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Abstract

Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural
frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of
air, or doubly fluid-loaded inside and out. They may support circumferential waves, or axially propagating
waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am.
105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum
shells; the present study extends this to fluid-filled shells in air. For practical applications, steel shells are
most important and we have here obtained corresponding results for these. To find the natural frequencies
of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are
formed around the circumference, or in the axial direction if the cylindrical shell is terminated at both ends.
In this way, we obtain (circumferential and axial wave) eigenfrequency spectra for water filled aluminum
and steel shells, and also for brass shells (axial-wave resonances only).
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The phase–velocity dispersion curves (plotted vs. frequency) of circumferentially propagating
waves that encircle thin cylindrical (or spherical) metal shells are closely similar to those on a flat
plate, see Refs. [1,2]. The prime example of the latter are the results of Schoch for a free plate,
see front matter r 2005 Elsevier Ltd. All rights reserved.
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reproduced in the first edition of the book by Brekhovskikh [3]. They show curves for symmetric
(Sn) and antisymmetric (An) ‘‘Lamb waves’’, of which the higher ones (nX1) have low-frequency
cutoffs at which the curves tend to infinity. If the plates or shells are singly (or doubly) fluid
loaded, one (or two) additional ‘‘Scholte–Stoneley waves’’ are added which can interact with the
A0-wave curve. Previous results were obtained for the case of aluminum plates, see Refs. [4,5], and
cylindrical shells [6], demonstrating the effects of double fluid loading for the case of two different
loading fluids with comparable densities. In the present study, intended for possible practical
applications e.g. for a cylindrical pipe carrying a fluid flow, we obtain circumferential-wave
dispersion curves for water-filled cylindrical shells (aluminum and steel) in air which do not
appear in the previous literature. The eigenfrequency spectrum corresponding to these waves is
found from their resonances that occur when they form standing waves around the circumference,
based on the principle of phase matching [7]. This corresponds to a formation of standing waves
around the shell’s circumference, which can also be viewed as repeated encirclements (in both
directions) of the shell where an integer number of wavelengths spans the circumference of the
shell. This leads to a resonant reinforcement of the dispersive encircling waves (attenuated due to
radiation into the loading fluid) at all those frequencies where the phase matching condition is
satisfied, constituting the eigenfrequency spectrum of the shell.

In the following, we shall first obtain the phase–velocity dispersion curves of circumferential
waves on water-filled aluminum and steel shells in air, and then the corresponding eigenfrequency
spectrum as found from the phase matching condition. This is extended to the case of doubly fluid
loaded aluminum shells, and in a subsequent section we obtain eigenfrequency spectra of axially
propagating waves on shells terminated at both ends. Their spectra can be substantially different
from those of the circumferential-wave spectra depending on the aspect ratio of the finite shell.
2. Circumferential-wave dispersion curves for fluid-filled shells

Phase–velocity dispersion curves of circumferential waves on fluid-filled cylindrical shells in air
(or vacuum) have not been found in the literature (for brass shells, axial-wave dispersion curves
only are available [8]). Below, we show the low-order circumferential-wave phase velocity (cp)
dispersion curves for water-filled aluminum and steel shells in air, obtained by the methods of Bao
et al. [6]. We plot cp/c0 (normalized by the sound velocity in air, c0 ¼ 340m=s) vs. the frequency
variable ka � oa=c0; or alternately vs. kwa � oa=cw where o ¼ 2pf ¼ circular frequency, a is the
outer radius of the shell, and cw ¼ 1483m=s is the sound velocity in water (density
rw ¼ 1:0 g=cm3).

Fig. 1 shows the dispersion curves for a water-filled aluminum shell in air. The bulk wave
velocities in aluminum are cL ¼ 6350m=s (compressional) and cT ¼ 3050m=s (shear waves), the
density is r ¼ 2:7 g=cm3 and the density of air is r0 ¼ 0:00129 g=cm3: The thickness parameter b=a
(ratio of inner to outer radius) is 0.92.

Figs. 2 and 3 show corresponding curves for water-filled steel shells in air, for several kinds of
steels and thicknesses. Figs. 2(a) and (b) correspond to steel shells of thickness b=a ¼ 0:963 for
steel types AISL 304L (Fig. 2(a)) and AISL 316L (Fig. 2(b)) with the following material
parameters: AISL 304L has Young’s modulus E ¼ 200 kN=mm2; Coulomb’s modulus G ¼

76:9 kN=mm2 and Poisson’s ratio (at 20 1C, static) s ¼ 0:245; AISL 316L has E ¼ 195 kN=mm2;
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Fig. 1. Circumferential-wave phase velocity dispersion curves of an 8%-thick, water-filled cylindrical aluminum shell

in air.
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G ¼ 74 kN=mm2 and s ¼ 0:255: At a steel density of r ¼ 7:8 g=cm3; this leads to cL ¼ 5521m=s
and cT ¼ 3140m=s for AISL 304L, and to cL ¼ 5503m=s and cT ¼ 3080m=s for AISL 316L,
using the conversion formulas ([9,10])

cL ¼ ½ðE=rÞð1� sÞ=ð1þ sÞð1� 2sÞ�1=2, (1a)

cT ¼ ðG=rÞ1=2. (1b)

It is seen that the dispersion curves for the two steel types differ only insignificantly and only at
the higher-frequency values.

Figs. 3(a) and (b) correspond to a different type of steel, with cL ¼ 5950m=s; cT ¼ 3240m=s
and r ¼ 7:8 g=cm2; and with the thickness b=a ¼ 0:92 (Fig. 3(a)) and b=a ¼ 0:88 (Fig. 3(b)). Here,
differences with Figs. 2, as well as between Figs. 3(a) and (b), are evident.

In all the preceding figures, which concern water-filled metal shells in air, the dispersion curves
are seen to attain asymptotically at high frequencies the sound speed value in water, i.e. in the
filling fluid. This shows them to be waves propagating in the filling fluid, in view of the fact that
for both of our previously considered examples of an evacuated, water-immersed aluminum shell
[6] and (exploiting the plate-shell similarity) for an aluminum plate loaded with water on one side
and bounded by a vacuum on the other side [4,5], the phase–velocity dispersion curve tended
towards the sound speed in the loading fluid (cw) if the wave was fluid-borne, and towards the
bulk-wave value cT (or, for the lowest Lamb wave curves A0 and S0; towards the Rayleigh-wave
speed cR) in the metal if the wave was shell-(or plate-) borne. Apparently, thus, for a fluid-filled
thin shell the circumferential wave modes propagating in the filler fluid show a certain
predominance. Again, similarly to the Lamb waves, their lowest-mode phase velocity curve tends
to zero at vanishing frequency (see, however, below), while those of the higher modes tend to
infinity at certain low-frequency cutoffs. This behavior appears characteristic for very thin metal
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Fig. 2. (a) Circumferential-wave phase velocity dispersion curves of a 3.7%-thick, water-filled cylindrical AISL 304L

steel shell in air. (b) Similarly for an AISL 316L steel shell.
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shells in air (or vacuum) when filled with a liquid of substantial density (here, water); consider that
the weight ratio of a steel shell with thickness b=a ¼ 0:963 to the weight of the filler fluid (water) is
0.577, and of an aluminum shell with b=a ¼ 0:92; it is 0.274.

The situation is comparable, as shown by us earlier [6] if the shell is loaded both inside
and outside with fluids of substantial densities, e.g. Fig. 7 of Ref. [6] for a water-immersed,
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Fig. 3. (a) Circumferential-wave phase velocity dispersion curves of an 8% thick, water-filled cylindrical steel shell

(parameters listed in the text) in air. (b) Similarly for a 12%-thick steel shell.
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alcohol-filled aluminum shell with b=a ¼ 0:92: Fig. 4 reproduces this figure from Ref. [6] for our
subsequent use (the alcohol parameters, which inadvertently were not quoted in this reference, are
ca ¼ 1200m=s and ra ¼ 0:8 g=cm3). It was argued there that the lowest-order curve which tends to
zero at vanishing frequency (as in Fig. 1) is a shell-borne wave at kwap15220 while a large
number of descending higher-order mode curves F1;F2;F3 . . . (as in the present case) all
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Fig. 4. Circumferential-wave phase velocity dispersion curves on an 8%-thick, water-immersed and alcohol-filled

cylindrical aluminum shell. From Ref. [6].
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correspond to waves in the filler fluid. Above kwaX20 it is seen that due to the compressional-
shear coupling of the boundary conditions on the shell surface, these filler-fluid-borne mode
curves successively approach each other (compare also Figs. 8 and 7 of Bao et al. [6]) and undergo
curve repulsions [11] that leads to their systematic upward shifts by one unit. In the present case of
Figs. 1–3, the curves do not reach much beyond kwa	20 so that one cannot tell from our data
where, and to what extent, this repulsion phenomenon takes place here at higher values of kwa: It
may well be modified as compared to the case of double fluid loading [6].
3. Circumferential-wave eigenfrequency spectrum for fluid-filled shells

Practical applications often require a knowledge of the eigenfrequency spectrum of fluid-filled
cylindrical metal shells. The eigenfrequencies corresponding to circumferential waves can be
obtained from the above-given dispersion curves by using the principle of phase matching [7], in
which a circumferential wave closes into itself with the same phase after each circumnavigation of
a cylinder or cylindrical shell, leading to the formation of standing waves and hence resonant
eigenfrequencies. The condition for phase matching, i.e. n wavelengths spanning the
circumference, is 2pa ¼ nl (for a thin shell), or

cp=c0 ¼ ka=n ¼ ð2pa=nc0Þf (2)
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Table 1

Circumferential-wave eigenfrequencies f ‘ (in kHz) of water-filled cylindrical aluminum shell in air (shell radius

a ¼ 5 cm) corresponding to the three waves in Fig. 1 labeled ‘ ¼ 1; 2; 3 (from below)

n f(1) f(2) f(3)

1 — 12.7

2 — 20.5

3 0.93 26.6 42.9

4 4.92 32.4 48.6

5 7.69 38.2 56.1

Table 2

Circumferential-wave eigenfrequencies f‘ (in kHz) of water-filled cylindrical AISL 304L—steel shell in air (shell radius

a ¼ 5:4 cm) corresponding to the waves in Fig. 2a labeled ‘ ¼ 1; 2; 3; 4 (from below)

n f(2) f(3) f(4)

1 11.11

2 17.89

3 23.24 38.13

4 28.21 44.34

5 33.27 49.91 64.74

X.L. Bao et al. / Journal of Sound and Vibration 287 (2005) 383–394 389
(where k � o=c0 is the wavenumber in the air). This equation represents a straight-line plot of
cp=c0 vs. ka, and its intersections with the dispersion curves of Figs. 1–3 furnish the portion of the
eigenfrequency spectrum of the fluid-filled cylindrical shell corresponding to the circumferential
waves. Table 1 lists the eigenfrequencies of the water-filled cylindrical aluminum shell
corresponding to Fig. 1, obtained in this way, and Table 2 those of the AISL 304L steel shell
of Fig. 2(a). The graph of Fig. 5 shows the straight lines of Eq. (2) intersecting with the dispersion
curves of Fig. 1, indicating how the entries of Table 1 were found. For completeness, we also list in
Table 3 the values obtained from Fig. 4 for the eigenfrequencies of the alcohol-filled, water-
immersed aluminum shell with b=a ¼ 0:92:
4. Eigenfrequencies corresponding to axial standing waves

If the cylindrical shell is not infinitely long as assumed before, but is terminated at both ends
and has a length L, then the phase matching condition for axially propagating waves (furnishing
the resonant eigenfrequencies) leads to the formation of standing waves (assuming fixed
terminations):

L ¼ nl=2; n ¼ 1; 2; 3 . . . (3a)

or

cp=cw ¼ ðkwd=nÞðL=pdÞ ¼ ð2L=ncwÞf (3b)
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Fig. 5. Intersection of Eq. (2) with the dispersion curves of Fig. 1, furnishing the eigenfrequencies of a cylindrical water-

filled aluminum shell (Table 1) due to the phase matching of circumferential waves.

Table 3

Circumferential-wave eigenfrequencies f n (in kHz) of the alcohol-filled, water-immersed aluminum shell (b=a ¼ 0:92;
shell radius a ¼ 5 cm) corresponding to the waves A, A0; F1, F2, F3 of Fig. 4

n A A0 F1 F2 F3

2 14.65

3 19.88

4 11.38 24.26

5 15.41 28.82 45.01

6 19.51 33.38 50.08

7 13.13 24.55 37.85 55.01

8 18.10 29.91 42.26 60.02 75.02

X.L. Bao et al. / Journal of Sound and Vibration 287 (2005) 383–394390
(where kw is the wavenumber in the water filling, and we shall here use kwd as the frequency
variable). This equation represents a straight-line plot of cp=cw vs. kwd; and its intersection with
the dispersion curves of axially propagating waves again furnishes a portion of the eigenfrequency
spectrum of the fluid-filled cylindrical shell corresponding to the axially propagating waves. For
aluminum and steel, these dispersion curves have not been found in the literature regarding fluid-
filled cylindrical shells, but it may be sufficient to use here the dispersion curves on plates fluid-
loaded on one side (aluminum: see Refs. [4–5,12]; steel: Ref. [12]) since for axially propagating
waves, the transverse curvature of a cylindrical object is of little influence on the dispersion
[13,14]. These curves (restricted to the A0 wave and the Scholte–Stoneley wave A) are shown [12]
in Fig. 6(a) for the one-sidedly water-loaded aluminum plate, and in Fig. 6(b) for the water-loaded
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Fig. 6. (a) Dispersion curves of A0 and A waves on aluminum plate with one-sided water loading (d ¼ plate thickness).

AV
0 refers to a plate in vacuum. (b) Similarly for a steel plate. From Ref. [12].
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steel plate. Intersection with Eq. (3b) leads to the eigenfrequencies shown in Table 4 for an
aluminum shell of length L ¼ 960mm; and a steel shell of the same length (Table 5). The
intersection with the higher-lying S0 wave dispersion curve (see, e.g., Fig. 1 of Ref. [11], or Fig. 9
of Ref. [5]) leads to the much higher-lying eigenfrequencies for an aluminum plate, Table 6.

For the case of brass, the literature contains results by Kumar [8] on the dispersion curves of
longitudinally propagating, axially symmetric waves on a water-filled cylindrical brass shell in
vacuum. The material parameters for brass are [8] cL ¼ 4:7
 105 cm=s; cT ¼ 2:11
 105 cm=s;
r ¼ 8:5 g=cm3: In Fig. 7, we show dispersion curves of longitudinally propagating flexural waves,
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Table 4

Eigenfrequencies f ‘ (in kHz) of A0 and A standing waves in the longitudinal direction on a water-filled aluminum shell

in vacuum, of length 960mm (fixed end pieces), outer radius a ¼ 5 cm and wall thickness 4mm, corresponding to Fig.

6a, or Fig. 1a of Ref. [12]

n A0 A

10 1.83

20 7.5 3.35

30 15.8 8.1

40 25.6 14.1

50 34.7 21.5

Table 5

Eigenfrequencies f‘ (in kHz) of A0 and A standing waves (including the duplication A0
0 of the A0 wave) in the

longitudinal direction on a water-filled steel shell in vacuum of length 960mm (fixed end pieces), outer radius a ¼ 5 cm

and wall thickness 4mm, corresponding to Figs. 6b or 1b of Ref. [12]

n A0 A0
0 A

5 1.21

10 2.78 — 1.77

20 13.0 6.52 3.96

30 21.2 12.3 8.85

40 28.8 20.1 14.9

50 36.0 30.3 22.8

60 43.1 — 31.6

Table 6

Eigenfrequencies f‘ (in kHz) of S0 standing waves in the longitudinal direction on a water-filled aluminum shell in

vacuum, of length 960mm (fixed end pieces), outer radius a ¼ 5 cm and wall thickness 4mm, corresponding to Fig. 1 of

Ref. [11]

n S0

1 2.85

2 5.69

3 8.52

5 14.21

10 28.41

20 56.82

30 85.19

40 113.58

50 141.90
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extracted from Kumar’s results and presented in the form of our preceding graphs, for a water-
filled cylindrical brass shell of thickness b=a ¼ 0:9 (Fig. 11 of Ref. [8]). This graph reaches to
higher frequencies than our preceding new plots, and thus shows similar curve repulsion effects as



ARTICLE IN PRESS

Fig. 7. Dispersion curves of cp/cT for flexural waves propagating longitudinally in a 10% thick water-filled cylindrical

brass shell in vacuum. Adapted from Fig. 11 of Ref. [8].

Table 7

Eigenfrequencies f‘ (in kHz) of standing waves in the longitudinal direction on a water-filled brass shell in vacuum, of

length 960mm (fixed end pieces), outer radius a ¼ 5 cm and b=a ¼ 0:9; corresponding to Fig. 7 (adapted from Fig. 11 of

Ref. [8])

n f(0) f(1) f(2) f(3) f(4)

3 5.81 10.6 — — —

4 7.32 14.6 22.1

5 8.74 17.3 24.0 — —

6 9.59 19.0 26.6

7 10.6 20.5 30.0 37.2

8 11.6 21.7 33.0 39.1

9 12.4 22.7 35.1 41.4 60.0

10 12.9 23.8 37.2 44.3 60.6

X.L. Bao et al. / Journal of Sound and Vibration 287 (2005) 383–394 393
in Fig. 4 for the circumferential waves, which were not visible in our low-frequency curves of Figs.
1–3. Intersection of Eq. (3b) with the dispersion curves of Fig. 7 then furnishes the
eigenfrequencies of the brass shell shown in Table 7, due to longitudinal standing waves of
axial symmetry.
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5. Summary

Cylindrical metal shells appear as part of countless items of industrial equipment. Nuclear,
marine, petrochemical and many other industries employ cylindrical shells as conduits for fluid
flow, and the knowledge of the vibrational characteristics of such shells (especially of their
resonant eigenfrequencies) is a topic of primary importance. In the present study, obtaining the
eigenfrequency spectrum of fluid-filled metal shells is shown to be facilitated by the knowledge of
the dispersion curves of the waves propagating on these shells in either the circumferential or the
longitudinal directions. In the course of this study, several new results for circumferential-wave
dispersion curves of fluid-filled metal cylinders have been obtained. Application of the principle of
phase matching, i.e. the formation of standing waves, then furnishes the eigenfrequency spectrum
of the shell due to these waves. This is applied to water-filled aluminum, steel and brass shells, and
it appears that for thin shells, a dominant role is played by the waves propagating in the fluid
filling.
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[4] X.L. Bao, H. Franklin, P.K. Raju, H. Überall, The splitting of dispersion curves for plates fluid-loaded on both

sides, Journal of the Acoustical Society of America 102 (1997) 1246–1248.
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[11] H. Überall, B. Hosten, M. Deschamps, A. Gérard, Repulsion of phase velocity dispersion curves and the nature of

plate vibrations, Journal of the Acoustical Society of America 96 (1994) 908–917.

[12] J. Metsaveer, A. Klauson, Influence of the curvature on the dispersion curves of a submerged cylindrical shell,

Journal of the Acoustical Society of America 100 (1996) 1551–1560.
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