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Abstract

A method is presented for determining the wavenumbers, waveshapes and point receptances for an
infinite, one-dimensional, non-uniform periodic structure with distributed periodic attachments or
supports. The approach is based on a general theory of harmonic wave propagation in one-dimensional
periodic systems. Ill-conditioning was previously reported as an impediment to applying the theory to
problems of practical importance. In this paper ill-conditioning problems are overcome and a method of
substructuring using waveshape coordinates is presented that dramatically improves computational
efficiency. The accuracy and generality of the new method are tested by comparing computed and measured
receptances for a typical TGV railway track with UIC60 rail, rail pad, ballast and concrete sleepers. The
computed results are found to correlate well with measured data.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A periodic system was defined by Mead [1] as any group of identical elements coupled together
in identical ways to form a whole system. A one-dimensional periodic system is one in which the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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periodically repeating elements are coupled together end-to-end only [1]. Perhaps, the most
obvious example of such a system is a beam with periodic supports or additions.

A uniform periodic structure is one in which the periodic additions can be considered to occur
only at the boundaries of the periodically repeating elements. In the case where the beam is
augmented with periodic attachments or supports that are not at the periodic boundaries, the
system is a non-uniform periodic structure. Examples are shown in Fig. 1.

Solution methods for uniform periodic structures are inherently simpler than for the non-
uniform case. Consequently, distributed attachments to periodically repeating elements have often
been modelled as if they occur discretely at the periodic element boundaries, rather than in a
manner that represents the true attachment length [2–5]. This may be a reasonable idealization
when the attached length is short relative to the periodic length and when structural wavelengths
are much greater than the attached length. However, if these conditions are not met, such models
may be inadequate.

Valuable contributions to the study of periodic structures were made by Mead [1,2,6–9], who
was responsible for many advances and insights in this field. In particular, Mead [1] presented the
foundation for modelling waves of a general type, not being restricted to uncoupled flexural or
longitudinal waves as in previous studies. Mead’s method also allowed the periodic elements to be
of a non-uniform nature and suggested the suitability of the finite element method as a means of
furthering the study of wave propagation in such systems.

Tassilly [10] used a very elegant, classical periodic structure method to explore the behaviour of
free flexural waves in a beam with periodically varying mechanical properties. He derived the
dispersion relation between wavenumber and frequency for a class of non-uniform periodic
elements. Although his model did consider the length of the distributed non-uniformity, the
classical beam model that he used did not permit cross-sectional deformation. He also did not
provide a means of calculating the forced response of the beam.

Thompson [11] built on the periodic structure theory developed by Mead and used the finite
element technique to exploit its advantages. The subject of Thompson’s model was a railway
track, a common one-dimensional periodic structure. Thompson assumed that the rails act
independently and that they are continuously supported. Because of these assumptions he was
able to use an arbitrarily short length of rail, a single finite element in length, as the periodic
element. This method was extremely efficient as a 10 mm length of rail was able to be used to
model a rail that was in fact infinitely long. The periodic element contained no interior
coordinates as it was not necessary to account for non-uniformity within the repeating structural
element. Elimination of the interior coordinates greatly simplified the numerical problem and
using the finite element method, the rail cross-sectional deformation was able to be included for
the first time. However, because of the continuous support assumption, the fact that rails are
periodically supported by the sleepers was not able to be considered.
Uniform Periodic Structure Non-Uniform Periodic Structure 

Fig. 1. A comparison of uniform and non-uniform periodic structures.
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Gavric [12] used the concepts of cross-section modes and finite elements to calculate the
dispersion relation for an infinite, free UIC60 rail. Cross-sectional deformation was represented,
but he considered only an infinite uniform structure and did not include a means of calculating the
forced response of the rail.

Gry and Gontier [3,4] were also concerned with rail vibrations at acoustic frequencies. They
incorporated the important advance made by Thompson, using a finite element approach to
include cross-sectional deformation, but they also sought to include the influence of the periodic
rail supports. They claimed that problems exist with Mead’s periodic structure theory when
including internal coordinates. It seems that the presence of evanescent waves with high vibration
decay rates may cause the equations of motion to become ill-conditioned and that in the general
case the method fails. Gry [3] concluded that there are unsolvable numerical difficulties in the
coupling coordinates eigenvalue calculation for all but the most trivial applications of the
generalized one-dimensional periodic structure theory.

Having rejected using the periodic structure theory due to numerical problems, Gry [3]
proposed an alternative method using transfer matrices and a waveshape basis generated at a
single frequency for the infinite rail. He then used this reduced set of coordinates at higher
frequencies, eliminating the shapes responsible for the ill-conditioning and attaching the support
impedances at discrete points. In a later paper, Gry and Gontier [4] further developed the method
using cross-section modes from a finite element model in concert with transfer matrices and
Fourier series to avert the need for longitudinal discretization of the rail. Still, no account was
made for the distributed nature of the periodic attachment, in this case the rail support.

The method presented in this paper allows analysis of generalized, non-uniform, one-
dimensional periodic structures. The length associated with any non-uniformity is fully accounted
for and since the finite element method is used, the periodic element may take any form, not being
restricted to simple beam models as in the case of classical methods. Complex cross-sectional
deformation of beams is therefore permitted. The advantages of this method lie in greater
generality and potentially greater accuracy relative to previously reported methods. There is also a
significant advantage in terms of computational effort compared with simply implementing a
classical periodic structure approach using the finite element method.

Remington [13] has shown that an important quantity in predicting wheel–rail noise due to the
rolling of wheels along a railway track is the point receptance of the rail, particularly in the
vertical direction and one objective of this paper is to calculate this receptance.
2. Modelling approach

In this paper the freely vibrating waveshapes, propagation constants and driving point
receptance are determined for an infinite, one-dimensional, periodic structure, the periodic
elements being non-uniform along their length. The approach is first illustrated using a symmetric,
non-uniform periodic element consisting of three uniform sub-structures to represent the infinite
periodic structure. A new technique which combines the finite element method, periodic structure
theory and substructuring using waveshape coordinates is employed. The approach is then
applied to a more complicated system, the periodically supported UIC60 rail studied by Gry [3].
The computed receptances are compared with the measured receptance data that he presented.
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2.1. Calculation of waveshapes and propagation constants

The first stage in determining the dynamic response of an infinite periodic structure using
periodic structure theory is to find the freely vibrating waveshapes and propagation constants for
a single periodic element. The waveshapes and propagation constants can then be used in concert
with a forcing vector to determine the forced response of the infinite structure.

The key steps in formulating a non-uniform periodic structure problem to find the waveshapes
and propagation constants using the approach of Mead [1] are described below.

Each periodic element may be described in terms of the coordinates interior to the element and
those at the element boundaries, called the coupling coordinates. Fig. 2 shows, in schematic form, the
distinction between different types of coordinates in the non-uniform periodic structure problem.

The displacements and exterior forces at the boundaries of a periodic element are related by a
complex propagation constant m such that:

fqgr ¼ emfqgl and fFgr ¼ �emfFgl. (1)

The real part of m is associated with the decay of a wave between corresponding points on adjacent
periodic elements while the imaginary component describes the phase difference between those points.

For an infinite periodic structure there exists a set of characteristic freely vibrating waveshapes
C½ �; which are analogous to the normal modes of vibration in a finite structure. These waveshapes
are the unscaled displacement vectors which may be used as a basis to describe the forced response
of the periodic structure. The waveshapes involve both cross-sectional deformation and
displacements along the infinite axis.

Harmonic motion of a non-uniform periodic element may be described by Eq. (2), which is
partitioned so as to identify the left and right coupling coordinates and the interior coordinates as
shown in Fig. 2. In the absence of externally applied loads there are no forces applied to the
interior of the element and so the interior coordinate force, Fi; is zero.
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Fig. 2. Schematic diagram showing periodic element coordinates.
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The [D] matrix is the dynamic stiffness matrix for the periodic element and is formed from the
mass and stiffness matrices such that D½ � ¼ K½ � � o2 M½ �:

The waveshapes and propagation constants for a periodic element may be found by
formulating and solving the coupling coordinates eigenvalue problem for the periodic element
by substituting the boundary conditions from Eq. (1) into Eq. (2). In doing this, the coordinates at
the right-hand boundary of the periodic element are eliminated to produce Eq. (3):
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In the first instance this results in an eigenvalue problem in terms of o2: Rearrangement of the
problem to make em the eigenvalue for known frequency values o0 results in the quadratic
eigenvalue problem of Eq. (4) as given by Mead [1],
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In fact, Eq. (4) can be reduced to a simpler form without significant loss of generality where there
is more than one cross-section of interior coordinates. This case is very common when using the
finite element method and results in the Dlr½ � and Drl½ � partitions being null matrices. After a little
manipulation Eq. (4) is reduced to the first-order generalized eigenvalue problem ð½A� þ l½B�Þq ¼ 0
shown in Eq. (5),
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The solution of Eq. (5) produces vectors of generally complex waveshapes, C½ �; and the
eigenvalues, em; from which the complex propagation constants may be found.

Eq. (5) is far simpler than Eq. (4), but the matrices have the same shortcomings as in the earlier
formulation. Finding a solution to Eq. (5) is problematic as the matrices are non-symmetric, non-
positive definite and subject to singularities. This does not necessarily mean that the solution to
the eigenvalue equation is singular or ill-conditioned [14, p. 274], but in order to solve an
eigenvalue problem of this type an extremely robust algorithm is required. The QZ algorithm
[15,16] is capable of dealing with the generalized eigenvalue problem where the A½ � and/or B½ �

matrices are singular and would seem to be the only way to satisfactorily overcome the numerical
difficulties inherent in the present problem.

Unfortunately, the solution to the generalized eigenvalue problem using the QZ algorithm is
computationally intensive. The QZ algorithm involves transforming the A½ � and B½ � matrices to an
upper-triangular form, a process for which the solution time is proportional to the cube of the
number of degrees of freedom (dof) in the problem.

Mead’s method is general and can, in principle, be applied to any periodic structure, for
example, a periodically supported rail. However, in the authors’ experience the finite element
implementation of the method often results in excessive computational cost and there are
problems associated with ill-conditioned matrices.
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One method of reducing the solution time for the periodic structure model of a beam is to
reduce the number of beam cross-sectional coordinates. Instead of reducing the number of
physical coordinates, it should be possible, at least in principle, to utilize knowledge of the cross-
sectional waveshapes of the beam to formulate the problem using a smaller number of waveshape
coordinates. This basic principle has previously been applied by Gry and Gontier [4] for a uniform
structure using transfer matrices and by Gavric [12] using a finite element approach. The study
described here is the first instance that the authors are aware of that such a method has been
applied directly to the dynamic stiffness matrix for a non-uniform periodic element. It is also the
first time that such an approach has been used to divide a one-dimensional periodic element into
uniform substructures along the periodic length.
2.2. Substructuring using waveshape coordinate reduction

The basis of the method presented in this paper, substructuring using waveshape coordinate
reduction, is to divide the non-uniform periodic structure into a number of uniform substructures
along the periodic axis and to reduce the number of coordinates in each substructure. The
dynamic stiffness matrix for the non-uniform periodic element is then reassembled from the
reduced substructure matrices. The coupling coordinates eigenvalue problem may then be
evaluated to produce the propagation constants and waveshapes for the infinite, non-uniform
periodic structure. A diagram showing the framework of the waveshape coordinate reduction
solution scheme is presented in Fig. 3. Note that although the periodic element shown in Fig. 3 is
symmetric, no assumption of element symmetry is made in formulating the waveshape coordinate
reduction method.

Using the methodology shown in Fig. 3, the coupling coordinates eigenvalue problem is first
formulated for a short slice model of each substructure. Since each of the substructures is uniform,
the eigenvalue problems need not refer to any interior coordinates. Slice models that are a single
finite element long may be used as demonstrated by Thompson [11].

The derivation of the eigenvalue problem for the uniform substructures is the same as
previously outlined for the generalized method except without the interior coordinates. The
standard equation of harmonic motion for a uniform periodic element with periodic boundary
conditions is given in Eq. (6),
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The coupling coordinates eigenvalue problem for the uniform periodic structure as developed by
Thompson [11] is shown in Eq. (7),
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The solution of Eq. (7) may be carried out swiftly owing to the relatively small number of
coordinates involved and the resultant eigenvectors and eigenvalues can be used to reduce the
coordinate set for each of the substructures.
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Fig. 3. Framework for coordinate reduction solution scheme.
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The second stage of the waveshape coordinate reduction scheme shown in Fig. 3 is to reduce the
number of coordinates for each of the substructure cross-sections. For free vibrations it is clear
that a reduced modal basis may be substituted for the physical coordinate system, resulting in
multiplication of the dynamic stiffness matrix as a whole,

q
� �

¼ C½ � Af g. (8)

{A} contains the generalized coordinates and C½ � is the matrix of waveshapes for a complete
periodic element.

The waveshape matrix for the complete periodic element, C½ �; contains not only cross-sectional
deformation, but the pattern of structural displacements along the periodic axis. Instead of using
a conventional modal substitution, the part of the waveshape that describes the cross-sectional
deformation for each uniform substructure, [C]x-sect., can be used to reduce the number of
coordinates on individual structural cross-sections.

After solving the periodic structure problem for a slice of each substructure, one element in
length and bounded by two nodal cross-sections, waveshape cross-sectional coordinates are



ARTICLE IN PRESS

G.P. Brown, K.P. Byrne / Journal of Sound and Vibration 287 (2005) 505–523512
substituted for the physical coordinate q
� �

on each nodal cross-section of the full model:

q
� �

x-sect:
¼ C½ �x-sect: Af g. (9)

A reduced cross-sectional waveshape basis is used in Eq. (9). The significant waveshapes to be
included in the coordinate substitution may be determined according to their contribution to the
driving point receptance of the substructure or simply on the basis of their wavenumber, those
with the shortest wavelengths and/or highest vibration decay rates being eliminated from further
calculations.

Having established the significant cross-sectional waveshapes for each substructure, the
dynamic stiffness matrix [D], for each substructure is partitioned according to the number of
physical coordinates on each of the structure cross-sections as shown in Eq. (10).
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The individual [D] matrix partitions are then pre- and post-multiplied by the appropriate subset of
waveshape vectors. This has the effect of reducing the number of coordinates on each cross-
section of the periodic structure to the number of significant waveshapes. The coordinates
belonging to cross-sections at the junctions of the substructures are treated differently to other
cross-sectional coordinates. This matter is documented later in the paper.

The reduced dynamic stiffness partitions are generated by a series of matrix multiplications of
the form shown in Eq. (11), where the waveshape matrix, C½ �x-sect: is the matrix of cross-sectional
shapes from the corresponding uniform substructure,

DSij

� �
reduced

C½ �Tx-sect: DSij

� �
C½ �x-sect:. (11)
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Only the waveshapes belonging to the waves on one of the two axes (either the positive or the
negative-going waves) are used in the coordinate reduction.

Once the dynamic stiffness matrices for the substructures have been reduced in dimension using
the assumed waveshapes, the periodic element dynamic stiffness matrix is formed by assembling
the sub-matrices. The matrix assembly step involves bringing the sets of substructure matrices into
a common coordinate system at the junctions of the substructures and ensuring compatibility of
forces and displacements at substructure boundaries.

The problem of how to assemble the reduced cross-section substructures is more easily solved
than might first be envisaged. The set of physical coordinates at the junction of two substructures
provides a common reference system and it is convenient to let the junction coordinates continue
to be described in the physical domain. In so doing, the influence of each substructure on the
junction dof can be defined by appropriate pre- and/or post-multiplication of the cross-coupling
terms in the dynamic stiffness matrix by waveshapes of the corresponding substructure. The
special treatment of the matrix partitions surrounding junction cross-sections is shown in Eq. (12).
The penalty incurred by not reducing the dof at the junction partitions is likely to be acceptable
for periodic elements that have many longitudinal discretizations and few junction cross-sections.

Compatibility of displacements and forces at the junction between the two substructures is
automatically satisfied as the terms in the original finite-element-based dynamic stiffness matrix
are unaltered at the junction

(12)
2.3. Driving point receptance calculation
In order to calculate the driving point receptance for an infinite beam, it is necessary to sort the
waveshapes obtained by solving the eigenvalue problem in the previous section into a positive-
going wave group and a negative-going wave group. It is therefore of interest to consider the
junction of two periodic elements located at the origin as shown in Fig. 4, with the left and right
hand side of each element marked LHS and RHS, respectively.

The contributions of the individual waveshapes can be summed to obtain the receptance for a
driving point located at the origin as follows:

qj 0ð Þ ¼
XN

n¼1

AnCjn, (13)

An is a vector of participation factors or generalized coordinates.
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The process of finding the point receptance is achieved by multiplying each unscaled waveshape
by the relevant stiffness influence coefficient matrix to determine the relative force contribution of
each waveshape displacement. The relative contributions are then scaled such that the total force
is unity and the scaled displacement contributions are summed to give the total dynamic
displacement for the given force vector.

In order to relate the calculated receptances to the original physical coordinate system it is
necessary to transform the response by premultiplying by the slice waveshape matrix as
determined in the substructure coordinate reduction. It is also necessary to present the force in the
appropriate substructure waveshape coordinate system.

The calculation of the receptance for an infinite, uniform beam using periodic structure theory
was described by Thompson [11]. The equations are easily modified to include the interior
coordinates. Beginning with the partitioned equations of motion for a single periodic element and
making the generalized coordinate substitution given in Eq. (13) leads to expressions for the forces
at the left hand end of the positive beam and the right hand end of the negative beam:
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The total force Ff g acting at the boundary of the negative and positive axes is the sum of the two
forces given in Eqs. (15) and (16) and so:

Ff g ¼ Flf gþ þ Frf g�. (17)

Thompson [11] used a standard matrix inversion routine to find the values of Af g for a unit force
input involving both the positive- and negative-going waves in the calculation. With the interior
coordinates the generalized coordinate, Af g; can be found from Eq. (18):

Af g ¼
Dll½ � Cþ

l

� �
þ Dli½ � Cþ

i

� �
þ Dlr½ � Cþ

r

� �
þ Drl½ � C�

l

� �
C�

r

� ��1 Cþ
l

� �
þ Dri½ � C�

i

� �
C�

r

� ��1 Cþ
l

� �
þ Drr½ � Cþ

l

� �
0
@

1
A

�1

Ff g. (18)



ARTICLE IN PRESS

G.P. Brown, K.P. Byrne / Journal of Sound and Vibration 287 (2005) 505–523 515
The potential for ill-conditioned eigenvalues to be produced in the eigenvalue calculation has to
be acknowledged and means that some of the available solutions will, in general, need to be
excluded from the receptance calculation. In practice, this means truncating the waveshape basis
described in Eq. (13) to include only the well determined eigenvalues. An assessment of eigenvalue
quality can be made by reviewing the waveshapes involved to ensure that the finite element mesh
is sufficiently refined to represent them and checking that the positive-going eigenvalues are
indeed the inverse of the negative-going eigenvalues. This relationship tends to breakdown as the
eigenvalues become inaccurate due to a loss of numerical significance.

One limitation of the method shown here is that the receptance cannot be correctly calculated in
situations where motion at significant dof is completely eliminated by the periodic attachments.
An example of this situation is a beam on perfectly rigid periodic supports. In such cases there are
waves that exist within the periodic element that is subject to the external forcing function that
cannot be sensed beyond the periodic boundaries. The form of these waves cannot be determined
from the coupling coordinates eigenvalue problem [9]. Fortunately, this situation is not a problem
in many applications and in the case of the rigid periodic supports, may be overcome by replacing
the rigid support with a stiff spring.
3. Application of the model

3.1. The point receptance of an infinite beam of non-uniform cross-section

The method of substructuring using waveshape coordinate reduction for periodic structures is
first demonstrated using a simple system, an infinite free beam with periodically attached
stiffening in the form of a deeper beam cross-section. Initially, the propagation constants will be
found for the structure using Mead’s [1] generalized periodic structure theory and then driving
point receptances will be calculated for a point on the beam using both the full and reduced
periodic element formulation.

Fig. 5 shows the segment of the infinite beam model that constitutes the periodically repeating
element in this example. The division of the periodic element into substructures is indicated in the
figure and the slice models that will be used to obtain substructure waveshapes are also shown.
The parameters relating to the model are shown in Table 1.

Two-dimensional membrane elements having two translational dof at each node have been used
to represent the structure. The unstiffened beam cross-section has four physical coordinates, while
a cross-section taken through the stiffened substructure has six physical coordinates. The object of
this exercise is to show that the number of coordinates can be reduced from four to three on
substructure 1 and from six to four on substructure 2 without significant loss of accuracy of the
calculated driving point receptance.

The propagation constants for waves on the positive axis for the complete periodic structure
model are plotted in Fig. 6. From Fig. 6 it is apparent that there are several attenuation zones
between 100 Hz and 5 kHz due to the presence of the periodically attached stiffeners. These are
indicated by frequency ranges where the phase is zero or �p and the attenuation constant takes on
a positive value. There are two independent propagating waves as evidenced by the phase
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Fig. 5. The periodic element for an infinite beam of non-uniform cross-section.

Table 1

Non-uniform beam model parameters

Periodic length (mm) 350

Element length (mm) 25

E (Pa) 2.1� 1011

n 0.29

r (kg/m3) 8720

Z 0.0005

Beam cross-section dimensions

Substructure 1 (mm) 20� 20

Substructure 2 (mm) 20� 40

G.P. Brown, K.P. Byrne / Journal of Sound and Vibration 287 (2005) 505–523516
component of the graph and two evanescent or decaying waves indicated in the top segment of the
figure.

The driving point receptance for a vertical force located at the point indicated in Fig. 5 is given
in Fig. 7 for both the complete and reduced periodic structure models. Fig. 7 shows that the full
generalized periodic structure model and the reduced periodic structure model produce near
identical driving point receptances for the infinite beam of non-uniform cross-section.

3.2. The point receptance of an infinte periodically supported UIC60 rail

The potency of the coordinate reduction scheme illustrated in the previous trivial example is
now demonstrated by applying it to a periodically supported heavy rail. Calculated and
experimental results for the driving point receptance at the mid-span of a French TGV railway
track were published by Gry [3]. These results are for an infinite UIC60 rail supported by resilient
rail pads, bibloc sleepers and ballast. This model represents a significant increase in complexity
over the case presented in Section 3.1 as a double layer foundation model is required to
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Fig. 6. Propagation constants for positive-going waves on a non-uniform infinite beam.
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characterize the rail support condition. Fig. 8 shows the approximate dimensions of the UIC60
rail section. The properties for the rail, ballast, bibloc sleepers and rail pads as determined by Gry
[3] are given in Table 2.

Fig. 9 shows the model of the periodically repeating structure. The rail is modelled by eight-
noded linear brick and six-noded wedge elements. The rail pad, sleeper and the ballast are
represented as a series of springs and lumped masses. On each supported cross-section the rail pad
is represented by three damped translational springs, each with three dof. The base of the rail pad
is rigidly connected to the sleeper, which is modelled as an inertial element at the centroid of the
sleeper cross-section. The ballast is modelled by a damped six dof spring at the centroid of the
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Fig. 8. UIC60 rail dimensions (mm).

Table 2

UIC60 rail model parameters [3]

Rail E (Pa) r (kg/m3) n
2.1� 1011 7850 0.3

Lateral Vertical Longitudinal

Pad Ktrans. (N/m) 2.5� 108 8.5� 108 5.0� 108

Z 0.2 0.2 0.2

1/2 Sleeper (m ¼ 122 kg) Ia (kg m2) 0.64 1.32 1.14

Ballast Ktrans. (N/m) 3.0� 108 2.5� 108 9.5� 108

Z 0.4 0.4 0.2

Krot. (N/rad) 2.0� 108 2.5� 108 2.0� 108

Z 0.8 0.8 0.8

aSleeper inertia relative to axes passing through the 1/2 sleeper centroid.
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sleeper cross-section. The lumped masses and springs that support the rail at each cross-section
have been modelled in a manner consistent with that of Thompson [17] and are independent of
foundation elements from adjoining cross-sections. This is a simplifying assumption, preventing
wave propagation through the sleeper model.
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Fig. 9. A periodic structure model of a periodically supported UIC60 rail.

Fig. 10. Substructure models for the periodically supported UIC60 rail.
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Substructuring using waveshape coordinate reduction was used to find the receptances for the
periodically supported UIC60 rail. The symmetric periodically repeating element was divided into
three substructures, a rail segment supported by a distributed sleeper and ballast bounded by two
identical unsupported rail segments. The division of the periodic element into substructures is
indicated in Fig. 10. The details of the slice models belonging to each substructure are shown in
Fig. 11. Substructures 1 and 3 each have 330 coupling coordinates, while substructure 2 has 360
coupling coordinates. A total of only 20 waveshapes were used in the reduced substructure models
and in subsequent receptance calculations.
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Fig. 11. Substructure slice models for a UIC60 rail.
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Fig. 12. A comparison of calculated and measured vertical receptances for an infinite periodically supported UIC60

rail: —, measured (Gry); - - - , modelled.
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The vertical and lateral driving point receptances were calculated for a point at the top
of the rail section at the mid-span of the rail between sleepers to match the data published by Gry
[3]. Figs. 12 and 13 show a good correspondence between the calculated and measured receptances
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Fig. 13. A comparison of calculated and measured lateral receptances for an infinite periodically supported UIC60 rail:

—, measured (Gry); - - - , modelled.
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for the infinite periodically supported UIC60 rail for the vertical and lateral directions,
respectively.

The example of the UIC60 rail serves to illustrate the potential of the new method to reduce
solution times. The advantage over solving the full finite element model of the periodic structure in
physical coordinates for the infinite rail with periodic attachments is great. Prior to coordinate
reduction using waveshapes, each cross-section of the UIC60 rail model, shown in Fig. 9, had over
300 dof. This number was reduced to 20 on all but the two junction sections using substructuring by
waveshape coordinate reduction. The total number of coordinates in the model, including junction
coordinates, was reduced from 14,640 to 1540—a reduction by a factor of approximately 10.

Since the QZ method is required to produce reliable solutions to the eigenvalue problem
associated with periodic structures and the solution time is proportional to the cube of the number
of coordinates, the effect of a 10-fold coordinate reduction in the present case is a reduction in
solution time by a factor of about 1000 in comparison to directly implementing Mead’s general
theory of harmonic wave propagation for periodic structures [1].
4. Conclusions

In this paper a new method has been presented that facilitates the analysis of infinite, non-
uniform periodic structures. The method is particularly beneficial in considering structures that
have distributed attachments or supports for which no practicable generalized model previously
existed.

The results of two test cases have been presented comparing the accuracy of the new method,
the method of substructuring using waveshape coordinates, to the method of Mead [1] and to the
published experimental data of Gry [3]. There is good agreement between the point receptance
calculated using the new method and the application of Mead’s theory using finite elements for a
simple problem. Similarly, there is good agreement between the results predicted using the new
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method and published experimental data for the receptance of a TGV railway track. Together
these results show that the numerical limitations of the coupling coordinates eigenvalue
calculation found by Gry [3] can be overcome and that Mead’s method can be used as a
foundation for the accurate calculation of receptances for infinite, non-uniform periodic
structures.

Substructuring using waveshape coordinates improves the efficiency of the method of periodic
structures for calculating the point receptance of infinite, one-dimensional structures comprising
non-uniform periodically repeating elements. An improvement in computational efficiency of a
factor of approximately 1000 in comparison to a finite element implementation of Mead’s method
for general one-dimensional periodic structures has been demonstrated for a problem of practical
significance.

Substantial improvements in efficiency together with demonstrated high levels of accuracy
mean that the new approach can be used to predict the driving point receptance of a general, non-
uniform periodic structure made up of an infinite, uniform, one-dimensional structure with
periodically distributed attachments.
Acknowledgement

The authors are grateful to Dr. Arthur Bishop, founder of Bishop Austrans for his generous
support of this research.
References

[1] D.J. Mead, A general theory of harmonic wave propagation in linear periodic systems with multiple coupling,

Journal of Sound and Vibration 27 (1973) 235–260.

[2] D.J. Mead, Free wave propagation in periodically supported infinite beams, Journal of Sound and Vibration 11

(1970) 181–197.

[3] L. Gry, Dynamic modelling of railway track based on wave propagation, Journal of Sound and Vibration 195

(1996) 477–505.

[4] L. Gry, C. Gontier, Dynamic modelling of railway track: a periodic model based on a generalised beam

formulation, Journal of Sound and Vibration 199 (1997) 531–558.

[5] M.L. Munjal, M. Heckl, Vibrations of a periodic rail-sleeper system excited by an oscillating stationary transverse

force, Journal of Sound and Vibration 81 (1982) 491–500.

[6] D.J. Mead, A new method of analysing wave propagation in periodic structures: applications to periodic

Timoshenko beams and stiffened plates, Journal of Sound and Vibration 104 (1986) 9–27.

[7] D.J. Mead, Wave propagation and natural modes in periodic systems: I mono-coupled systems, Journal of Sound

and Vibration 40 (1975) 1–18.

[8] D.J. Mead, Wave propagation and natural modes in periodic systems: II multi-coupled systems with and without

damping, Journal of Sound and Vibration 40 (1975) 19–39.

[9] D.J. Mead, Y. Yaman, The response of infinite periodic beams to point harmonic forces: a flexural wave analysis,

Journal of Sound and Vibration 144 (1991) 507–530.

[10] E. Tassilly, Propagation of bending waves in a periodic beam, International Journal of Engineering Science 25

(1987) 85–95.

[11] D.J. Thompson, Wheel–rail noise generation, part III: rail vibration, Journal of Sound and Vibration 161 (1993)

421–426.



ARTICLE IN PRESS

G.P. Brown, K.P. Byrne / Journal of Sound and Vibration 287 (2005) 505–523 523
[12] L. Gavric, Computation of propagative waves in free rail using a finite element technique, Journal of Sound and

Vibration 185 (1995) 531–543.

[13] P.J. Remington, Wheel/rail rolling noise, I: theoretical analysis, Journal of the Acoustical Society of America 81

(1987) 1805–1823.

[14] G.W. Stewart, J. Sun, Matrix Perturbation Theory, Academic Press, San Diego, 1990.

[15] C.B. Moler, G.W. Stewart, An algorithm for generalised matrix eigenvalue problems, SIAM Journal of Numerical

Analysis 10 (1973) 241–256.

[16] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, D. Sorensen, 1999. LAPACK User’s Guide, third ed. SIAM, Philadelphia, http://

www.netlib.org/lapack/lug/lapack_lug.html.

[17] D.J. Thompson, Wheel–Rail Noise: Theoretical Modelling of the Generation of Vibrations, Doctorial Thesis,

University of Southampton, 1990.

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.netlib.org/lapack/lug/lapack_lug.html

	Determining the response of infinite, one-dimensional, QJnon-uniform periodic structures by substructuring using waveshape coordinates
	Introduction
	Modelling approach
	Calculation of waveshapes and propagation constants
	Substructuring using waveshape coordinate reduction
	Driving point receptance calculation

	Application of the model
	The point receptance of an infinite beam of non-uniform cross-section
	The point receptance of an infinte periodically supported UIC60 rail

	Conclusions
	Acknowledgement
	References


