
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 287 (2005) 481–503
0022-460X/$ -

doi:10.1016/j.

�Correspon
92647, USA.

E-mail add
www.elsevier.com/locate/jsvi
Active structural acoustics control of beams using active
constrained layer damping through loss factor maximization

Joshua T. Lee�

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095, USA

Received 4 May 2004; received in revised form 19 October 2004; accepted 11 November 2004

Available online 12 January 2005
Abstract

Vibration and acoustic control of beams with classical boundary conditions using active constrained layer
damping is presented. The control input that maximizes the loss factor of the active constrained layer damping is
determined through taking the first variation of the loss factor with respect to the control input. Although the loss
factor is a positive definite quantity, the first variation yields control input that maximizes the factor. The resulting
control input significantly reduces the vibration and acoustic response of the beams at their resonant frequencies.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

There are several methods to control the vibration of structures and their induced noise. One of
the widely used methods in tackling this problem are applying passive damping treatments. Of all
the treatments, a popular choice is constrained layer viscoelastic damping. It is quite easy to apply
and generally effective in reducing both vibration and structure-borne noise in the high-frequency
range. There have been extensive researches done on mechanics and performance optimizations of
the passive constrained layer treatments. Lall, Mead, Kung, and various researchers applied
energy-related approaches to generate governing equations with associated boundary conditions
[1–6]. Usually, this approach works well for the damping treatment with uniform coverage over a
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

A11 extensional stiffness coefficient

A11 nondimensionalized extensional stiffness

coefficient (¼ A11a2=D11b)

C
k

nondimensionalized rigid modal amplitude

vector of the longitudinal modes of the kth

constrained layer

D11 flexural stiffness coefficient

D11 nondimensionalized flexural stiffness coeffi-

cient (¼ D11=D11b)

E applied electric field (¼ V=hc)

G shear modulus of viscoelastic material

G nondimensionalized shear modulus of vis-

coelastic material (¼ Ga3=D11b)

H Heaviside function that describes the loca-

tion of the active constrained layer

½K� stiffness matrix or stiffness matrix coeffi-

cient terms

L Lagrangian

½M� mass matrix or mass matrix coefficient terms

P radiated sound pressure

Q k; n; xð Þ longitudinal mode shapes of the constrained

layer in x-direction (k ¼ kth ACLD,

n ¼ mode number)

Q11c Young’s modulus of the constrained layer

Po external pressure load

Po nondimensionalized external pressure load

(¼ Poða
4=hbD11bÞ)

T kinetic energy

U potential energy

U
k

nondimensionalized modal amplitude vector

of the longitudinal modes of the kth

constrained layer

V applied voltage

W nondimensionalized modal amplitude vector

of the flexural modes of the beam

WEX nondimensionalized work done by applied

loads

X(m,x) flexural mode shapes of the beam in x-
direction (m ¼ mode shape)

Y(Z) structural mode shapes in Z-direction
a length of the beam

b width of the beam

c speed of sound

d31 piezoelectric constant for the constrained

layer

f external point load

f nondimensionalized magnitude of an exter-

nal point load (¼ f ða3=hbD11bÞ)

h thickness

k acoustic wavenumber

m mass/length

m normalized mass/length (¼ mða4=D11bÞ)

t time

u longitudinal displacement field

ub normalized longitudinal displacement field

(¼ u=hb)

w transverse displacement field

w normalized transverse displacement field

(¼ w=hb)

P average radiated sound power

d Dirac delta function indicating location of

an external point load

�k
cpe normalized piezoelectric strain

(¼ ða=hbÞd31E)

g shear strain

o circular frequency

x nondimensional variable in x-direction

(x ¼ x=a)

Z nondimensional variable in y-direction

(Z ¼ y=b)

Subscripts

b beam

c constrained layer

con control

d dissipated

Ex external

Pt.Force point force

v viscoelastic layer

uu U
k

c terms coupling with U
k

c terms

uw U
k

c terms coupling with W terms

uc U
k

c terms coupling with C
k
terms

wu W terms coupling with U
k

c terms

ww W terms coupling with W terms

wc W terms coupling with C
k
terms

cu C
k
terms coupling with U

k

c terms

cw C
k
terms coupling with W terms

cc C
k
terms coupling with C

k
terms

Superscript

k kth ACLD
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structure. For discrete damping treatment coverage cases, Lagrange’s equation and finite element
modeling are the preferred approaches [7–11]. Many of the performance improvement studies
inquire various design parameters, such as length optimization and optimal locations [2,9,10].
A recently introduced damping concept to improve the performance of passive constrained

layer treatments is active constrained layer damping (ACLD). The ACLD approach consists of a
viscoelastic damping layer combined with a constrained layer that is made of a smart material,
like PZT. Fig. 1 depicts a general scheme of a beam with an ACLD. By integrating the ACLD
with an appropriate combination of sensors and controllers, a higher reduction in vibration and
noise can be accomplished.
There are numerous studies being done on the ACLD for structural control. Baz [12–15] has

investigated the performance of the ACLD using the boundary controller. The boundary
controller depends on knowing the strain information of the active constrained layer. Therefore,
either there must be a sensor attached to the constrained layer, or it must be a self-sensing
actuator [15,16]. There are many studies analyzing the performance of various control schemes,
including H1 and LQG [17–19]. Also, there are numerous parametric studies conducted to
optimize the performance of the ACLD, focusing on identifying the optimal performance zone
[16,20,21]. Baz [13,14] and Shen [16] have investigated the energy dissipating mechanism of the
ACLD. A rate feedback mechanism is utilized as the active energy dissipative mechanism.
To enhance the performance of the ACLD, a number of variations of the ACLD are

investigated. Liao et al. [22–24] proposed the ACLD with edge spring mechanisms attached at the
ends of the active constrained layer. This increases force transmission by the constrained layer to
the host structure. Another variation proposed by Rongong et al. [25] uses a passive constrained
layer damping configuration with a layered actuator on top of the constrained layer. Also, an
integrated system proposed by Lam et al. [26] consists of passive constrained layer viscoelastic
damping treatments and conventional piezoceramic actuators.
While the researchers have shown that the active constrained layer damping is an effective

means to control vibration, they have not quantitatively investigated the contribution of the
energy dissipation mechanism in reducing vibration, especially for low-frequency resonant
responses. Consequently, a majority of the previous researches utilized the conventional means,
which is using the ACLD primarily as a control force generator. In doing so, the damping
mechanism takes a secondary role in controlling the vibration.
The proposed approach is a method to compute the control input that directly takes advantage of the

damping mechanism. The control input is computed through maximizing the overall loss factor of the
structural system with the ACLD [30]. This paper is divided into 3 sections. First, the mathematical
modeling of the ACLD and the loss factor maximization scheme are illustrated. Second, the
mathematical model of the ACLD is validated using an experimental result. Third, the performance of
the loss factor maximization scheme in reducing structural response is discussed in detail.

2. Theory of active constrained layer damping

The structural model of a thin beam with the ACLD makes the following assumptions:
1.
 Linear classical beam theory is applicable. Therefore, flexural displacement and slope are going
to be same throughout the thickness of the ACLD. All displacements are assumed small.
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Fig. 1. A general layout of a beam with active constrained layer damping (ACLD).
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2.
 Moduli of the viscoelastic layer are negligible compared to either the host beam or the
constrained layer. Therefore, extensional and bending strain energies of the viscoelastic layer
are neglected. The shear effect is assumed the most dominant feature in the layer.
3.
 Perfect bonding exists between the layers. Therefore, there is no slip condition at the interfaces.

4.
 Adhesive effects are ignored.

5.
 The damping layer is linear viscoelastic.

2.1. The kinematics of the viscoelastic damping layer

The primary damping mechanism of the viscoelastic layer comes from its induced shear strain
by the host structure and the constrained layer. The expression of the induced shear strain at the
kth viscoelastic layer as shown in Fig. 2 is

gk ¼
uk

c � ub

hv

þ a
qw

qx
; (1)

where

a ¼ 1þ
hb þ hc

2hv

: (2)

The shear strain is assumed uniform throughout the thickness of the viscoelastic damping layer.
The detailed derivation of Eqs. (1) and (2) is covered by Lall et al. [7,8].

2.2. Governing equations of a beam with the ACLD

To derive the system of governing equations, Lagrange’s equation of motion is used. It
expresses the equations of motion in terms of generalized coordinates and is obtained using the
internal structural energy components and the work done by external forces. The following
equations represent the nondimensionalized strain and kinetic energies per unit width of a beam
with the ACLD:

UTot ¼ Ub þ Uc þ Uv; TTot ¼ Tb þ Tc þ Tv; (3,4)
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Fig. 2. Deformation diagram of a viscoelastic layer damping system.
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where

Ub ¼
1

2

Z 1

0

A11b
qub

qx

� �2

dxþ
1

2

Z 1

0

D11b
q2w

qx2

� �2

dx; (5a)

Uc ¼
1

2

X
k

Z 1

0

ðHðx� xk
1Þ � Hðx� xk

2ÞÞA11c

quk
c

qx
� �k

cpe

� �2

dx;

þ
1

2

X
k

Z 1

0

ðHðx� xk
1Þ � Hðx� xk

2ÞÞD11c
q2w

qx2

� �2

dx; ð5bÞ

Uv ¼
1

2
G
X

k

Z 1

0

ðHðx� xk
1Þ � Hðx� xk

2ÞÞ

a
hv

uk
c � ub

� �2
þ2a uk

c � ub

� �
qw
qx

þ hv

a
a2 qw

qx

� �2

0
BBBB@

1
CCCCAdx; (5c)

Tb ¼
1

2

Z 1

0

mb
qub

qt

� �2

dxþ
1

2

Z 1

0

mb
qw

qt

� �2

dx; (6a)

Tc ¼
1

2

X
k

Z 1

0

ðHðx� xk
1Þ � ðx� xk

2ÞÞmc
quk

c

qt

� �2

dx;

þ
1

2

X
k

Z 1

0

ðHðx� xk
1Þ � ðx� xk

2ÞÞmc

qw

qt

� �2

dx; ð6bÞ

Tv ¼
1

2

X
k

Z 1

0

ðHðx� xk
1Þ � ðx� xk

2ÞÞmv
qw

qt

� �2

dx: (6c)
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The dimensioned energy expressions can be found in many Refs. [1,3,4,7–9]. The energy
expressions are normalized with the expression a3=ðD11bh2bÞ and the displacement fields with the
thickness of the beam, hb: The Heaviside functions indicate the segment of the host beam where
the viscoelastic damping layers are placed.
A general normalized expression of work done by external loads is

WEXext ¼

Z 1

0

Poðx;o; tÞ þ
X

q

f qdðx� xpt:forceq
Þ

 !
w x;o; tð Þdx: (7)

As Eq. (5b) indicates, there is no work being done directly on the host beam by the active
constrained layer. In fact, the lack of this feature has caused many researchers to introduce a
number of auxiliary mechanical means to increase transmissibility of the control force to the host
structure [22–24].
The current model of a beam with the ACLD has 3 independent displacement fields: ūk

c ; ūb; and
w̄: To reduce the number of independent fields from 3 to 2, the following static passive
longitudinal force equilibrium relationship between the host beam and kth constrained layer is
employed:

A11b

qub

qx
þ A11c

quk
c

qx
¼ 0; A11bub þ A11cu

k
c ¼ C0: (8a,b)

The force component of the viscoelastic layer is absent because of the previous assumption of its
negligible extensional stiffness. Without a loss in generality,

ub ¼ �
A11c

A11b

� �
uk

c þ Co ¼ �c1ðuk
c þ CÞ: (9)

The independent displacement fields are expressed as linear combinations of assumed mode
shapes. Therefore, in terms of assumed mode shapes,

uk
c ðx;o; tÞ ¼ ejot

XN3

n

U
k

c Q k; n; xð Þ þ C
k

 !
¼ U

kT

c Qþ C
k
; (10a)

ub ¼ �c1uk
c ; wðx;o; tÞ ¼ ejot

XN5

m¼1

W mX ðm; xÞ ¼ W
T
X: (10b,c)

Details of the mode shapes are listed in Appendix A. With Eqs. (10), the longitudinal
displacement field of the beam becomes a function of the equivalent field of the kth constrained
layer. A constant C

k
is introduced in the longitudinal displacement field of the constrained layer

to represent its rigid motion at the ends. Because it is an arbitrary modal amplitude, C
k
can

represent C of Eq. (9) without a loss of generality.
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The assumed shape functions must satisfy admissible boundary conditions. For uk
c ; because of

its unconstrained end conditions, it must satisfy the following boundary conditions:

uk
c ðx ¼ 0; 1Þa0;

quk
c ðx ¼ 0; 1Þ

qx
¼ d31c

Ek
c : (11a,b)

Notice that Eq. (11b) reverts to the passive constrained layer boundary condition if the controller
becomes inactive. For the beam transverse displacement fields, there are well-defined shape
functions for a number of classical boundary conditions. In this paper, beams with the 3 classical
boundary conditions are considered; simply supported, fully clamped, and cantilevered. The
longitudinal functions are previously reported by Lall et al. [7,8] and the flexural mode shapes by
Leissa [27].
With the selected shape functions, the governing system equations can be generated. Let L be

the Lagrangian

L ¼ TTot � UTot: (12)

Then, applying Lagrange’s equations,

d

dt

qL

qU
k

c




0
B@

1
CA�

qL

qU
k

c

¼
qWEXExt

qU
k

c

; (13a)

d

dt

qL

qW



 !
�

qL

qW
¼

qWEXExt

qW
; (13b)

d

dt

qL

qC
k



0
@

1
A�

qL

qC
k
¼

qWEXExt

qC
k

; (13c)

the system of governing equations in the following general format can be generated:

�o2

Muu Muw Muc

Mwu Mww Mwc

Mcu Mcw Mcc

2
664

3
775þ

Kuu Kuw Kuc

Kwu Kww Kwc

Kcu Kcw Kcc

2
664

3
775

2
664

þ j

K00
uu K00

uw K00
uc

K00
wu K00

ww K00
wc

K00
cu K00

cw K00
cc

2
664

3
775
3
775

U
k

c

W

C
k

8>><
>>:

9>>=
>>; ¼

0

fext

0

8>><
>>:

9>>=
>>;þ

fcon

0

0

8>><
>>:

9>>=
>>;: ð14Þ

A general expression of the resulting modal amplitude vector is

U
k

c

W

C
k

8><
>:

9>=
>; ¼

Exk
Uc

Exw

Exk
C

8><
>:

9>=
>;þ

Fck
Uc

FcW

Fck
C

2
64

3
75Vcon: (15)
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The vector fExk
Uc Exw Ex

k
Cg

T is the modal amplitude due to the external forces and the matrix
½FckT

Uc Fc
T
W FckT

C �T due to the control input.

2.3. Maximization of the loss factor

There are in general two ways to use the ACLD to control vibration; a conventional actuator
and an energy dissipation enhancer. The key disadvantage of using the ACLD as an actuator is
that the transmissibility of the control force onto the host structure is significantly degraded due
to the viscoelastic damping layer [21]. The ACLD can be used more effectively in controlling the
structural response if it is employed to enhance the energy dissipating capability.
According to Lee and Plunkett [2], the energy dissipated per cycle per unit length per width with

a constrained layer damping treatment is

dðDW d Þ ¼ phv ImðGÞg2 ¼ phvG
00g2: (16)

Therefore, after applying the expression of the shear strain, an expression for a normalized
dissipated energy per cycle by the kth ACLD that partially covers a beam from xk

1 to xk
2 per width

is

DW
k

d ¼ pG
00
Z 1

0

ðHðx� xk
1Þ � Hðx� xk

2ÞÞ

a

hv

� �
ð1þ c1Þ2uk

c ukn

c

þð1þ c1Þa uk
c

qwn

qx
þ ukn

c

qw

qx

� �

þ
hv

a

� �
a2

qw

qx
qwn

qx

2
666666664

3
777777775
dx (17)

After substituting the displacement field variables with the shape functions and performing the
integration, Eq. (17) can be expressed in the general form

DW
k

d ¼

U
k

c

W

C
k

8><
>:

9>=
>;

H
DE11 DE12 DE13

DE21 DE22 DE23

DE31 DE32 DE33

2
64

3
75 U

k

c

W

C
k

8><
>:

9>=
>;: (18)

By applying the modal amplitude expressions of Eq. (15) and rearranging Eq. (18), the
dissipated energy expression for kth ACLD takes the form

DW
k

d ¼ V conðkÞ

DEQðkÞV conðkÞ þDESðkÞV conðkÞ

þ V conðkÞ

DET ðkÞ þDEpðkÞ: ð19Þ

DEQ(k) is a dissipated energy term due to purely active components. DES(k) and DET(k) are the
coupled energy terms between the active and passive components. The dissipated energy due to
the passive damping treatment is represented by DEp(k). Because the expression is quadratic and
positive definite, taking the first variation of the expression with respect to Vcon(k) yields a control
voltage that minimizes the dissipated energy, not a desirable strategy.
One convenient variable that shows a relative measurement of the dissipated energy is a loss

factor. The loss factor is a ratio between a dissipated energy and a reference elastic strain energy
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per cycle. The loss factor shown in Eq. (20) is a ratio between the dissipated energy of the kth
ACLD and the bending strain energy of the host structure as the reference strain energy. The most
commonly used strain energy expression in defining the loss factor is the total strain energy of the
entire structural system. But, in this analysis, it is assumed that the strain energy of the host beam
due to the flexural motion is the most critical component. Therefore,

Zk ¼
DW

k

d

2pU ref

; U ref ¼ Ubending ¼
1

2
D11b

q2w


qx2
q2w

qx2
: (20)

The factor 2p in the denominator of the loss factor is present because the dissipative energy is
computed per cycle. The detailed derivation of the loss factor expression can be found in a
number of Refs. [2,5,6]. Similar to the dissipated energy expression, the strain energy expression is
quadratic with respect to the control voltage vector:

Ubending ¼ VH
conSEQVcon þ SEH

S Vcon þ VH
conSET þ SEP: (21)

The primary goal is to find the control voltage that yields maximum loss factor. The first step in
determining the critical voltage is to take a first variation of the total loss factor of the ACLD with
respect to the control voltage. This generates the following condition that can be used to compute
the control voltage:

qZTot

qV

con

¼ 0 ) Ubending
q
P#ACLD

k¼1 DW
k

d

qV

con

�
X#ACLD

k¼1

DW
k

d

qUbending

qV

con

¼ 0: (22)

This is the numerator of the resulting expression after applying the quotient rule. By
substituting Eqs. (19) and (21) into Eq. (22), it becomes a system of coupled, complex cubic
polynomial equations with the control voltage vector as the independent variable that must be
solved iteratively. When there is only one ACLD, however, the system of complex cubic equations
reduces to a scalar second order complex polynomial equation. In the subsequent analysis, only
the single ACLD case is going to be considered. Because of this, all the indices in the subsequent
mathematical expressions are dropped for convenience. The resulting second-order polynomial
equation for single ACLD case is

V2
con SESDEQ �DESSEQ

�  
þ V con SEPDEQ þ SESDET �DEPSEQ �DESSET

�  
þ SEPDET �DEPSET½ � ¼ 0: ð23Þ

The Vcon is solved by applying the quadratic equation. The computed Vcon ensures that the loss
factor reaches a critical value with respect to control voltage. In order to ensure that the loss
factor with the control voltage reaches a maximum, twice-differentiated Eq. (20) with the critical
Vcon must result in a negative value. Due to the complex nature of the coefficients, a result of
differentiation in an equation form does not provide any definite conclusion of the critical nature
of the resulting loss factor. The subsequent numerical analysis demonstrates that the computed
critical control voltage causes the loss factor to become a maximum at resonant frequency bands
of the structure. This is discussed in detail in the next section.
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3. Results and discussions

3.1. Validation of the active constrained layer damping model

The mathematical modeling approach of the ACLD system is validated by comparing it with an
experimental result previously reported by Liao and Wang [21]. The compared experimental result
shows the tip displacement of a cantilever beam excited by the ACLD. Tables 1 and 2 [21] lists the
physical and material specifications of the structural system used in the validation phase. Fig. 3
shows a diagram showing a general layout of the system. The tested structural system consists of a
cantilevered aluminum beam with a bonded ACLD, which covers approximately 40% of beam’s
length. The active constrained layer is made of a PZT ceramic (PKI 502). The input voltage to the
constrained layer is a white noise signal. A fiber optic displacement sensor is placed at the free end
of the beam to measure its tip displacement. Eqs. (24a–d) describe the frequency-dependent shear
storage modulus and its loss factor of the viscoelastic material (3M IDS 112) [21]. Fig. 4 shows the
frequency variant store and loss (real and imaginary) moduli of the viscoelastic layer:

GðoÞ ¼ GðoÞ0 þ jGðo00Þ; (24a)
Table 1

Parameters of the validated system [21]

Beam length: a (m) 0.261 PZT thickness: hc (m) 0.000762 a 6.0

Beam width: b (m) 0.0127 PZT piezoelectric

constant: d31c (m/V)

�175E–12 k (N/m2) 5E5

Beam thickness: hb (m) 0.002286 PZT Young’s modulus:

Q11c (N/m2)

7.4E10 B̂ 4.0

Beam’s Young’s

modulus: Q11b (N/m2)

7.1E10 Viscoelastic layer

thickness: hv (m)

0.00025 ô (rad) 10000

Beam density: rb (kg/m3) 2700 PZT density: rc (kg/m
3) 7600 Viscoelastic

material density:

rv (kg/m3)

1250

Fig. 3. Diagram of the validated system.
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GðoÞ0 ¼ k 1þ a
o4 þ ð4B̂2 � 1Þô2o2

o4 þ 2ð2B̂2 � 1Þô2o2 þ ô4

" #
; (24b)

ZðoÞ ¼ a
2B̂ô3o

ð1þ aÞo4 þ ð4ð1þ aÞB̂2 � 1Þô2o2 þ ô4

" #
; (24c)

GðoÞ00 ¼ GðoÞ0ZðoÞ: (24d)

Fig. 5 shows a comparison between the predicted and experimentally measured tip
displacements of the beam normalized by the input voltage signal. It illustrates that the
experimental and analytical results are in a good agreement. The first and the second modes
predicted by the analytical model are at 25.25 and 151Hz, respectively. The experimental result
shows that the modal frequencies are at 26.5 and 148.75Hz. The percentage differences between
the results for the first and the second modes are 4.7% and 1.5%, respectively. For the beams with
different boundary conditions, the only variation in the model is different mode shape functions.
Therefore, this validation conclusively proves that the general formulation of the ACLD model is
accurate.

3.2. Performance of active constrained layer damping treatment

The beam and the ACLD used in the validation phase are utilized in the subsequent analysis.
The applied boundary conditions of the beam are the those previously discussed in the Theory
Section. All 3 beams have one ACLD. For the simply supported and clamped boundary condition
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cases, the segment of the beam with the ACLD is from x ¼ 0:3 to 0.7. For the cantilevered beam,
the same coverage used in the validation case is applied. This location is near the clamped end of
the beam where a high level of strain is exhibited. A constant pressure load of 1 Pa with uniform
phase is applied to the beam as a primary disturbance excitation. This is equivalent to a constant
94 dB plane wave acoustic excitation spectra.

3.2.1. Maximization of loss factor

The critical control voltage is computed applying the quadratic equation to Eq. (23). Of the two
answers, the one with smaller amplitude is used. Figs. 6–8 show the computed Vcon. The figures
reveal 3 distinctive phases in transformation of the control voltage near natural frequencies of the
beams. As the excitation frequency approaches natural frequencies of the beams, the voltages
show a typical frequency response of rapid, smooth increase. As the frequency reaches a resonant
frequency, the voltages suddenly shift to a linearly decreasing pattern. This pattern holds until the
frequency passes beyond the resonant frequency. Then, the voltages reverse back to a typical
frequency response pattern of decay.
From the figures, three trends can be observed. First, the peak control voltage amplitude

decreases as frequency increases. For example, for the simply supported beam case, the
voltage remains in a linearly decreasing pattern from 7.19V at 74Hz to 6.45V at 84Hz
for the first mode. For the third mode, the control voltage changes from 0.16V at 650Hz to
0.159V at 754Hz. The average control voltage amplitude for the first mode is 6.82V,
while it is dropped to 0.1595V for the third mode. Second, the frequency bandwidth
of the peak voltage region increases as the frequency increases. The frequency bandwidths for
the first and third modes are 10 and 104Hz, respectively. Third, the rate of decrease in
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Fig. 6. Amplitudes of the applied voltage and the electric field of the ACLD from a first variation of the overall loss

factor with respect to the control voltage for the simply supported beam.

Fig. 7. Amplitudes of the applied voltage and the electric field of the ACLD from a first variation of the overall loss

factor with respect to the control voltage for the clamped beam.
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the peak voltage within the resonant frequency band decreases as frequency increases. The rates
of decrease in the voltage within the resonant frequency band of the first and third modes are
0.074 and 9.6mV/Hz, respectively. Therefore, the frequency bandwidth and the change in the
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Fig. 8. Amplitudes of the applied voltage and the electric field of the ACLD from a first variation of the overall loss

factor with respect to the control voltage for the cantilevered beam.
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computed peak control voltage within resonant frequency ranges show an inversely proportional
relationship.
Unlike either the simply supported or clamped beams, the control voltage for the cantilevered

beam shows a slightly different pattern, as shown in Fig. 8. Although it shows the linear patterns
around the resonant frequencies, the corresponding frequency bandwidths are significantly
narrower than the other beams. Also, the voltage shows a resonant–anti resonant pattern, instead
of the linear pattern, at the third mode. In the same context, neither the simply supported nor the
clamped beam show any change in the control voltage at their second modes.
With the critical control voltages, the corresponding loss factors are computed using Eq. (20).

Figs. 9–11 show the comparisons between the overall (active+passive) and passive loss factors of
the beams. By applying the critical voltages, the loss factors become significantly lower than their
passive counterparts in off-resonant frequency ranges. However, in the resonant frequency band
of the beams, the overall loss factors become significantly greater than the passive factors.
Recalling that the voltage is computed by differentiating the loss factor expression with respect to
the control voltage, this trend suggests that the critical control voltage makes the performance of
the ACLD maximum where the damping effect becomes dominant.
The frequency bandwidths of the active loss factors around the natural frequencies of the beams

show the identical trends as the control voltage. When the control voltages abruptly switch to the
linear patterns, the corresponding loss factors are ‘‘switched on’’ and become maximum. Once the
control voltages switch back to smooth decaying patterns, then the loss factors become ‘‘switched
off’’ and return to their minimum states. For the cantilevered beam, in addition to the patterns
discussed, both the active and passive loss factors reach the same level at the third mode. This is
where the voltage shows a resonant–anti-resonant pattern in Fig. 8.
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Fig. 9. Loss factor comparison between a passive and an active ACLD for the simply supported beam: –––, active;

- � - � -, passive.

Fig. 10. Loss factor comparison between a passive and an active ACLD for the clamped beam: –––, active; - � - � -,

passive.
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To verify the nature of criticality of the control voltage, the loss factors are differentiated twice
with respect to the control voltage. Fig. 12 shows the real components of the results. Compared to
the real component, the imaginary component of the twice-differentiated loss factors are
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Fig. 11. Loss factor comparison between a passive and an active ACLD for the cantilevered beam: –––, active; - � - � -,

passive.

Fig. 12. Real component of q2ZTOT=qVn
conqV con for the simply supported beam: –––, cantilevered; - � - � -, clamped; - - - -,

simply supported.
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determined to be noninfluential in the criticality. As the figures indicate, the twice-differentiated
loss factors increase as a frequency approaches natural frequencies. Then, they shift the phase to
negative. After passing the natural frequencies, they switch back to positive again. This sudden



ARTICLE IN PRESS

J.T. Lee / Journal of Sound and Vibration 287 (2005) 481–503 497
shift in phase of the twice-differentiated loss factor causes the loss factors to switch abruptly from
the minimum to maximum states.
The resulting control voltage turns the ACLD into a highly effective energy dissipating device.

A damping effect becomes dominant only at resonant frequency zones of a structure. Because the
control voltage is determined through differentiating the loss factor expression, it causes the
resulting critical loss factor to reach local maximum only at resonant frequency zones. Due to this
consideration, Eq. (22) can be regarded as a condition for an ACLD in maximizing its energy
dissipating capability.
3.2.2. Performance of the ACLD with the critical loss factors

The next stage is to investigate the effect of the control voltage on structural dynamic responses
by observing two physical quantities; kinetic energy of the host beams and resulting average far-
field radiated sound power. Kinetic energy is a useful quantity in evaluating the overall dynamic
behavior of a vibrating structure. It not only reveals its dynamic behavior, the energy also
indicates the level of radiated sound power in the near field [28]. The kinetic energy due to flexural
motion of the beams is observed in evaluating the effectiveness of the ACLD.
3.2.2.1. Reduction in kinetic energy. From observing the reduction of kinetic energies of the
beams in Figs. 13–15, the significant reduction in vibratory energy by ACLD is evident. For the
lower order modes, the reduction level is high and the effective frequency bandwidth narrow. As
the frequency increases, the reduction level decreases but the effective frequency bandwidth
increases significantly. For example, reductions in kinetic energy for the simply supported beam
by the ACLD are 61 dB for the first mode and 35 dB for the third mode.
This inversely proportional pattern between the kinetic energy and the associated resonant

frequency bandwidth correlates to the trend of the loss factors and the control voltages shown
earlier. This may be contributed to the two factors. First, as the excitation frequency increases, the
resonant vibration amplitude goes down. This translates into a decreasing trend in reduction in
the kinetic energy by the ACLD. Second, the overall effectiveness of a viscoelastic constrained
layer damping treatment increases as the frequency goes up. Therefore, the effective control
frequency bandwidth of the ACLD increases accordingly.
Another noticeable trend is that the kinetic energy is significantly reduced by the passive ACLD

alone. This indicates that the ACLDs are placed in effective locations to dissipate the vibration
energy of the beams. Therefore, this strongly suggests that the maximization of the loss factor is
also dependent on location of the ACLD.
3.2.2.2. Reduction in radiated sound power. The radiated sound power of the beams is computed
using Eqs. (25) [29]. One key assumption applied to the cantilevered beam is that the free end is
acoustically sealed.

P ¼

Z j¼2p

j¼0

Z y¼p=2

y¼0

Pj j2

2rairc
r2 sin ydydj ¼

Z j¼2p

j¼0

Z y¼p=2

y¼0

Ir2 sin ydydj; (25a)
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Fig. 13. Reduction in the kinetic energy of simply supported beam by the damping treatments: - � - � -, no damping; –––,

passive damping; - - - -, active damping.
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where

P ¼ jorair
e�jkr

2pr

Z
A

qw

qt
ejax=aejby=b dydx: (25b)

The average far-field sound powers radiated by the 3 beams are shown in Figs. 16–18. As shown
in the kinetic energy reduction, the sudden changes in the loss factors affect the sound power as
well. For the first mode, the maximization of the loss factors causes the sound power to be
dramatically reduced to below 0 dB for all the beams. For the higher modes, the resonant peaks
are dropped to nonresonant levels. This demonstrates that the ACLD is effective in controlling
the structural acoustic response of the beams.
4. Conclusions

This research investigates the application of active constrained layer damping treatment to control
dynamic responses of beams with classic boundary conditions. Generally, a passive viscoelastic
damping treatment is effective for high-frequency vibrations. In the low- to mid-frequency ranges, the
treatment becomes ineffective because of the greater wavelength of the vibrating structure compared
to the damping treatment coverage length. This research has demonstrated that an active constrained
layer damping treatment can effectively damp out low-frequency vibrations as well.
The control voltage that maximizes the loss factor can significantly reduce the vibrations and

noise of the beams at the resonant frequencies. Because the control voltage is determined through
the first variation of the loss factor with respect to the voltage, it is demonstrated that the resulting
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Fig. 15. Reduction in the kinetic energy of cantilevered beam by the damping treatments: - � - � -, no damping; –––,

passive damping; - - - -, active damping.

Fig. 14. Reduction in the kinetic energy of clamped beam by the damping treatments: - � - � -, no damping; –––, passive

damping; - - - -, active damping.
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loss factor has to be maximum in the resonant frequency and minimum in the off-resonant
frequency bands. Its nature of criticality is illustrated through the double differentiation of the
loss factor with respect to the voltage.
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Fig. 16. Reduction in the radiated sound power of the simply supported beam by the damping treatments: - � - � -, no

damping; –––, passive damping; - - - -, active damping.

Fig. 17. Reduction in the radiated sound power of the clamped beam by the damping treatments: - � - � -, no damping;

–––, passive damping; - - - -, active damping.
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Although this research has demonstrated the potential of the ACLD, there are many issues that
must be resolved. The control voltage is determined with the knowledge of the full state of the
beams and the constrained layer damping. Consequently, this is the best performance that the
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Fig. 18. Reduction in the radiated sound power of the cantilevered beam by the damping treatments: - � - � -, no

damping; –––, passive damping; - - - -, active damping.
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ACLD can promise. If the voltage is determined through utilizing partial information of the
system, then it is clear that the same level of performance of the ACLD cannot be guaranteed.
Also, a control scheme that can implement the loss factor-maximizing the control voltage must be
developed. Resolution of these issues ensures the robustness of the ACLD and, thus, paves a way
to make it a viable mean to control the vibration and sound of structural systems.
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Appendix A. Applied mode shapes

A.1. Longitudinal displacement field of kth active constrained layer

uk
c ðx;x

k
o ; t;oÞ ¼ Ck þ

XN3

n¼1

Uk
c ðnÞQðk; n; xÞ

 !

¼ Ck þ
XN3

n¼1

Uk
c ðncÞ cos

npðx � xk
oÞ

a

� � !
ejot; n ¼ 1; 2; 3; :::;N3:
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Table 2

Eigenfunction parameters for cantilevered and clamped beams [27]

Boundary conditions Cantilevered Clamped

Mode number (m) km Rm km Rm

1 0.7340955 1.8751041 0.9825022 4.7300408

2 1.0184664 4.6940911 1.0007773 7.8532046

3 0.9992245 7.8547574 0.9999665 10.9956078

4 1.0000336 10.995541 1.0000015 14.1371655

5 0.9999986 14.137168 0.9999999 17.2787596

6 1.0 17.278745 1.0 20.4203522

m46 1.0 (2m�1)p/2 1.0 (2m+1)p/2
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A.2. Transverse displacement field of the beam

Boundary condition: simply supported.

wðx; t;oÞ ¼
XN5

m¼1

sin
mpx

a

� �
ejot; m ¼ 1; 2; 3; . . . ;N5:

Boundary condition: clamped on both ends or cantilevered.

wðx; t;oÞ ¼
XN5

m¼1

cosh km

x

a

� �
� cos km

x

a

� �
� Rm sinh km

x

a

� �
� sin km
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� �� �h i
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