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Abstract

In this paper, the coupled flexural–torsional free and forced vibrations of a beam with tip and/or in-span
attachments are studied. First, a mathematical model is established, which consists of a beam with several
tip attachments, i.e, a tip mass of non-negligible dimensions, a linear spring grounding the tip mass, and a
torsional spring connected at the end of the beam. The modal functions of this model and the orthogonality
condition among them are derived. For the purpose of verification the properties of the tip attachments are
changed, and the numerical results obtained are compared with those given in the relevant literature.
Effects of tip mass and distributed mass in-span on natural frequencies and modes are investigated for two
cantilever beams with different cross sections. An application of the orthogonality condition in the case of a
beam with tip mass is also presented for a forced vibration example.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of beams with attachments has been investigated by many authors owing
to increased applications for such structures. In this context, Abromovich and Hamburger [1]
studied how the frequencies of a system that may be considered as a flexible robot arm vary with
respect to some characteristic properties of beam and attachments. The system in that work
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

Â eigenvalues matrix
B̄ the domain occupied by the tip mass
Ĉ column matrix of modal amplitude

coefficients
c shear center offset
EIz;GJ ;EG bending, torsional and warping

rigidities of beam, respectively
Fa;Fb;Fc;F d four right-handed coordinate

frames with the unit vectors ai; bi; ci; di;
respectively (see Fig. 2)

Ḡ gravitational center of the tip mass
Ic mass moment of inertia of the cross

section per unit length with respect to
the centroidal axis

Is mass moment of inertia of the cross
section per unit length with respect to
the shear center axis (Is ¼ Ic þ mc2)

Iz the second moment of area about z-axis
I x̄x̄; I z̄z̄; I x̄z̄ components of the inertia tensor

about the center of gravity of the tip
mass

Î z̄z̄; Î x̄x̄; Î x̄z̄ components of the inertia tensor
about the end of the beam (point S in
Fig. 1)

kL stiffness of the linear spring attached to
the tip mass

kT stiffness of the torsional spring attached
to the end of the beam

KT stiffness matrix
L beam length
MT mass matrix
M tip mass amount
m beam mass per unit length
O the root point of the beam (the origin of

the frame Fa)
P location point of a differential tip mass

element
Q column matrix of generalized forces
q
_ generalized coordinates in the case of

forced vibration

q̂ generalized coordinates in the case of
free vibration

rP displacement vector of a differential tip
mass element located at point P

S the end point of the elastic axis of beam
T overall kinetic energy of the beam with

attachments
t time parameter
U overall potential energy of the beam

with attachments
V ðxÞ modal amplitude functions related to

bending deformation
V column matrix including modal ampli-

tude functions V ðxÞ

wðx; tÞ deflection function of beam
wL deflection at the beam end with tip mass

(wL ¼ wðL; tÞ)
x spatial coordinate parameter
Y attachment point of the linear spring to

the tip mass
a slope angle at the end with tip mass of

beam ða ¼ wxðL; tÞÞ
b torsion angle at the end with tip mass of

beam (b ¼ cðL; tÞ)
cðx; tÞ torsional deformation function of beam
cL torsional deformation at the end with

tip mass of beam (cL ¼ cðL; tÞ)
DY displacement vector of the point Y (Fig.

1) along the y-axis
o frequency parameter of the system

without distributed mass
$ frequency parameter of the system

including distributed mass
h column matrix including modal ampli-

tude functions yðxÞ
yðxÞ modal amplitude functions related to

torsional deformation
‘‘�’’ derivative with respect to time t

‘‘0’’ derivative with respect to spatial co-
ordinate x

H. Gökdağ, O. Kopmaz / Journal of Sound and Vibration 287 (2005) 591–610592
consists of a cantilever Timoshenko beam with uniform cross section, translational and rotational
springs attached in-span, and a tip mass of considerable dimensions. A similar system was
examined by Gürgöze [2]. The system in Ref. [2] is a cantilever beam with a concentrated tip mass
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Fig. 1. The system consisting of an Euler–Bernoulli beam with tip mass and springs.
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to which another discrete spring–mass system is attached. Gürgöze derived the frequency
equation of the system by using the assumed modes method in conjunction with the Lagrange
multipliers method, and also obtained the frequency equation of some subsystems by limiting
procedure. In Refs. [3,4], attachment effects are considered from different points of view by means
of various solution procedures. In a recent paper [5], Oguamanam investigated a cantilever beam
with a rigid tip mass, whose center of gravity is not coincident with the attachment point. Due to
the existence of an out-of-plane payload, the beam studied in Ref. [5] experiences torsional
deformation along with a planar elastic bending deformation. The effects of some attachment
parameters such as the amount and the moment of inertia of the tip mass on the fundamental
frequency of the system are examined via corresponding non-dimensional terms. In the papers
cited so far, the models are based on the assumption that the beam under study has double
symmetry axes; hence, the centroidal axis and the shear center axis of the beam are coincident.
However, beams for which these two axes are different are used in certain engineering structures.
For instance, an airplane wing with engines requires a different beam model from those
considered in the above works. Similarly, a flexible robot arm of monosymmetric cross section
needs to be modeled as a beam undergoing coupled bending and torsional deformations if it does
not vibrate in the plane of symmetry. For this reason, some representative examples of the works
which deal with the beams having monosymmetric cross sections will also be mentioned below.
Beams with a single axis of symmetry perform coupled flexural–torsional vibrations due to the

separation of centroidal and shear center axis. For such a beam with uniform cross section, the
governing differential equations appear to be a pair of coupled equations with constant
coefficients. Timoshenko et al. [6] presented these equations for a beam having simply supported
ends. Ignoring the warping effect, Dokumaci [7] determined the coupled free vibration frequencies
of a cantilever beam. Later, his work was extended by Bishop et al. [8] by including the warping
effect. The latter authors demonstrated that neglecting warping term in the equations of motion
could cause misleading results. Since the torsional stiffness of a beam with open cross section is
much less than that of a beam with solid cross section of the same size, ignoring the warping term
causes a decrease in natural frequencies as indicated in Ref. [8]. Bercin and Tanaka [9] also studied
the coupled flexural and torsional vibrations of beams including warping, shear deformation and
rotatory inertia effects. The numerical results presented in Ref. [9] support the claim that these
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section effects become more significant as the thickness of the beam and the modal index increase.
In Ref. [10], Banerjee derived explicit analytical expressions giving the natural frequencies and
mode shapes of a cantilever beam performing coupled bending and torsional vibrations. In this
work, however, the warping effect is excluded. A method for the analysis of forced coupled
flexural–torsional vibrations of distributed parameter beams was presented by Adam in Ref. [11].
Eslimy-Isfahany and Banerjee [12] interpreted the mode shapes and the dynamic response of
bending–torsion coupled beams by using the concept of generalized mass. In the last two papers,
the forced vibrations of such beams are treated, as well. Hashemi and Richard [13] developed a
dynamic finite element formulation for the free vibration analysis of such beams subject to an
axial load. Taking the warping effect into account, Jun et al. [14] carried out the free vibration
analysis of an axially loaded beam with uniform open cross section by means of dynamic transfer
matrix method.
In the works concerned with bending–torsion coupled beams having a single symmetry axis, it

is observed that attachment effects are omitted. Therefore, the present paper primarily aims at
developing a general method for the analysis of free and forced vibrations of a monosymmetric
cross section beam with attachments at the tip and/or in-span. To this end, the kinetic and
potential energy expressions of the system are derived by using the Euler–Bernoulli beam theory,
including the warping of beam. Equations of motion and the associated boundary conditions are
obtained by applying Hamilton’s principle. Then, the modal amplitude functions and the
characteristic determinant giving the natural frequencies of system are found by employing the
conventional method of separation of variables. Furthermore, the orthogonality relationship
among modal functions is derived. Then, these modal amplitude functions are used as comparison
functions in the Galerkin’s discretization procedure in order to analyze the dynamic behavior of
the beam carrying a distributed mass in-span. The effects of attachments on natural frequencies
and modal shapes are examined by means of computer codes written in MATLAB environment,
and the results are presented in tables and graphics.
2. Boundary value problem formulation

The system to be studied is depicted in Fig. 1 in its undeformed state. The basic element of the
system is the beam that is of length L and has a monosymmetric uniform open cross section.
When the beam does not deflect, the x-axis represents the shear center axis of the beam. A rigid tip
mass M of finite dimensions is attached to the beam at its right end, and is grounded via a linear
spring of stiffness kL at point Y : The center of gravitation Ḡ of the tip mass need not be coincident
with that of the beam cross section at the connection plane. Furthermore, the right end of the
beam is supported by a torsional spring of stiffness kT ; while the left end (x ¼ 0) may be clamped
or simply supported.
During free vibration, a possible configuration of the system is as shown in Fig. 2. The

deformation of a differential beam element located at a distance x from the left end is defined
by lateral displacement wðx; tÞ in the y-direction and rotation cðx; tÞ about the x-axis. Similar to
Ref. [5], four orthogonal right-handed coordinate frames Fa;Fb;Fc;Fd are used in order to
describe the position vector rP of a differential element dM at a point P of the tip mass. In Fig. 2,
frame Fa with unit vectors ai ði ¼ 1; 2; 3Þ is a Newtonian (or inertial) frame which has an origin
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Fig. 3. Three orthogonal right-handed reference frames.
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fixed at point O. The origins of the frames Fb and Fc are coincident, and these origins are fixed to
point S undergoing a displacement denoted by wL ðwL ¼ wðL; tÞÞ: Relative displacement between
these frames is such that the rotation of the frame Fc about c1 unit vector is equal to the torsion
angle cL ¼ cðL; tÞ at the right end of the beam. The orientations of these frames at a time during
free vibration are also shown in Fig. 3. The fourth reference frame, Fd ; is attached to the center of
the tip mass. The unit vectors of the aforementioned frames are arranged in such a manner that a3
parallel to b3; b1 and c1 coincident, all unit vectors of frame Fc are parallel to corresponding ones
of the frame Fd ; ci � di ði ¼ 1; 2; 3Þ: The reference frames in which the coordinates of some
important points are measured are given in Table 1, and illustrated in Fig. 3. A list of symbols
used in the present study is given in the Nomenclature as well.
Kinetic and potential energy terms of the system in free vibration are derived as follows:

T ¼
1

2

Z L

0

mð _w þ c _cÞ2 dx þ

Z L

0

Ic
_c
2
dx þ

Z
B̄

ð_rPÞ
2 dM

� �
(1)

U ¼
1

2

Z L

0

EIzðw
2
xxÞdx þ

Z L

0

GJðc2xÞdx þ

Z L

0

EGðc2xxÞdx þ kLðDYÞ
2
þ kBðcLÞ

2

� �
(2)

where c is the shear center offset, the overhead dot denotes partial derivatives with respect to time
t while subscript x represents partial derivatives with respect to spatial variable x: This notation
will be used throughout the paper. Iz shows the second moment of area about the z-axis, Ic stands
for the mass moment of inertia of the cross section per unit length with respect to the centroidal
axis, m represents mass per unit length of the beam, EIz; GJ and EG are bending, torsional and
warping rigidities, respectively. The last integration in Eq. (1) is to be performed over the domain
B̄ covered by the tip mass. Assuming that the deformation of the linear spring of stiffness kL is
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Table 1

Points in Fig. 1 with the relevant reference frames

Point Related reference frame

O(0,0,0) Fa

S(L;wL; 0) Fa

Ḡðp; q; sÞ Fc

Pðp̄; q̄; sÞ Fd

Y ðx̄; ȳ; z̄Þ Fc

H. Gökdağ, O. Kopmaz / Journal of Sound and Vibration 287 (2005) 591–610596
mainly due to the displacement of the point Y along y-axis, DY in Eq. (2) represents the
component in the y-direction of the displacement vector of this point (other components are
neglected). Using Eqs. (1) and (2) to construct Hamilton’s integral

d
Z t2

t1

ðT � UÞdt ¼ 0 (3)

and implementing conventional principles of the variational calculus lead to the following
equations of motion

EIzwxxxx þ mð €w þ c €cÞ ¼ 0, (4a)

EGcxxxx � GJcxx þ mcð €w þ c €cÞ þ Ic
€c ¼ 0, (4b)

along with the following boundary conditions:
ðx ¼ 0Þ:

Free: EIzwxx ¼ 0; EIzwxxx ¼ 0; GJcx � EGcxxx ¼ 0; EGcxx ¼ 0. (5a)

Clamped: w ¼ 0; wx ¼ 0; c ¼ 0; cx ¼ 0. (5b)

Simply supported: EIzwxx ¼ 0; w ¼ 0; EGcxx ¼ 0; c ¼ 0. (5c)

ðx ¼ LÞ:

EIzwxxx � Mð €w þ €wxp þ €csÞ � kLðwxx̄ þ cz̄ þ wÞ ¼ 0, (5d)

EGcxxx � GJcx � Î x̄x̄
€c� Ms €w � €wxÎ x̄z̄ � kLðwxz̄x̄ þ cz̄2 þ wz̄Þ � kBc ¼ 0, (5e)

EIzwxx þ €wxÎ z̄z̄ þ €wpM þ €cÎ x̄z̄ þ kLðwxx̄2 þ cx̄z̄ þ wx̄Þ ¼ 0, (5f)

EGcxx ¼ 0 or cx ¼ 0, (5g)
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where

Î z̄z̄ ¼ I z̄z̄ þ Mðq2 þ p2Þ; Î x̄x̄ ¼ I x̄x̄ þ Mðs2 þ q2Þ; Î x̄z̄ ¼ I x̄z̄ þ Mps,

I x̄z̄ ¼

Z
B̄

p̄s̄dM; I z̄z̄ ¼

Z
B̄

ðq̄2 þ p̄2ÞdM; I x̄x̄ ¼

Z
B̄

ðq̄2 þ s̄2ÞdM. (6)

I x̄x̄; I z̄z̄ and I x̄z̄ in Eq. (6) are components of the inertia tensor about the center of gravity of the tip
mass, while Î z̄z̄; Î x̄x̄ and Î x̄z̄ represent the components of the inertia tensor about point S in Fig. 2
(for details, see Appendix A). Theoretically, the first of Eq. (5g) means that the tip mass can be
mounted to the beam in the manner that warping occurs, whilst the second of Eq. (5g) represents
the case in which no warping is possible. In the present study, the first of Eq. (5g) will be taken
into account unless the tip mass exists.
Different from Ref. [5], where coupling between bending and torsion occurs only via the

boundary conditions at the beam end with tip mass, there is also coupling in the equations of
motion for the system studied in the present work.
Assuming harmonic motion with frequency o; the solutions of the equations of motion are of

the following form

wðx; tÞ ¼ V ðxÞejot; cðx; tÞ ¼ yðxÞejot; j ¼
ffiffiffiffiffiffiffi
�1

p
, (7)

where V ðxÞ and yðxÞ are amplitude functions of wðx; tÞ and cðx; tÞ; respectively. Substituting Eq.
(7) into Eqs. (4) and (5) yields

EIzV
0000 � o2mðV þ cyÞ ¼ 0, (8a)

EGy0000 � GJy00 � o2mcðV þ cyÞ � o2Icy ¼ 0, (8b)

EIzV
00ð0Þ ¼ 0; EIzV

000ð0Þ ¼ 0; GJy0ð0Þ � EGy000ð0Þ ¼ 0; EGy00ð0Þ ¼ 0, (9a)

V ð0Þ ¼ 0; V 0ð0Þ ¼ 0; yð0Þ ¼ 0; y0ð0Þ ¼ 0, (9b)

EIzV
00ð0Þ ¼ 0; V ð0Þ ¼ 0; EGy00ð0Þ ¼ 0; yð0Þ ¼ 0, (9c)

EIzV
000ðLÞ þ Mo2 V ðLÞ þ V 0ðLÞp þ yðLÞsð Þ � kL V 0ðLÞx̄ þ yðLÞz̄ þ V ðLÞð Þ ¼ 0, (9d)

EGy000ðLÞ � GJy0ðLÞ þ o2ðÎ x̄x̄yðLÞ þ MsV ðLÞ þ V 0ðLÞÎ x̄z̄Þ

� kLðV
0ðLÞz̄x̄ þ yðLÞz̄2 þ V ðLÞz̄Þ � kByðLÞ ¼ 0, ð9eÞ

EIzV
00ðLÞ � o2ðV 0ðLÞÎ z̄z̄ þ V ðLÞpM þ yðLÞÎ x̄z̄Þ

þ kLðV
0ðLÞx̄2 þ yðLÞx̄z̄ þ V ðLÞx̄Þ ¼ 0, ð9fÞ

y00ðLÞ ¼ 0 or y0ðLÞ ¼ 0, (9g)

where primes denote derivatives with respect to spatial coordinate x: Implementing the same
method presented in Ref. [14] to solve Eqs. (8a) and (8b), amplitude functions V ðxÞ and yðxÞ can
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be found as

V ðxÞ ¼ Ĉ1 cos a1x þ Ĉ2 sin a1x þ Ĉ3 cos a2x þ Ĉ4 sin a2x

þ Ĉ5 cosh a3x þ Ĉ6 sinh a3x þ Ĉ7 cosh a4x þ Ĉ8 sinh a4x, ð10Þ

yðxÞ ¼ b1ðĈ1 cos a1x þ Ĉ2 sin a1xÞ þ b2ðĈ3 cos a2x þ Ĉ4 sin a2 xÞ

þ b3ðĈ5 cosh a3x þ Ĉ6 sinh a3xÞ þ b4ðĈ7 cosh a4x þ Ĉ8 sinh a4xÞ, ð11Þ

bi ¼
lBa4i � 1

c
ði ¼ 1; . . . ; 4Þ; a1 ¼

ffiffiffiffiffiffiffiffi
jk1j

p
; a2 ¼

ffiffiffiffiffiffiffiffi
jk2j

p
; a3 ¼

ffiffiffiffiffi
k3

p
; a4 ¼

ffiffiffiffiffi
k4

p
, (12)

where Ĉi ði ¼ 1; 2; . . . ; 8Þ are unknown amplitude coefficients to be determined from the boundary
conditions, and lB is defined as lB ¼ EIz=mo2: ki ði ¼ 1; 2; 3; 4Þ are the roots of the characteristic
quartic polynomial of the ordinary differential equation obtained via reducing Eqs. (8a) and (8b)
into one equation which contains merely V ðxÞ and its derivatives up to eight order. Bishop
et al. [8] showed that this quartic equation has four real roots, two of them negative and
two remaining positive. For a beam with clamped-attached tip mass end conditions, the use of
Eqs. (9b) and (9d)–(9g) yields a set of eight linear homogeneous equations which can be written in
matrix form

ÂĈ ¼ 0, (13)

where Â is an 8� 8 nonsymmetric matrix while Ĉ is a vector which contains Ĉi ði ¼ 1; 2; . . . ; 8Þ
constants. Nontrivial solutions of Eq. (13) correspond to the o values satisfying the following
frequency equation

detðÂÞ ¼ 0. (14)
3. The orthogonality condition

The orthogonality condition associated with the modal functions is as follows:

Z L

0

½mViVj þ mcðyiV j þ yjV iÞ þ Isyiyj
dx þ M½pV 0
iðLÞVjðLÞ þ ViðLÞVjðLÞ

þ syiðLÞVjðLÞ þ pViðLÞV
0
jðLÞ þ sViðLÞyjðLÞ
 þ Î z̄z̄V

0
iðLÞV

0
jðLÞ

þ Î x̄z̄fyiðLÞV
0
jðLÞ þ yjðLÞV

0
iðLÞg þ Î x̄x̄yiðLÞyjðLÞ ¼ A

_
ij, ð15Þ

where A
_

ij is a real number defined as: A
_

ija0 if i ¼ j; A
_

ij ¼ 0 if iaj: Comparison of Eq. (15)
with Eq. (30) in Ref. [5] reveals that the terms added to the integral are similar, while the integral
in Eq. (15) differs from the one in Ref. [5], since the beams considered in these studies have
different geometric properties.
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4. Forced vibration analysis

Assume that the system in Fig. 1 has also a distributed mass in-span of ma per unit length as
shown in Fig. 4. Then, equations of motion for this case can be given as

EIzwxxxx þ ðm þ maH1ðx;xma
;Dxma

ÞÞð €w þ c €cÞ ¼ H2ðx;xf ;Dxf Þf ðx; tÞ, (16a)

EGcxxxx � GJcxx þ cðm þ maH1ðx; xma
;Dxma

ÞÞð €w þ c €cÞ þ Ic
€c ¼ cH2ðx;xf ;Dxf Þf ðx; tÞ; ð16bÞ

where Hi ði ¼ 1; 2Þ are Heaviside functions defined as follows:

H1 ¼ Hðx � xma
Þ � Hðx � ðxma

þ Dxma
ÞÞ, (17a)

H2 ¼ Hðx � xf Þ � Hðx � ðxf þ Dxf ÞÞ. (17b)

To apply Galerkin’s discretization procedure, it is assumed that product solutions for Eq. (16)
exist as follows:

wðx; tÞ ¼
Xn

i¼1

ViðxÞq
_

iðtÞ ¼ VT q_; cðx; tÞ ¼
Xn

i¼1

yiðxÞq
_

iðtÞ ¼ hT q_, (18)

where n denotes the number of modes included, q_; V and h are the column matrices of generalized
coordinates, bending and torsional amplitude functions, respectively. Substituting Eq. (18) into
Eqs. (16a) and (16b), multiplying Eq. (16a) by V and Eq. (16b) by h; then adding the resulting
equations yield

MT
€q_ þ KT q_ ¼ Q. (19)

MT ; KT and Q in Eq. (19) are the symmetric mass matrix, nonsymmetric stiffness matrix and
column matrix of generalized forces, respectively. These matrices are defined as follows:

KT ¼

Z L

0

ðEIzVV0000T þ EGhh0000T � GJhh00TÞdx ¼ ðdiagðo2 A
_
Þ � diagðo2ÞM̄Þ

T, (20)
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MT ¼

Z L

0

ððm þ maH1ÞðVVT þ cVhT þ chVT þ c2hhTÞ þ IchhTÞdx, (21)

Q ¼

Z L

0

H2f ðx; tÞðV þ chÞdx, (22)

M̄ ¼ ½MVVT þ MpðV0VT þ VV0TÞ þ MsðhVT þ VhTÞ þ Î z̄z̄V
0V0T

þ Î x̄x̄hhT þ Î x̄z̄ðhV0T þ V0hTÞ
x¼L, ð23Þ

where the orthogonality relation given by Eq. (15) is used to obtain Eq. (20). In the absence of
external force f ðx; tÞ; modal analysis of the system in Fig. 4 can be performed by solving the
eigenvalue problem

ðKT �$2MTÞq̂ ¼ 0. (24)

$ in Eq. (24) shows natural frequencies of the overall system with in-span attachment, and q̂ is the
column vector of unknown amplitude coefficients.
5. Numerical results

5.1. Verification of the present model

In this section, firstly, some limiting cases are studied to verify the model presented here. To this
end, two types of beams, i.e. the beam with semi-circular open cross section (SC), and the other
one with channel cross section (CC) shown in Fig. 5, are considered. The physical properties of
both beams are taken from Ref. [14], and for the completeness of the work they are also given in
Table 2. Comparison of the numerical results by the current study with those given in Ref. [14] for
different support types is presented in Table 3. Components of the inertia tensor about the center
of tip mass are always taken as in Table 3 throughout the present paper.
To obtain clamped-free end conditions, all the attachments at the right end of the beam are

ignored in the present model, and boundary conditions in Eq. (5b) are used for the left end. The
c c
O

S
O

y

z z S

y

(a) (b)

Fig. 5. Two types of beams considered in numerical calculations. (a) SC beam, (b) CC beam.
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Table 2

Physical properties of the beams used in numerical calculations

SC CC

E 68:9� 109 N=m2 2:164� 1011 N=m2

G 26:5� 109 N=m2 0:801� 1011 N=m2

Iz 9:26� 10�8 m4 0:45� 10�6 m4

Is 0.000501 kgm 0.00725 kgm

J 1:64� 10�9 m4 0:14� 10�9 m4

G 1:52� 10�12 m6 0:1636� 10�9 m6

L 0.82m 1.28m

m 0.835 kg/m 2.095 kg/m

c 0.0155m 0.03771m

SC: Beam with semi-circular cross section, CC: beam with channel cross section.

Table 3

Comparison of the natural frequencies (Hz) obtained by the present model with those from Ref. [14]

Support type Clamped–free Clamped–clamped Simple–simple

Beam type SC CC SC CC SC CC

Modal index I(*) II I(*) II I(**) II I(**) II I(***) II I(***) II

1 63.79 63.79 25.37 25.37 198.81 198.81 149.40 149.40 150.44 150.44 67.13 67.12

2 137.68 137.68 98.56 98.55 425.05 425.04 410.58 410.58 320.32 320.32 263.66 263.67

3 278.36 278.35 148.65 148.65 618.09 618.09 624.54 624.53 365.81 365.81 275.76 275.75

4 484.77 484.77 411.57 411.57 695.64 695.63 803.85 803.84 604.13 604.13 591.13 591.23

5 663.78 663.84 615.39 615.39 999.32 999.31 1327.99 1327.99 885.01 885.01 1049.49 1049.80

I: Present study, II: reference work [14]. Coordinates of the tip mass gravitational center Ḡ are chosen as: p ¼ c; q ¼

0:25c; s ¼ 1:25c: The components of the inertia tensor about center of gravity are: I x̄x̄ ¼ 5:428:10�4M=ðmLÞ; I z̄z̄ ¼

4:711:10�4M=ðmLÞ; I x̄z̄ ¼ �2:729:10�6M=ðmLÞ: Points Y and S in Fig. 1 are coincident so long as linear spring of

stiffness kL is present.
(*): kL ¼ kT ¼ 0;M ¼ 0;ma ¼ 0:
(**):M ¼ 108ðmLÞ; kL ¼ kT ¼ 0; ma ¼ 0:
(***): kL ¼ 106EIz=L3; kT ¼ 106GJ=L; M ¼ 0; ma ¼ 0:
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resulting frequencies for this supporting type are in very good agreement with the ones from Ref.
[14] as seen from Table 3. Although the dynamic transfer matrix method is used in Ref. [14], the
results obtained are exact since analytical solutions of the equations of motion are used to set the
transfer matrix.
Ignoring all attachments but tip mass, and increasing the tip mass M largely leads to a beam

with clamped end condition at the limit, which may not have practical importance. On the other
hand, supporting the right end of the beam in Fig. 1 with linear and torsional springs of high
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stiffness, and omitting the tip mass gives the simply supported end condition at the limit.
Comparison of the frequencies obtained in this model for different end conditions with those
conveyed by the earlier work reveals that the present model is useful and generative.
5.2. Effect of tip mass on frequencies and modal shapes

To examine the effect of tip mass on natural frequencies and modal shapes of the beams shown
in Fig. 5, various values within the interval f0; 10ðmLÞg for the tip mass are considered, and the
corresponding frequencies are presented in Table 4, where the columns entitled ‘‘%d’’ denote the
decrease in frequencies in percentage. For instance; %d ¼ �85 ¼ ðð9:77� 63:79Þ=63:79Þ � 100:
The normalized modal shape functions of both beams are illustrated in Figs. 6 and 7, respectively.
The modal functions are normalized in a similar way in Ref. [9], where torsional amplitude
function yðxÞ is multiplied by the shear center offset c so as to compare directly with V ðxÞ and
understand which function is dominant in the overall shape of the mode considered.
With increasing tip mass, a decrease in natural frequencies is observed as expected.

Furthermore, the second frequencies of both beams fall sharply. Considering Rayleigh’s quotient,
the reason why the second natural frequency is affected the most by the change in tip mass
amount can be explained as follows: Vibration amplitudes and modal shapes corresponding to the
first two modes are nearly the same for each beam as seen from Figs. 6 and 7. This means that
maximum potential energies of both modes are of nearly the same order, while the reference
kinetic energy of the second mode is greater than that of the first mode. Consequently, the second
natural frequencies for both beams are much more affected by the variation of tip mass amount.
As the modal index rises, the effect of tip mass on the frequencies weakens since motion
amplitudes become smaller with increasing frequency, which corresponds to an insignificant
change in reference kinetic energy. Because the right end of the beam loses its ability of motion,
one can conclude from Figs. 6 and 7 that modal shapes are more affected by the increase in tip
mass especially in the higher modes.
Table 4

Effect of tip mass on natural frequencies of the system without distributed mass for two different beams (SC and CC)

Modal index SC CC

I II III IV %d I II III IV %d

1 63.79 53.96 28.21 9.77 �85 25.37 32.66 19.17 6.93 �72

2 137.68 107.34 48.73 16.23 �88 98.56 85.70 47.21 17.00 �82

3 278.36 236.19 196.15 184.30 �33 148.65 186.24 157.58 146.04 �1.7

4 484.77 442.79 394.48 306.39 �36 411.57 437.71 379.72 313.92 �24

5 663.84 548.26 470.61 435.89 �34 615.39 555.33 468.66 426.12 �30

I: M ¼ 0; II: M ¼ 0:1ðmLÞ; III: M ¼ ðmLÞ; IV: M ¼ 10ðmLÞ:
Left ends ðx ¼ 0Þ are clamped for both beams.

%d: decrease percentage between I and IV.

Coordinates of point Ḡ in Fig. 1 are: p ¼ q ¼ s ¼ c:
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5.3. Effect of distributed mass on frequencies and modal shapes

To investigate the effect of distributed mass on modal shapes and natural frequencies, cantilever
beam with CC will be considered again. In Case 1, the variation of natural frequencies for various
amounts of the distributed mass ma whose beginning point xma

and distribution length Dxma
are

fixed is studied. On the other hand, how the natural frequencies and modal shapes are affected by
the distributed mass of constant ma and Dxma

but variable xma
is treated in Case 2. Numerical

results for Cases 1 and 2 are presented in Tables 5 and 6, while the associated modal shapes are
illustrated in Figs. 8 and 9, respectively. Eight term modal expansions of the clamped-free beam
are used for both bending and torsion to carry out numerical calculations.
As expected, the frequencies decrease with increasing distributed mass amount, see Table 5.

Although monotone falling in the first frequency should be expected as the distributed mass
location is shifted to the free end of the beam (since the first mode is bending dominant and does
not have a nodal point), the first frequency value in the rightmost column of Table 6 seems to be
contrary to this expectation. However, as is seen from Table 6, the distribution length of the
distributed mass is Dxma

¼ 0:05Lm for the last location, while the first four are of Dxma
¼ 0:1Lm:

A possible reason is that the distributed mass contributes to the total kinetic energy of the system
less than the previous location when it is located at xma

¼ 0:95L: On the other hand, as bending
deformation of the beam is also dominant in the second mode (see Fig. 9b), and the contribution
Table 6

Effect of distributed mass with varying location on the first five natural frequencies (Hz) of the cantilever beam with CC

(Case 2)

Modal index xma
¼ 0 xma

¼ 0:3L xma
¼ 0:5L xma

¼ 0:8L xma
¼ 0:9L

1 25.37 24.54 22.05 16.94 18.33

2 98.55 93.09 84.64 78.94 77.82

3 148.39 117.43 125.52 144.41 136.47

4 407.01 332.47 392.56 397.45 374.82

5 614.05 552.74 516.10 592.76 563.34

Dxma
¼ 0:05L for xma

¼ 0:9L; otherwise Dxma
¼ 0:1L; ma ¼ 10m for all xma

values.

Table 5

Effect of distributed mass with fixed location on the first five natural frequencies (Hz) of the cantilever beam with CC

(Case 1)

Modal index ma ¼ 0 ma ¼ 2m ma ¼ 5m ma ¼ 10m

1 25.37 23.14 20.63 17.77

2 98.56 90.57 84.42 79.58

3 148.65 148.16 147.52 146.53

4 411.57 402.38 394.44 386.34

5 615.39 612.91 609.72 605.15

xma
¼ 0:75L; Dxma

¼ 0:1L:
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of the distributed mass to the total kinetic energy is more in the second mode than in the first
mode while the change in maximum potential energy is small enough to neglect, a continuous
decrease in the frequency indicates a reasonable variation. Bending and torsion equally contribute
to the formation of the related mode as the modal index rises. Moreover, nodal points begin to
appear. Hence, it is conceivable that there occur fluctuations in frequencies of the upper modes
(see Table 6) as the distributed mass location is shifted to the right end of the beam. The second
mode of the CC beam appears to be less affected by the variations of both xma

and ma; as seen
from Figs. 8b and 9b. Note that the fifth column for xma

¼ 0:9L is added to draw attention to the
interesting variation in the first frequency. Therefore, modal shape curves corresponding to this
value of xma

are not plotted.
Ignoring all the attachments except for the distributed mass and tip mass, deflection of terminal

point of the centroidal axis of the beam with CC is shown in Fig. 10 for four different distributed
0 0.5 1 1.5 2 2.5 3
-6

-4

-2

0

2

4

6
x 10

-3 (m) 

0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

2

4

6

8
x 10

-3

t (s) t (s) 

t (s) t (s) 

(m) 

0 0.5 1 1.5 2 2.5 3
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

u 
(L

,t)
u 

(L
,t)

u 
(L

,t)
u 

(L
,t)

(m) 

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3 (m) 

(a) (b)

(c) (d)

Fig. 10. Time-varying deflection of tip point of the centroidal axis of the beam with CC for various distributed mass

amounts. (a) ma ¼ 0; (b) ma ¼ 10m; (c) ma ¼ 30m; (d) ma ¼ 60m: M ¼ 2ðmLÞ; p ¼ 0; q ¼ �2c; s ¼ 2c; kL ¼ 0; kT ¼ 0:
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Table 7

Variation of the first four natural frequencies of the cantilever beam with CC

Modal index ma ¼ 0 ma ¼ 10m ma ¼ 30m ma ¼ 60m

1 8.76 5.68 3.85 2.85

2 34.58 28.59 26.97 26.26

3 147.35 147.77 147.43 146.58

4 344.22 309.46 271.79 236.95

Dxma
¼ 0:1L; M ¼ 2ðmLÞ; p ¼ 0; q ¼ �2c; s ¼ 2c; kL ¼ 0; kT ¼ 0:
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mass amounts, while the left end of the beam is clamped. The distributed force f ðx; tÞ ¼
100 sinðof tÞN=m with driving frequency of ¼ ð27Þ2p rad=s is applied in the span fxf ; ðxf þ Dxf Þg;
where xf ¼ 0:9L and Dxf ¼ 0:1L: Since the point is on the centroidal axis, its displacement uðL; tÞ
along the y-axis is obtained by the following relation: uðL; tÞ ¼ wðL; tÞ þ ccðL; tÞ: This example is
also an application of the orthogonality relation given by Eq. (17). The variation of the first
four natural frequencies of the system as the distributed mass amount is increased is presented in
Table 7. Since the second natural frequency is almost equal to the driving frequency of the force
f ðx; tÞ when the distributed mass amount is ma ¼ 30m; tip point deflection shows a tendency to
increase relatively as seen from Fig. 10c, i.e. nearly resonance is encountered. On the other hand,
as the difference between the second frequency of the system and the driving frequency increases,
the form of the displacement curve begins to resemble the mathematical form of the driving force
as shown in Fig. 10a.
6. Conclusions

An exact analytical procedure is developed to obtain natural frequencies and mode shapes of a
system consisting of a beam with monosymmetric open cross section carrying a tip mass of non-
negligible dimensions and springs at one end. The model is verified by comparing the frequencies
corresponding to the limiting cases of the present model with the ones from a previously published
work. The orthogonality condition of amplitude functions is also derived and used for the forced
vibration analysis of a channel cross section beam carrying a distributed mass in addition to the
tip mass. Furthermore, the effects of tip mass and distributed mass on natural frequencies and
modal shapes are investigated for two beams with different open cross sections. The frequencies
numerically obtained for various attachment properties are tabulated, and the modal shape
functions are plotted. Two significant conclusions drawn from the numerical applications are as
follows:
(1)
 The second natural frequencies of both CC and SC beams fall noticeably with the increase in
tip mass amount.
(2)
 The second mode of the CC beam is affected the least by the change in both the distributed
mass amount ma and its location xma

:
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Appendix A. Derivation of the equations of motions

With the help of the illustration in Fig. 3, the relations among coordinate frames can be
obtained as in the following:

b̂ ¼ T1â; T1 ¼

cos a sin a 0

� sin a cos a 0

0 0 1

2
64

3
75; a ¼ wxðL; tÞ, (A.1)

ĉ ¼ T2b̂; T2 ¼

1 0 0

0 cos b � sin b

0 sin b cos b

2
64

3
75; b ¼ cðL; tÞ, (A.2)

ĉ ¼ T3â; T3 ¼ T2T1 (A.3)

where â; b̂ and ĉ are column matrices with the elements ai; bi and ci ði ¼ 1; 2; 3Þ; respectively. T1; T2
and T3 are transformation matrices relating unit vectors of different coordinate frames with each
other. Assuming small-angle approach, T3 can be written as

T3 ¼

1 a 0

�a 1 �b

0 b 1

2
64

3
75. (A.4)

The position vector of a differential beam element rP and the displacement vector of the point Y
can be given directly by using the above definitions as

rP ¼ ðL þ p þ p̄ � ðq þ q̄ÞaÞa1 þ ðwL þ aðp þ p̄Þ þ bðs þ s̄Þ þ q þ q̄Þa2

þ ðs þ s̄ � ðq þ q̄ÞbÞa3, ðA:5Þ

OY ¼ ðx̄ � ȳaþ LÞa1 þ ðx̄aþ ȳ þ z̄bþ wLÞa2 þ ð�ȳbþ z̄Þa3. (A.6)

As stated earlier, the y component of the vector in Eq. (A.6) is considered to describe the
deformation in the linear spring of stiffness kL: Therefore,

DY ¼ ½½OYðtÞ � OYð0Þ
a2
a2 ¼ ðax̄ þ bz̄ þ wLÞa2. (A.7)

Now, variations of the terms in Eqs. (1) and (2) can be given as follows:

1

2

Z t2

t1

d
Z L

0

mð _w þ c _cÞ2 dx

� �
dt ¼ �

Z t2

t1

Z L

0

ðmð €w þ c €cÞdw þ mcð €w þ c €cÞdcÞdxdt, (A.8)

1

2

Z t2

t1

d
Z L

0

Ic
_c
2
dx

� �
dt ¼ �

Z t2

t1

Z L

0

Ic
€cdcdxdt, (A.9)
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1

2

Z t2

t1

d
Z

B̄

ð_rPÞ
2 dM

� �
dt ¼ �

Z t2

t1

dwxðL; tÞ €wxðL; tÞÎ z̄z̄ þ €wLpM þ €cLÎ x̄z̄

n o
dt

�

Z t2

t1

dcLf €wxðL; tÞÎ x̄z̄ þ €wLsM þ €cLÎ x̄x̄gdt

�

Z t2

t1

dwLf €wLM þ ð €wxðL; tÞp þ €cLsÞMgdt, ðA:10Þ

1

2

Z t2

t1

d
Z L

0

EIzðw
2
xxÞdx

� �
dt ¼

Z t2

t1

EIzwxxdwxj
L
0 � EIzwxxxdwjL0 þ

Z L

0

EIzwxxxxdwdx

� �
dt,

(A.11)

1

2

Z t2

t1

d
Z L

0

GJðc2xÞdx

� �
dt ¼

Z t2

t1

GJcxdcj
L
0 �

Z L

0

GJcxxdcdx

� �
dt, (A.12)

1

2

Z t2

t1

d
Z L

0

EGðc2xxÞdx

� �
dt ¼

Z t2

t1

EGcxxdcxj
L
0 � EGcxxxdcj

L
0 þ

Z L

0

EGcxxxxdcdx

� �
dt,

(A.13)

1

2

Z t2

t1

dðkLðDYÞ
2
Þdt ¼ kL

Z t2

t1

dwxðL; tÞfx̄
2wxðL; tÞ þ x̄z̄cL þ x̄wLgdt

þ kL

Z t2

t1

dcLfx̄z̄wxðL; tÞ þ z̄2cL þ z̄wLgdt

þ kL

Z t2

t1

dwLfx̄wxðL; tÞ þ z̄cL þ wLgdt, ðA:14Þ

1

2

Z t2

t1

dðkBðcLÞ
2
Þdt ¼

Z t2

t1

kBcLdcL dt. (A.15)

Employing Eqs. (A.8)–(A.15) in the Hamilton’s integral leads to

d
Z t2

t1

ðT � UÞdt ¼

Z t2

t1

�m

Z L

0

ð €w þ c €cÞdwdx � mc

Z L

0

ð €w þ c €cÞdcdx � Ic

Z L

0

€cdcdx

�

� dwxðL; tÞf €wxðL; tÞÎ z̄z̄ þ €wLpM þ €cLÎ x̄z̄g � dcLf €wxðL; tÞÎ x̄z̄ þ €wLsM þ €cLÎ x̄x̄g

� dwLMf €wL þ €wxðL; tÞp þ €cLsg � EIzwxxdwxj
L
0 þ EIzwxxxdwjL0

�

Z L

0

EIzwxxxxdwdx � GJcxdcj
L
0 þ

Z L

0

GJcxxdcdx � EGcxxdcxj
L
0
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þ EGcxxxdcj
L
0 �

Z L

0

EGcxxxxdcdx � dwxðL; tÞkLfx̄
2wxðL; tÞ þ x̄z̄cL þ x̄wLg

� kLdcLfx̄z̄wxðL; tÞ þ z̄2cL þ z̄wLg � kLdwLfx̄wxðL; tÞ þ z̄cL þ wLg

� kBcLdcL

�
dt ¼ 0.

Grouping the terms with the same variational coefficients results in Eqs. (4) and (5).
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