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Abstract

An image solution for the forced response of a clamped finite beam is developed. The finite beam is
replaced by an infinite beam under spatially periodic excitation and periodic support reactions. The
response is then found by a Fourier transform approach, making use of the periodicity. An explicit
expression is found, using the Poisson sum formula. The aim is to describe the potential of using the image
method for clamped structural acoustic and vibration problems.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The method of images, or mirrors, is a well-known idea in theoretical physics [1, pp. 812–820]
and has commonly been employed in disciplines such as acoustics, electro-magnetics, and optics.
When considering the problem of obtaining Green’s function for a bounded domain, the
reflection is described by one or more image sources, and the position and sign of the image
sources is chosen so that the boundary conditions will be fulfilled. The Green’s function of the
bounded problem can then be found as the superposition of the free Green’s function for the two
sources. A consequence of the method of images is that the domain of the problem is expanded
from a part-space to the entire space. The problem is then suitable for the spatial Fourier
transform.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Even if it is not common, the method of images can also be used in structural vibration
problems. Examples are Gunda et al. [2,3], using free Green’s functions for the infinite plate.
However, only solutions to the simply supported and guided boundary conditions has been
reported, as shown in Fig. 1a and b. Gunda et al. [3] treated the clamped and free boundary
conditions by means of adding a near-field function to the image solution. The present paper
describes an image method for the clamped boundary condition. This is performed by means of
transforming the clamped boundary conditions to simple supports (see Fig. 1c) and then using a
transform method.

The aim of the paper is to describe the potential of using the image method for clamped
structural acoustic problems. Especially finite periodic problems are likely to be successfully
treated with this approach because of the periodic nature of the expanded problem and the
solution technique used. Thus, the approach can be used in combination with the models for
sound insulation in wooden joist structures developed by the present author [4–7]. The approach
is, however, best described in connection with a simple problem.

This paper provides an example of the method of images; the method is applied to a structural
acoustic problem with a known solution. The problem is a finite beam, clamped at the boundaries
and driven by a point force. The displacement field is solved for. In order to make use of
periodicity, the region along the x-axis is expanded. An infinite number of image sources is added
to the original exciting force. The image expansion is even, and the clamped boundaries convert to
simple supports, as seen in Fig. 1c. The supports are introduced in the governing equation as
infinite sums of reaction forces. The system is now infinite, implying Fourier transforms are to be
used on the spatial coordinate. The transformed displacement is solved for and formally inverse
transformed, making use of periodic theory [8,9]. The support forces are related to the beam
displacement so that the yet unknown reaction forces are solved for. The resulting infinite sums
are given explicitly using Poisson sum formula and contour integration.
(c)

(b)

(a)

⇔

⇔

⇔

Fig. 1. Examples of boundary conditions and their equivalent image representation. Case (a) guided and (b) simply

supported, has been used previously [2], but case (c) clamped, is new.
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2. Theory

2.1. Problem description

As the original problem under study, consider a finite beam, clamped at the boundaries
(see Fig. 2). The beam is described by the Euler–Bernoulli beam equation. The time convention
used is described by the factor eiot, which is henceforth suppressed. The domain under
consideration is O1:x 2 ½0; l�, qO1 ¼ qO1a [ qO1b. The clamped boundaries condition implies that

C:wjqO1
¼ 0;

qw

qx

����
qO1

¼ 0. (1)

The beam is driven by a point force, Qdðx � x0Þ, where x0 2 O1.
In order to make use of periodicity, expand the region along the x-axis, see Fig. 3. An infinite number

of mirror sources is added to the original force. The expanded domain isO: x 2 R. The mirror expansion
is even, wð�xÞ ¼ wðxÞ, and the clamped boundaries convert to simple supports, which implies that

SS:wjqO1
¼ 0;

q2w

qx2

����
qO1�

¼
q2w

qx2

����
qO1þ

. (2)

The second boundary condition is fulfilled automatically by means of the mirror sources. The
displacement of the system will satisfy the Euler–Bernoulli beam equation inside O,

D
q4w

qx4
� Aro2w ¼ pe þ

X1
n¼�1

Fndðx � nlÞ (3)

and the boundary conditions,

wðx þ 2nlÞ ¼ wðxÞ; wðx þ ð2n � 1ÞlÞ ¼ wðl � xÞ;

wðnlÞ ¼ 0; n 2 Z (4)
l

x
0

Q

x

Ω
1
:

∂Ω
a
: C ∂Ω

b
: C

Fig. 2. The original system, a clamped beam with a point force Q located at x0.



ARTICLE IN PRESS

l

x
0

QQ Q

Ω:

∂Ω
a
: SS ∂Ω

b
: SS

Fig. 3. The expanded system, infinite in extent and periodic. The boundary conditions are simple supports.
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of which the first is the periodic condition and the second is the absence of displacement at the supports.
Z ¼ f0;
1;
2; . . .g is the integer numbers. The periodic length of the expanded system is 2l. In Eq. (3)
pe is the driving point force including the mirror sources and Fn is the reaction force from the nth
support. D ¼ EI is the bending stiffness, E the Young’s modulus, I the moment of inertia of the area, A

the cross-section area, r the density, o the angular frequency, and wðxÞ the displacement at position x.
The reaction from the surrounding acoustic pressure is omitted.

The system is now infinite, and we can use Fourier transforms on the spatial coordinate. The
transformation of the displacement and its inversion is defined as

~wðaÞ ¼
Z 1

�1

wðxÞeiax dx; wðxÞ ¼
1

2p

Z 1

�1

~wðaÞe�iax da. (5)

The periodic condition in Eq. (4) can also be expressed as

wðx þ 2nlÞ ¼ wðxÞe�i2np ¼ wðxÞ, (6)

while the support reactions are related to the reactions in the original supports,

Fn ¼
F0; n even;

F1; n odd;

(
(7)

where F0 and F1 are yet unknown. These forces are to be determined in the next section.

2.2. The point force and support reactions

The point force in the original system O1 is given as peðxÞ ¼ Qdðx � x0Þ. In the expanded system
O, the exciting force and the corresponding mirror forces become

peðxÞ ¼ Q
X1

n¼�1

dðx � x0 � 2nlÞ þ
X1

n¼�1

dðx þ x0 � 2nlÞ

 !
. (8)

The Fourier transform of Eq. (8) is

~peðaÞ ¼ Qðeiax0 þ e�iax0Þ
X1

n¼�1

eia2nl. (9)

A spatial Fourier transformation of the support reaction yields FðFndðx � nlÞÞ ¼ Fne
ianl , where

F is the Fourier operator in Eq. (5). If the periodic condition (6) and (7) is considered, the
reaction forces are related back to the origin.
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The Poisson sum rule [1, p. 467] can be used to give the following relationship:X1
m¼�1

eimkl ¼ 2p
X1

m¼�1

dð2mp� klÞ. (10)

(See also the more general result in Eq. (18).) Eq. (9) can therefore be rewritten as

~peðaÞ ¼ 2pQðeiax0 þ e�iax0Þ
X1

n¼�1

dð2np� 2alÞ (11)

and the sum of reaction forces can be expressed as

X1
n¼�1

Fne
ianl ¼ F0

X1
2n¼�1

einal þ F1

X1
2n�1¼�1

einal

¼ 2pðF0 þ F1e
�ialÞ

X1
n¼�1

dð2pn � 2alÞ ð12Þ

using Eq. (7) in the first equality, and variable changes and Eq. (10) in the last equality.

2.3. Inverse transformation and solution

Summing up the result so far, the transformed version of the governing equation (3) is found by
applying Eq. (5) and using Eqs. (11) and (12) for the forces. Solving for the transformed
displacement yields

~wðaÞ ¼
2p
D

Qðeiax0 þ e�iax0Þ � F0 � F1e
�ial

a4 � k4
B

X1
n¼�1

dð2np� 2alÞ, (13)

where the bending wavenumber of the beam, kB, is defined as k4
B � Aro2=D.

The inverse Fourier transform of Eq. (13) can be found, using Eq. (5). The integral so found is
easily calculated by changing the order of integration and summation, giving the beam
displacement as infinite sums

wðxÞ ¼
2Q

D2l

X1
n¼�1

cosðpnx0=lÞe�ipnx=l

ðpn=lÞ4 � k4
B

�
F0

D2l

X1
n¼�1

e�ipnx=l

ðpn=lÞ4 � k4
B

�
F1

D2l

X1
n¼�1

e�ipnðxþlÞ=l

ðpn=lÞ4 � k4
B

. ð14Þ

In the final step of the solution the support forces are related to the plate displacement so
that the unknown reaction forces F0 and F1 is solved for. Thus, using wð0Þ ¼ wðlÞ ¼ 0 in
Eq. (14) leads to an equation system. Using the identities e�i2np ¼ 1 and e�inp ¼ ð�1Þn, the
equation system is

Sð2p; 0Þ Sðp; 0Þ

Sðp; 0Þ Sð2p; 0Þ

" #
F0

F1

" #
¼ 2Q

Sð2p;px0=lÞ

Sðp;px0=lÞ

" #
, (15)
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where the following definition has been introduced:

Sðp; qÞ �
l

p

	 
4 X1
n¼�1

e�ipn cosðnqÞ

n4 � ðlkB=pÞ
4
. (16)

Note that also the sums in Eq. (14) can be expressed in terms of Sðp; qÞ. Thus, the final result reads

wðxÞ ¼
Q

Dl
Sðpx=l; px0=lÞ �

F0

D2l
Sðpx=l; 0Þ �

F1

D2l
Sðpðx þ lÞ=l; 0Þ (17)

and

F0

F1

" #
¼

2Q

Sð2p; 0Þ2 � Sðp; 0Þ2
Sð2p; px0=lÞSð2p; 0Þ � Sðp; px0=lÞSðp; 0Þ

�Sð2p;px0=lÞSðp; 0Þ þ Sðp; px0=lÞSð2p; 0Þ

" #
.

2.4. The infinite sums

Matrix inversion then yields the reaction forces. Sum (16) can be truncated as the order of the
polynom of the denominator is 4. However, explicit formulas can be found, as described in this
section. The approach is the same as in Refs. [9,10].

A more general form of the Poisson sum formula [1], as compared to Eq. (10), states that

ffiffiffi
a

p X1
n¼�1

gðnaÞ ¼

ffiffiffiffiffiffi
b

2p

r X1
n¼�1

~gðnbÞ, (18)

where ab ¼ 2p and ~gðxÞ is the Fourier transform of gðkÞ, as defined in Eq. (5). In view of Eq. (16),
define the function gðkÞ to be

gðkÞ �
e�ipk cosðkqÞ

k4
� c4

,

where c ¼ lkB=p and k 2 C. Making use of contour calculus, see e.g. Refs. [9,10], taking into
account the effect of damping, the transformed function ~gðxÞ can be found. Using Eq. (18) and the
expression for the geometric seriesX1

n¼0

e�an ¼
1

1� e�a ; je�ajo1

then, after some algebraic manipulations, result in an explicit expression for the infinite sum
function (16),

Sðp; qÞ
4k3

B

l
¼

�2 sin kBl

1� cos 2kBl
ðcos kBlð2m1 þ q=pþ 1� p=pÞ þ cos kBlð2m2 � q=pþ 1� p=pÞÞ

þ
2 sinh kBl

1� cosh 2kBl
ðcosh kBlð2m1 þ q=pþ 1� p=pÞ þ cosh kBlð2m2 � q=pþ 1� p=pÞÞ,

ð19Þ
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using the fact that only 0oxol and 0ox0ol is of interest, and where the integers m1 and m2 are
chosen to the floor of p=ð2pÞ 
 q=ð2pÞ,

m1 ¼
p

2p
�

q

2p

j k
; m2 ¼

p

2p
þ

q

2p

j k
.

(The floor function bxc is the largest integer px, see Ref. [11].) For real values of p, q and k, also
Sðp; qÞ is real. In particular, the following expressions can be found:

Sð2p;px0=lÞ ¼
l

2k3
B

� sin kBl

1� cos 2kBl
ðcos kBðx0 � lÞ þ cos kBðl � x0ÞÞ

	

þ
sinh kBl

1� cosh 2kBl
ðcosh kBðx0 � lÞ þ cosh kBðl � x0ÞÞ




Sðp; px0=lÞ ¼
l

k3
B

�
sin kBl cos x0kB

1� cos 2kBl
þ

sinh kBl coshx0kB

1� cosh 2kBl

	 


Sðpx=l;px0=lÞ ¼
l

2k3
B

� sin kBl

1� cos 2kBl
ðcosðkBl � kBjx0 � xjÞ þ cosðkBl � kBðx0 þ xÞÞÞ

	

þ
sinh kBl

1� cosh 2kBl
ðcoshðkBl � kBjx0 � xjÞ þ coshðkBl � kBðx0 þ xÞÞÞ




Sðpx=l; 0Þ ¼
l

k3
B

�
sin kBl cos kBðl � xÞ

1� cos 2kBl
þ

sinh kBl cosh kBðl � xÞ

1� cosh 2kBl

	 


Sðpðx þ lÞ=l; 0Þ ¼
l

k3
B

�
sin kBl cos kBx

1� cos 2kBl
þ

sinh kBl cosh kBx

1� cosh 2kBl

	 

, (20)

which can be used directly in the solution, Eq. (17).

2.5. Correction check

The correctness of the present solution can be checked by comparing it with other solutions. A
straightforward approach is to assume there to be two travelling and two decaying waves with
unknown complex amplitudes, together with the free Green’s function for a beam, as found in e.g.
Ref. [12], so that the total field is

wðxÞ ¼ ae�ikBx þ beikBðx�lÞ þ ce�kBx þ dekBðx�lÞ þ
Q

i4Bk3
B

ðe�ikBjx�x0j � ie�kBjx�x0jÞ, ð21Þ
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where the constants a–d are yet unknown. Using the boundary conditions in the original problem,
Eq. (1), wð0Þ ¼ wðlÞ ¼ 0 and w0ð0Þ ¼ w0ðlÞ ¼ 0, yields the system of equation

1 e�ikBl 1 e�kBl

e�ikBl 1 e�kBl 1

�i ie�ikBl
�1 e�kBl

�ie�ikBl i �e�kBl 1

2
6664

3
7775

a

b

c

d

2
6664

3
7775 ¼

Q

4Bk3
B

ie�ikBx0 þ e�kBx0

ie�ikBðl�x0Þ þ e�kBðl�x0Þ

�e�ikBx0 þ e�kBx0

e�ikBðl�x0Þ � e�kBðl�x0Þ

2
66664

3
77775, (22)

which, if solved, results in exactly the same result as is found by Eq. (17).
3. Concluding remarks

The paper shows that an image approach can be used for clamped structural acoustic problems,
and that the exact solution can be obtained in explicit form. Even though the solution to the present
problem is more cumbersome than when using conventional methods, the approach can be preferable
if transform methods are to be used. An example is periodically stiffened plate structures, where the
advantages of an infinite structure can be applied to a finite structure, using the image approach.
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