g,/g, = 3.0,
9>/90 = 1.1, g3/9¢ = 3.0); N, = 10 for the NTS model (---A---) and N,, = 20 for the TS model (—o—).
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Fig. 7. Comparison of the TS and NTS models on the prediction of the fundamental eigenvalue 4; in Case I: (a)
eigenvalue imaginary part Im[4,] versus BO3, (b) eigenvalue real part Re[4;] versus BO3 ([06), /€1 = 1/20, g,/g = 3.0,
9>/90 = 1.1, g3/9¢ = 3.0); N,, = 10 for the NTS model (---A---) and N,, = 20 for the TS model (—o—).
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Fig. 8. Comparison of the TS and NT§Omodels on the prediction of the fundag)lental eigenvalue 4; in Case I: (a)
eigenvalue imaginary part Im[4;] versus By,; (b) eigenvalue real part Re[4,] versus By;. ([06], #/¢1 = 1/12.5, g,/g, = 3.0,
9>/90 = 1.1, g3/9¢ = 3.0); N,, = 10 for the NTS model (---A---) and N,, = 20 for the TS model (—o—).
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Table 1
Convergence of the EGM in the solution of the first three eigenfrequencies of the plate strip used in Figs. 6-8 by the TS

model ([0c], By, = 0)

Nm C‘Z)l d)Z (2)3

4 6.025 32.424 80.333

6 5.606 29.124 68.017

8 5.557 28.850 67.302
10 5.536 28.739 67.032
12 5.526 28.686 66.907
14 5.520 28.658 66.842
16 5.517 28.641 66.804
18 5.515 28.631 66.781
20 5.514 28.624 66.766
Table 2

Convergence of the EGM in the solution of the first three eigenfrequencies of the plate strip used in Figs. 6-8 by the
NTS model ([0g], By = 0)

Nm Cbl d72 6,2)3
4 5.597 30.310 75.139
5 5.595 30.250 74.761
6 5.594 30.221 74.583
7 5.593 30.205 74.489
8 5.593 30.196 74.434
9 5.593 30.191 74.400

10 5.593 30.187 74.377

the case g, = 10°S/m’, the increase of Bgl yields the decrease of Im[4;] (i=1,3). This
phenomenon can be explained by the fact that the magnetic field modifies not only the structural
damping, but also its stiffness. The strong influence of the magnetic field on the vibration is also
manifested by the vibrational damping coefficient, as displayed in Fig. 12. Depending on the
magnetic field intensity parameter By, the order of the eigenmodes in terms of the amplitude of
their damping coefficients varies.

Figs. 13 and 14 display the dispersion relation of the flexural magneto-elastic waves within an
infinite plate. The related parameters are: [90/45/0],, E\/Ey =10, E,/Ey =2, E3/E) =2,
G12/E0 = 2, G23/E0 = 4, G13/E0 = 4, Hip = Uy = U3 = 0.25, CX]/OC() = 0.1, O(Q/OC() = 2, 063/06() = 1,
91/90 =3, 92/90 = 1.1, g3/90 = 1, Eo = 10'°N/m?, ap = 1073, g, = 108 S/m’ (these parameters
will also be applied in Fig. 15). From Fig. 13, it can be seen that for x> 1.5, there is almost no
dispersion for the flexural magneto-elastic waves, while Fig. 14 shows that (&, ), features the
highest damping.



Z. Qin et al. | Journal of Sound and Vibration 287 (2005) 177-201 195

IniA]

Fig. 9. The variation of Im[4;] (—o—), Im[4;] (---A---) and Im[4;] (—M—) of a plate strip as a function of B’gl.
(190/45/0%, h/t1 =1/50, g1/go =30, g2/90 = 1.1, g3/gp = 1.0, go = 10°S/m"))
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Fig. 10. The variation of Im[4;] (—o—), Im[4;] (—A—) and Im[4;] (—M—) of a plate strip as a function of l?gl.
([90/45/0], h/t1 =1/50, g1/gy = 3.0, g2/g0 = 1.1, g3/90 = 3.0, go = 10° S/m)

Fig. 15 displays the influence of the magnetic field on the dispersion curve Re[@, ] versus . It
can be seen that among the three waves, the frequency corresponding to (@ ), is the most sensitive

to the variation of the magnetic field.
Since the magnetic field has negligible influence on the in-plane magneto-elastic waves within an
infinite plate, the numerical results will be omitted here.
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Fig. 11. The variation of Im[4;] (—o—), Im[4;] (---A---) and Im[43;] (—M—) of a plate strip as a function of Bﬁl.
([90/45/0,, h/t; = 1/50, g;/go = 3.0, g2/g0 = 1.1, g3/90 = 3.0, gy = 10°S/m>.)

Fig. 12. Damping coefficients corresponding to the first three eigenmodes of a plate strip versus B’gl.
([90/45/01,, h/t, =1/50, g,/go = 5.0, g2/do = 3.0, g3/g0 = 1.0, go = 108S/m?); —o—, Re[/]; ---A---, Re[A]; —
H—, Re[/3].

6. Concluding remarks

e In the special magneto-elastic cases investigated here, an exact split of the full set of governing
equations into two groups is featured: one group is associated with stretching and involves vy,
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Fig. 13. Dispersion relation of the flexural magnetoelastic waves within an infinite plate: Re[® ] versus k. (333 =2.1);
—A—, Re[(®1),], ¢ =70° —o—, Re[(®1),], o =70° —M—, Re[(®));], o =70 ---A---, Re[(®1),], = 30%
---0---, Re[(@1),],  =30° ---W---, Re[(®1);], o = 30°.
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Fig. 14. Dispersion relation of the flexural magnetoelastic waves within an infinite plate: Im[&®, ] versus «. (333 =2.1);
—A—, Re[(®1);], g =70°; —o—, Re[(®1),], ¢ = 70°; —M—, Re[(®))5], o = 70°%; ---A---, Re[(®1),], = 30°%
---0---, Re[(@1),], ¢ =30° ---W---, Re[(®1);], = 30°.

2, 1, and the induced outside magnetic field represented in terms of y,, y,; and the other group
that is associated with the bending expressed in terms of v3, f; and f;.
e For moderately thick plates (e.g., #/€>1/12.5), the transverse shear effects must be included in
order to get reliable results.
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Fig. 15. Dispersion reldtlon of the flexural mdgnetoeldstlc waves within an mﬁ%lte plate: Re[@, ] versus . (500 = 30°);
—A—, Re[(@1 )], 30,3 = 0; —o—, Re[(®1),], B03 = 2 1; —M—, Re[(®1)3], By =0; ---A---, Re[(®1)], By; =2.1;
---0---, Re[(®1),], Bo3 =0; “'.“" Re[(@1)s], Bo3 =21

e The influence of the transversal magnetic field on vibration is manifested only by the damping
effect; however, the axial magnetic field modifies not only the damping, but also the stiffness.

e Finite electroconductivity has a significant and complex influence on the vibrational behavior of
plate strips. Contrary to the case of perfectly electroconductive plates, in the case of finite
electroconductivity, the magnetic field may decrease the eigenfrequencies. Furthermore, the
magnetic field may reorder the sequence of the eigenmodes in terms of the amplitude of the their
damping coefficients. This phenomenon can have significant implications on the active control
of such type of structures.
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Appendix A. Definition of matrices in Eqs. (15) and (18)
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Appendix B. Definition of matrices in Eq. (33)
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Appendix C. Expression of the coefficients in Eqgs. (45) and (48)
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