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Abstract

The problem of estimating the unknown parameters of a nonlinear (plant) model for an unstable, limit
cycling system is considered. A feedback linearizing control is used that aims to cancel the nonlinear terms
in the plant model and to alter the linear terms such that the closed-loop plant model matches with a
specified linear reference model. The controller parameters are unknown and are evolved, starting from
zero, by an adaptive law that aims to drive them towards their ideal values that would provide perfect
model matching between the reference model and the closed-loop plant model. The converged controller
parameters would then provide good estimates for the unknown plant parameters. An external forcing
signal is considered, common to both the reference model and the plant, and an adaptation law in the
presence of this forcing function is derived using Lyapunov methods. Significantly, the same stability
analysis is used both to derive a controller for the limit cycling system and also to provide a solution to the
problem of parameter estimation. Simulations using an exponentially decaying sinusoidal forcing show that
good estimates of the linear plant parameters are obtained for a wide range of values of the amplitude,
frequency, and decay time of the forcing function, and also in the presence of measurement noise in the
plant output. The problem of non-convergence of the nonlinear controller parameters is examined in some
detail. The parameter estimation method is demonstrated in our paper on a nonlinear model for a rolling
delta wing; however, it should be equally applicable to a wide class of limit cycling systems modeled by a set
of nonlinear differential equations.
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1. Introduction

Self-excited oscillations called limit cycles are commonly observed in a wide variety of nonlinear
systems [1]. In mechanical systems, limit cycles usually arise as a result of loss of damping at a
particular equilibrium state [2,3]. The undamped equilibrium state is then unstable and the
system, in response to a small perturbation, settles into an oscillation about the unstable
equilibrium state with constant amplitude and frequency, which are characteristic of the limit
cycle.
The problem of modeling the nonlinear function that best represents the limit cycle dynamics is

part of a broader class of problems called nonlinear system identification and is an extremely
challenging task [4,5]. However, for many nonlinear systems of engineering interest that display
limit cycle behavior, such as the delta wing roll dynamics considered in this paper, the structure of
the nonlinear function is known and it is only the parameters in the nonlinear function that are
unknown or uncertain. The problem then reduces from one of system identification to that of
estimating the unknown or uncertain parameters for a given system model from experimentally
measured data.
The parameter estimation problem for nonlinear systems is itself not a particularly simple

problem to solve. First of all, even for a single dof system, the number of parameters can be
considerably larger than the number of state variables and it may not be possible to estimate all
the parameters simultaneously. Secondly, there is an inherent contradiction between the nature of
the system response required to estimate the linear parameters (ones that appear in the coefficients
of terms that are linear in the state variables) as against that required for the estimation of the
nonlinear parameters. Linear parameters are best estimated when the system shows small-
amplitude response near the equilibrium state; in this case, the nonlinear terms in the model are
numerically less significant as compared to the terms that contain the linear parameters. On the
other hand, good estimates of the nonlinear parameters are obtained only when the system shows
large-amplitude response. There is a third additional complication in case of unstable systems;
these systems have to be operated in closed loop with a controller in place in order to restrict
potentially dangerous, large excursions in system response. In that case, while the parameters of
the open-loop system are the ones that need to be estimated, only the system closed-loop response
can be measured. In fact, attempts to adequately excite the system response may be suppressed by
the controller, making it difficult to acquire sufficiently rich measured data and hence to
effectively estimate the parameters [6].
One potentially effective solution to the problem of parameter estimation in case of unstable

systems is to use an adaptive scheme with some form of feedback linearization-based controller.
As pointed out in Ref. [7], such systems are usually required to satisfy the following conditions: (i)
The nonlinear plant dynamics can be linearly parameterized; (ii) the full state is measurable; and
(iii) nonlinearities can be canceled stably (i.e., without unstable hidden modes or dynamics) by the
control input if the parameters are known. Many simple systems of engineering interest do in fact
satisfy these conditions, and thus adaptive schemes have been used for control and estimation of
unstable systems in practice. Control of limit cycle oscillations in an unstable system satisfying
conditions (i)–(iii) above has been carried out in Refs. [8,9] using an adaptive feedback
linearization strategy. Both [8,9] considered the problem of limit cycle oscillations in the roll
dynamics of aircraft with a delta wing, a phenomenon called wing rock [10]. Adaptive feedback
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linearization, along the lines of Ref. [8], has also been practically applied to an experimental delta
wing model in a wind tunnel, and control of wing rock limit cycles has been successfully
demonstrated [11].
The main ingredients of an adaptive feedback linearization scheme can be summarized as

follows: (1) An experimental or a mathematical model of the nonlinear system dynamics (also
called the plant), assuming the model to be linearly parameterized. All the plant state variables xp

are assumed to be measurable, although in Ref. [11] only one of the two plant states was
physically measured, the other being obtained by suitably operating on the measured signal. (2) A
feedback linearization-based controller that is linearly parameterized by a parameter vector y:
When y is correctly chosen to be a particular value y�; the controller eliminates the nonlinear
terms in the plant dynamics, making the combined plant-controller dynamics in the closed-loop
linear and exactly identical to the reference model [see (3) below]. (3) A reference model, usually
linear, stable, and of the same order as the nonlinear plant model; the reference model states xm

are expected to be tracked by the plant states xp: (4) An adaptation mechanism that evolves the
controller parameters y as per a specified law with the aim of driving the error e between the plant
states xp and the reference model states xm to zero.
It must be recognized that there are three facets to the adaptive feedback linearization problem

discussed above. (1) Regulating the plant state variables xp to the unstable equilibrium state x�
p;

called the control problem. (2) Making the plant states xp follow the reference model states xm; or
driving the error e between them to zero, called the tracking problem. (3) Having the controller
parameters y converge to that special value y� which makes the closed-loop plant-controller
system identical to the reference model, called the parameter convergence problem. In this case,
subtracting the known reference model parameters from the converged value y� of the controller
parameters gives an estimate of the unknown or uncertain open-loop plant parameters.
For problems involving only control of an unstable, limit cycling system using an adaptive

feedback linearization scheme, both tracking and regulation can be successfully achieved even in
the absence of parameter convergence. In fact, it is well known that parameter convergence
requires the use of external forcing with an additional property called persistent excitation that
needs to be satisfied [12]. Unfortunately, sufficient conditions for parameter convergence in case
of nonlinear plant models are generally unavailable and hence the persistent excitation condition
can rarely be checked a priori [13]. Consequently, it is not always possible to guarantee a
satisfactory solution to the parameter estimation problem for unstable, limit cycling systems, and
therefore the question of parameter convergence in adaptive schemes as applied to nonlinear
systems has attracted much attention recently [14].
Unstable, limit cycling systems are frequently encountered in engineering practice, and there is

considerable interest in the problem of parameter estimation for such systems, e.g., aircraft [15],
combustion chambers [16]. While adaptive feedback linearization schemes have been used for
control of limit cycling systems, there is no reference in the literature to their having been
successfully employed for parameter estimation of nonlinear models undergoing limit cycle
oscillations. For the problem of delta wing roll dynamics discussed earlier, [8,11] limited
themselves to the tracking and control problem, and did not address the question of parameter
estimation. Parameter convergence was not explicitly considered in Ref. [9] either, though
parameter estimates obtained in the course of the computations have been reported; four of the
five parameters reported did not converge to the correct values and the one that did converge was
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a constant term in the nonlinear model. In fact, none of these formulations included an external
excitation and hence, in the light of the above discussion, parameter convergence was not to be
expected. This background provides us with the motivation to consider the problem of parameter
estimation of an unstable, limit cycling system, using a nonlinear model for the limit cycling delta
wing as an example.
In the following sections of this paper, the nonlinear model for the delta wing roll dynamics is

first briefly described, followed by the feedback linearizing control law, the closed-loop plant
dynamics, and the reference model dynamics. The adaptation law is then derived using Lyapunov
methods, and conditions for stability of the closed-loop system are verified. Using a forcing
function of the form suggested by the stability analysis, the closed-loop plant dynamics with the
adaptation law is simulated and the problem of parameter convergence is examined. The results
are contrasted with the unforced case, where parameter convergence is not obtained. Parametric
studies are carried out by varying the amplitude, frequency, and decay time of the forcing
function. Finally, measurement noise is included in the simulation to check whether parameter
convergence is still achieved in a noisy environment.
2. Nonlinear model and open-loop response

A nonlinear model for the limit cycle dynamics of the delta wing has been given in Ref. [17], as
follows

_xp1 ¼ xp2 ;

_xp2 ¼ c1a1xp1 þ ðc1a2 � c2Þxp2 þ c1a3x
3
p1
þ c1a4x

2
p1

xp2 þ c1a5xp1x
2
p2
þ d0u; ð1Þ

where c1; c2 are constants with the following values: c1 ¼ 0:354; c2 ¼ 0:001; a1 through a5 are the
five unknown parameters that need to be estimated, d0 is assumed to be known, and u is the
control input to the model. The overdots denote differentiation with respect to a nondimensional
time; thus, every term in Eq. (1) is dimensionless.
Note that the model in Eq. (1) is slightly different from those considered in the adaptive

feedback linearization studies in Refs. [8,9]; both those models were taken from Ref. [10] and
contained nonanalytical terms as well as a constant term. In addition, Monahemi and Krstic [9]
ignored the cubic term in xp1 : It has been shown in Ref. [18] that the model in Eq. (1) taken from
Ref. [17] is more accurate than those used in previous studies [8,9], as well as easier to analyze
since it does not contain nonanalytical terms.
The mathematical model of the plant, Eq. (1), is simulated by using the following values of the

parameters a1 through a5 obtained from the experimental work of Levin and Katz [19], and
reported in Ref. [17]: a1 ¼ �0:05686; a2 ¼ 0:03254; a3 ¼ 0:07334; a4 ¼ �0:3597; a5 ¼ 1:4681: The
open-loop response of the nonlinear system, Eq. (1), to an initial perturbation of xp1ð0Þ ¼ 0:4;
xp2ð0Þ ¼ 0; with no control applied, i.e., u ¼ 0; is as shown in Fig. 1. Clearly, both variables, xp1

and xp2 ; show limit cycle dynamics with constant amplitude and frequency. Repeated simulation
for a variety of initial conditions, with u ¼ 0 in every case, shows, as expected, the amplitude and
frequency of the limit cycle motion to be independent of the initial perturbation.
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Fig. 1. Open-loop response of nonlinear system, Eq. (1), for initial perturbation ðxp1 ð0Þ; xp2 ð0ÞÞ ¼ ð0:4; 0Þ and no control

(u ¼ 0), showing limit cycle oscillations in xp1 and xp2 :
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Fig. 2. Block diagram of adaptive feedback linearization scheme.
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3. Adaptive feedback linearization scheme

A block diagram of the adaptive feedback linearization scheme is shown in Fig. 2. The
nonlinear plant dynamics is modeled as given in Eq. (1). Both the plant states, xp1 ;xp2 ; are
assumed to be measurable; however, the measurements, yp1

; yp2
; are assumed to be corrupted by
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measurement noise, dyp1
; dyp2

; as follows

yp1
¼ xp1 þ dyp1

;

yp2
¼ xp2 þ dyp2

: ð2Þ

The measurement noise, dyp1
; dyp2

; are taken to be small-amplitude high-frequency signals as
recommended in Ref. [7]. Measurement noise was not considered in either of Refs. [8,9]; however,
the experimental work in Ref. [11] suggests that the adaptive feedback linearization approach is
effective in the presence of measurement noise.
The feedback linearizing control is chosen to be of the following form:

u ¼ �ðy1yp1
þ y2yp2

þ y3y3p1 þ y4y2
p1

yp2
þ y5yp1

y2p2Þ þ rðtÞ; (3)

where y1; . . . ; y5 are the controller parameters that need to be adapted as they
cannot be determined a priori in the absence of knowledge of the plant parameters,
a1; . . . ; a5: The term rðtÞ denotes an external forcing function that is necessary, as discussed earlier,
to ensure that the persistent excitation condition is satisfied for parameter convergence to take place.
The combined plant-controller system can now be written by using the control law, Eq. (3), in

the mathematical model for the plant, Eq. (1), as follows:

_xp1 ¼ xp2 ;

_xp2 ¼ ðc1a1 � d0y1Þxp1 þ ðc1a2 � c2 � d0y2Þxp2 þ ðc1a3 � d0y3Þx3
p1

þ ðc1a4 � d0y4Þx2
p1

xp2 þ ðc1a5 � d0y5Þxp1x
2
p2
þ d0rðtÞ þ ½terms in dyp1

; dyp2
�: ð4Þ

The terms in dyp1
; dyp2

have not been spelt out in Eq. (4) as they are not considered for the analysis
of the adaptive feedback linearization scheme. However, they are included in the simulation of the
closed-loop system with the adaptation law to be presented later.
First- or second-order models for the sensor and/or actuator dynamics may be included, if

desired. A first-order actuator dynamics model has been considered in Ref. [9]; however, no
significant increase in the complexity of the analysis is noticed, nor are the results of the adaptive
control scheme any different, due to the addition of the actuator dynamics model. Hence, neither
sensor nor actuator dynamics has been explicitly modeled in the present work.
The reference model is taken to be a second-order linear system as follows

_xm1
¼ xm2

;

_xm2
¼ � o2

nxm1
� 2zonxm2

þ d0rðtÞ: ð5Þ

The reference model parameters, z;on; are constants, and are chosen to have the following values
in dimensionless units: z ¼ 0:707; on ¼ 0:1: The forcing function rðtÞ used to excite the reference
model is the same as that used in Eq. (3). For the reference model, the outputs, ym1

; ym2
; are

identical to the states, as below

ym1
¼ xm1

;

ym2
¼ xm2

: ð6Þ

Comparing Eqs. (4) and (5), the combined plant-controller dynamics will be exactly identical to
the reference model dynamics (but for the presence of measurement noise in the plant dynamics),
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if the following equalities hold:

c1a1 � d0y
�
1 ¼ � o2

n;

c1a2 � c2 � d0y
�
2 ¼ � 2zon;

c1a3 � d0y
�
3 ¼ 0;

c1a4 � d0y
�
4 ¼ 0;

c1a5 � d0y
�
5 ¼ 0; ð7Þ

where y�1; . . . ; y
�
5 are the ideal controller parameter values for which the control law, Eq. (3),

theoretically provides the possibility of perfect model matching between the plant-controller
dynamics and the reference model dynamics. In practice, if the adaptation law succeeds in
evolving the controller parameters to a sufficiently good approximation to their ideal values,
y�1; . . . ; y

�
5; then Eq. (7) could be used to estimate the plant parameters, a1; . . . ; a5:

3.1. Output error and parameter error

The tracking error between the plant and reference model outputs is defined as follows

e1 ¼ yp1
� ym1

;

e2 ¼ yp2
� ym2

: ð8Þ

The error dynamics can then be shown to satisfy the following equations by using Eqs. (4) and (2)
for the plant dynamics, and Eqs. (5) and (6) for the reference model dynamics

_e1 ¼ e2 þ ½terms in dyp1
; dyp2

�;

_e2 ¼ � o2
ne1 � 2zone2 þ ðc1a1 � d0y1 þ o2

nÞxp1 þ ðc1a2 � c2 � d0y2 þ 2zonÞxp2

þ ðc1a3 � d0y3Þx3
p1
þ ðc1a4 � d0y4Þx2

p1
xp2 þ ðc1a5 � d0y5Þxp1x

2
p2
þ ½terms in dyp1

; dyp2
�: ð9Þ

Using the definitions in Eq. (7) for the y�i ; and defining the error in the controller parameters, Zi; in
the following manner:

Zi ¼ y�i � yi; i ¼ 1; . . . ; 5: (10)

Eq. (9) for the output error dynamics can be rewritten as follows

_e1 ¼ e2 þ ½terms in dyp1
; dyp2

�;

_e2 ¼ � o2
ne1 � 2zone2 þ d0Z1xp1 þ d0Z2xp2 þ d0Z3x

3
p1

þ d0Z4x
2
p1

xp2 þ d0Z5xp1x
2
p2
þ ½terms in dyp1

; dyp2
�: ð11Þ

Note that the forcing function rðtÞ does not appear in the equation for the error dynamics.

3.2. Adaptation law

The adaptation law is derived under the condition of no measurement noise. The derivation is
similar to that outlined in Ref. [8]; however, the present derivation also considers the effect of the
forcing function that was not included in Ref. [8]. Since the forcing function rðtÞ does not enter
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into the error dynamics, Eq. (11), it becomes necessary to additionally consider the plant
dynamics, Eq. (4), in the analysis to derive the adaptation law.
The error dynamics, Eq. (11), is first compactly represented as follows

_e1

_e2

 !
¼

0 1

�o2
n �2zon

" #
e1

e2

 !
þ

0

1

� �
d0ZThðxpÞ (12)

or

_e ¼ Ae þ bd0ZThðxpÞ; (13)

where eT ¼ ðe1; e2Þ is the vector of output errors, A is the 2	 2 matrix in Eq. (12), bT
¼ ð0; 1Þ; Z is

the vector of parameter errors, xT
p ¼ ðxp1 ;xp2Þ; and hðxpÞ is the vector given by

hTðxpÞ ¼ ðxp1 ; xp2 ;x
3
p1
; x2

p1
xp2 ;xp1x

2
p2
Þ:

Note that the evolution of the error as given by Eq. (13) depends on the error e itself, the
parameter error Z; and a function of the plant states hðxpÞ; symbolically, _e ¼ f eðe; Z; xpÞ:
In a like manner, the closed-loop plant dynamics, Eq. (4), can be written as follows

_xp ¼ Axp þ bd0ZThðxpÞ þ d0rðtÞ; (14)

which appears similar to the error dynamics, Eq. (13), but for the appearance of the forcing term,
rðtÞ: Symbolically, this can be written as _xp ¼ f xðZ;xp; rðtÞÞ:
An adaptation law of the form, _Z ¼ gðe;xpÞ; is desired such that it drives the output error e,

plant states xp; and parameter error Z; all to zero. Then, since Z ¼ y� � y; and noting that the ideal
parameters y� are taken to be time invariant, the parameter update law is obtained as _y ¼

�gðe; xpÞ: Note that the adaptation law for _Z cannot be a function of Z as that would require the
parameter update law for _y to be a function of y and y�; but the y� are unknown.
For the derivation of the adaptation law, the 9-D dynamical system consisting of the output

error dynamics, _e ¼ f eðe; Z; xpÞ in Eq. (13), the plant dynamics, _xp ¼ f xðZ;xp; rðtÞÞ in Eq. (14), and
the parameter error dynamics, _Z ¼ gðe;xpÞ; is considered. Note that this dynamical system is
nonautonomous due to the presence of the forcing term rðtÞ in the function f x: Nevertheless,
ðe;xp; ZÞ ¼ ð0; 0; 0Þ is an equilibrium point of this dynamical system provided rðtÞ ¼ 0 for all tXt0;
for some t040: It is of interest to determine the stability of this equilibrium point as that would
establish tracking (e ¼ 0), regulation (xp ¼ 0), and parameter convergence (Z ¼ 0) for the
adaptive feedback linearization scheme. To this end, a time-invariant candidate Lyapunov
function is chosen as follows

V ðe;xp; ZÞ ¼ eTPee þ xT
p Pxxp þ d2

0Z
TGZ; (15)

where Pe;Px are symmetric 2	 2 matrices that are positive definite, and G is a diagonal 5	 5
weighting matrix with all the diagonal entries, G1; . . . ;G5; positive, i.e., G is also a positive definite
matrix. Consequently, it is easily checked that V ð0; 0; 0Þ ¼ 0; and V ðe; xp; ZÞ40 for all other values
of e;xp; Z; hence, V ðe;xp; ZÞ is a positive definite function with a minimum at ðe;xp; ZÞ ¼ ð0; 0; 0Þ:
The adaptation law is derived by first computing _V ; the derivative of the function V in Eq. (15)

along the trajectory of Eqs. (13), (14), and (16), in 9-D space. Equating the sum of terms
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containing _Z and hðxpÞ to zero gives the parameter error update law as follows

_Z ¼ �
1

d0
G�1hðxpÞðe

TPe þ xT
p PxÞb (16)

and the remaining terms in the expression for _V are as below

_V ¼ �eTQee � xT
p Qxxp þ 2ðxT

p PxbÞd0rðtÞ: (17)

Qe;Qx in Eq. (17) are positive definite symmetric matrices and are related to the matrices Pe;Px in
Eq. (15) by the Lyapunov equation

ATP þ PA ¼ �Q (18)

by virtue of A being a stable matrix. It has been shown [20] that it is adequate to select Q to be the
identity matrix I, in which case the elements of the P matrix can be obtained by solving Eq. (18) as
follows

p11 ¼ 2zonp21 þ o2
np22;

p12 ¼ p21 ¼
1

2o2
n

;

p22 ¼
1=2þ p12

2zon

: ð19Þ

In the present study, the choice Qe ¼ I is made, and hence the Pe matrix is as given in Eq. (19). Qx

is taken to be �2I ; with � ¼ 0:1; in this case, every element of Px is obtained as 1=�2 times the
corresponding element pij in Eq. (19).

3.3. Stability analysis

First consider the case where rðtÞ ¼ 0: It is then clear from Eq. (17) that _Vp0; i.e.,
_V is a negative semi-definite function. Hence, V in Eq. (15) is indeed a valid Lyapunov
function, and therefore the results of Lyapunov stability analysis are applicable to the
present problem. It follows that the dynamical system with states e; xp; Z is globally stable,
i.e., e; xp; Z are bounded. Consequently, Eqs. (13) and (14), respectively, show _e and _xp

to be bounded as well. It then follows that €V ; which can be obtained from Eq. (17), is
bounded, and hence _V is uniformly continuous. Use of Barbalat’s lemma (refer [7, p. 125]) then
assures us that _V ! 0 as t ! 1; which implies, by reference to Eq. (17), that both e ! 0 and
xp ! 0 as t ! 1: Thus, global asymptotic convergence of the output error e to zero and the plant
states xp to zero is established. However, note that the equilibrium point ðe; xp; ZÞ ¼ ð0; 0; 0Þ is not
asymptotically stable since it has not been possible to establish the convergence of Z to zero. Thus,
the above analysis only guarantees boundedness of the parameter errors, not parameter
convergence.
Now, consider a forcing function rðtÞ having the following properties: (i) it is a smooth function;

(ii) rðtÞ and all its time derivatives are bounded; (iii) it satisfies a ‘‘finite energy’’ condition,Z 1

0

jrðtÞj2 dto1; (20)
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and (iv) rðtÞ ! 0 as t ! 1: In particular, for the purpose of this analysis, choose the function rðtÞ

as follows

rðtÞ ¼ �k2 2ðxT
p PxbÞd0; (21)

where k is an arbitrary constant. Referring to Eq. (17), once again _V is negative semi-definite, and
the previous sequence of arguments goes through entirely. The conclusion, once again, is the
same; namely, the plant states xp and the output error e are both guaranteed to converge to zero.
However, as before, the analysis only shows parameter error Z to be bounded; convergence of Z to
zero may possibly be achieved by use of a suitable persistently exciting forcing function rðtÞ; but
this is not guaranteed.
An analysis that explicitly accounts for a persistently exciting forcing rðtÞ and provides a

stronger result, including conditions under which parameter convergence may be obtained, has
not yet been achieved. Nevertheless, the above analysis is useful in two ways. First, it reveals that
a suitable choice of rðtÞ can provide an additional negative semi-definite term to _V : When
compared with the unforced case, this may result in, (i) faster convergence of e;xp; and (ii) lower
values of V ðt ! 1Þ; and hence better convergence of the parameter errors. Second, the form of
rðtÞ in Eq. (21) suggests that a suitable choice for the forcing function would be a sinusoidal signal
modulated by a function that is exponentially decreasing with time. Simulation of the closed-loop
response of the system in Fig. 2 in the following sections with such a forcing function reveals that
partial parameter convergence is indeed achieved.
4. Baseline study

In the light of the above discussion, the forcing function rðtÞ is chosen to be of the form

rðtÞ ¼ r0 sinðOtÞ expð�t=TÞ (22)

with baseline values of r0 ¼ 0:01; O ¼ 0:2; and T ¼ 300: Note that the variable t refers to a
nondimensional time. The matrix G in Eq. (15) is taken as

G ¼ diagð0:1; 0:01; 0:001; 0:001; 0:001Þ (23)

As in Ref. [8], d0 ¼ 1 is assumed without loss of generality. Initial conditions on the plant and
model states are as specified in Section 2 on open-loop response. The controller parameters yi are
all taken to be zero initially. With these choices, results from the closed-loop simulation of the
system in Fig. 2 are described below.
Fig. 3 shows the plant states, xp1 ;xp2 ; tending to zero with time, and Fig. 4 shows the 2-norm of

the output error vector1 also converging to zero. Thus, tracking and control have both been
successfully achieved. This, by itself, is not remarkable as it is well known that both tracking and
control can be obtained even without the use of a forcing function, as has been demonstrated in
Refs. [8,11]. Of greater interest are Figs. 5 and 6 which show that the linear parameter errors,
Z1; Z2; also converge to zero. That is, the controller parameters, y1; y2; actually converge to their
1For purposes of economy and following the usual practice of showing the norm of the error, the 2-norm has been

plotted in Fig. 4, even though e contains both displacement and velocity error terms with equal weighting. It has,

however, been confirmed that individual elements of the error vector do tend to zero satisfactorily.
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Fig. 3. Closed-loop response of the system in Fig. 2 showing convergence of plant states (xp1 : —; xp2 : - -).
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Fig. 4. Closed-loop response of the system in Fig. 2 showing convergence of error, e, between the plant and model

outputs.
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Fig. 5. Closed-loop response of the system in Fig. 2 showing convergence of the linear parameter error, Z1:
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Fig. 6. Closed-loop response of the system in Fig. 2 showing convergence of the linear parameter error, Z2:
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Fig. 7. Closed-loop response of the system in Fig. 2 showing non-convergence of the nonlinear parameter errors (Z3: —;

Z4: - -; Z5: - . -).

H. Jain et al. / Journal of Sound and Vibration 287 (2005) 939–960 951
ideal values, y�1; y
�
2; defined in Eq. (7). However, it is seen in Fig. 7 that the nonlinear parameter

errors, Z3; Z4; Z5; do not converge to zero. Hence, the parameters, y3; y4; y5; do not converge to
their ideal values as given in Eq. (7). The adaptive feedback linearization scheme employed in this
study, therefore, provides estimates of the linear plant parameters, y1; y2; but not of the nonlinear
parameters.
It is instructive to understand why convergence of the nonlinear parameter errors was not

achieved in Fig. 7. For this, consider the nonlinear terms in Eq. (4) for the closed-loop plant
dynamics. The sum of these three terms, denoted by the symbol S, is as follows

S ¼ ðc1a3 � d0y3Þx3
p1
þ ðc1a4 � d0y4Þx2

p1
xp2 þ ðc1a5 � d0y5Þxp1x

2
p2
: (24)

In each of the bracketed expressions in Eq. (24), the first term is due to the open-loop plant
dynamics in Eq. (1) and the second term is from the control law in Eq. (3). A plot of the variation
of S during the closed-loop response of the system is shown in Fig. 8; it can be seen that S

converges to zero. However, as seen from Fig. 7, the non-convergence of the nonlinear controller
parameters implies that each of the bracketed expressions in Eq. (24) is not individually
eliminated. Instead, the sum of all nonlinear terms in the open-loop plant dynamics is collectively
canceled by an equal and opposite contribution from the controller.
It can be seen from Fig. 8 that S effectively settles down to zero for t  600: The nonlinear

parameters also stop evolving at about the same time and the closed-loop plant dynamics is then
essentially linear. The linear parameter errors in Figs. 5 and 6 continue to be driven until they
apparently converge to zero at some t41000: At that point, model matching between the closed-
loop plant dynamics and the reference model is effectively achieved. Subsequently, Figs. 3 and 4
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show that the plant states, xp; and the output error, e, respectively tend to zero by t  1500; and so
does the control input, u, as seen in Fig. 9. Thus, once S ¼ 0; there is no significant effect driving
the nonlinear parameters towards their ideal values, and hence parameter convergence is obtained
only for the linear parameters.
4.1. Comparison with unforced case

It is worthwhile to contrast the performance of the adaptive feedback linearization scheme with
forcing, especially the parameter convergence observed in Figs. 5 and 6, with the results obtained
from a similar procedure, but without a forcing function. While tracking and regulation are
achieved even in the unforced case, Figs. 10 and 11 show that neither of the linear parameter
errors converges to zero; hence, no parameter estimation is possible. The difference between the
forced and unforced systems can be understood by considering Fig. 12, which shows a plot of the
natural logarithm of V, the Lyapunov function in Eq. (15), for both the forced and unforced
cases, with all other parameters held at their baseline values. It can be noticed that Fig. 12 shows a
lower value of ln V for the forced case. This can be attributed to the smaller value of the quadratic
parameter error term in Eq. (15), and is therefore directly related to the successful parameter
convergence observed in Figs. 5 and 6 for the forced case. The forcing function, therefore, drives
the parameter errors to lower values; however, as explained earlier, it is unable to drive the
nonlinear parameter errors individually to zero.
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Fig. 10. Closed-loop response of the system in Fig. 2 without the forcing rðtÞ showing non-convergence of the linear

parameter error, Z1:
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Fig. 9. Closed-loop response of the system in Fig. 2 showing variation of control, u, with time.
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Fig. 11. Closed-loop response of the system in Fig. 2 without the forcing rðtÞ showing non-convergence of the linear

parameter error, Z2:
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Fig. 12. Variation of ln V as a function of time for both forced and unforced response of the closed-loop system in Fig.

2 (forced: lower graph; unforced: upper graph).
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5. Parametric study

It is of interest to examine whether a different choice of any of the constants in the adaptive
feedback linearization scheme has an effect on the parameter convergence. The various constants
in question are: (i) the amplitude, frequency, and decay time of the forcing function in Eq. (22); (ii)
the diagonal elements of the G matrix in Eq. (23), and (iii) the Qe;Qx matrices, and hence the
elements of the corresponding P matrices in Eq. (19). All the constants listed above were
systematically varied, one at a time, while keeping all the other constants fixed at their baseline
values. Following the standard practice, typical variations of the constants considered were from
0:5 to 2:0 times their values in the baseline study. In every case, results of the closed-loop
simulation showed no qualitative difference from what was observed in the baseline study, thereby
indicating that the results are unaffected under reasonable changes in the parameter values.
Tracking, regulation, and convergence of the linear parameters was achieved in all cases, while the
nonlinear parameters did not converge. Numerically, there were minor differences in the time
taken for S, the linear parameter errors, and the tracking error to converge to zero. Of greater
significance is the value of ln V to which the system converged when the constants in the forcing
function were varied. It can be seen from Figs. 13–15 that larger amplitude, higher frequency, and
greater decay time, all contribute to a lower value of ln V ; and hence smaller parameter errors (for
the nonlinear parameters since the linear parameters converge to zero anyway). However,
additional simulations have shown that this trend is not sustained for arbitrary variation of the
forcing function parameters, and it is therefore not possible to reduce the nonlinear parameter
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Fig. 13. Variation of ln V as a function of time for different values of r0; the amplitude of the forcing function

(r0 ¼ 0:005: — (upper graph); r0 ¼ 0:01: — (lower graph); r0 ¼ 0:02: - - -).
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Fig. 15. Variation of ln V as a function of time for different values of T, the decay time of the forcing function

(T ¼ 208: upper graph; T ¼ 300: middle graph; T ¼ 416: lower graph).
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errors to zero in this manner. No attempt was made to look for optimal values of these parameters
as that was not of interest to this study.
6. Effect of measurement noise

In practice, the adaptive feedback linearization scheme in Fig. 2 would have to perform even
when the plant outputs yp are corrupted by measurement noise. The experimental work in Ref.
[11] has established that control of limit cycling motion can be successfully achieved in the
presence of measurement noise. It remains to be seen whether tracking and parameter estimation
are still possible when measurement noise is present. For this purpose, a measurement noise
signal, as suggested in Ref. [7], is considered in the plant output, Eq. (2), as follows

dy1 ¼ 0:003 sinð10tÞ; dy2 ¼ 0: (25)

The baseline study of the closed-loop system in Fig. 2 is now repeated with the noise signal in
Eq. (25) incorporated in the plant output. Fig. 16 is a plot of the 2-norm of the output error
showing that tracking, though understandably not perfect, is substantially achieved. It can be seen
from Figs. 17 and 18 that the linear parameter errors in this case do converge to zero in a
statistical sense. Thus, parameter estimation of the linear parameters is successful even in a noisy
measurement environment. Clearly, other representations of the noise signal are possible, and it
would be interesting, though beyond the scope of this work, to verify that the present method is
equally effective in their presence.
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Fig. 16. Closed-loop response of the system in Fig. 2 with measurement noise showing convergence of error e, between

the plant and model outputs.
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Fig. 17. Closed-loop response of the system in Fig. 2 with measurement noise showing convergence of the linear

parameter error, Z1:
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Fig. 18. Closed-loop response of the system in Fig. 2 with measurement noise showing convergence of the linear

parameter error, Z2:
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7. Conclusions

Parameter estimation for an unstable, limit cycling system has been successfully demonstrated
using an adaptive feedback linearization scheme. Since it is well known that parameter
convergence requires external forcing, a novel adaptation law has been derived by carrying out a
Lyapunov analysis for the stability of the closed-loop system including a forcing function. The
stability analysis itself reveals the desired form of the forcing to be an exponentially damped
sinusoidal signal. Baseline simulations showing successful control, tracking, and linear parameter
convergence have been reported, while the non-convergence of the nonlinear parameters has been
explained. Further simulations have been carried out to compare the baseline results with those in
the unforced case, where parameter convergence is not obtained, and to study the effect of varying
the constants in the forcing function on parameter convergence. Finally, the baseline results,
including linear parameter convergence, are shown to be successfully reproduced even in the
presence of measurement noise in the plant output signal.
The example of limit cycle oscillations in delta wing roll dynamics has been considered as a

typical case; however, the procedure described in this paper may be easily applied to other systems
of a similar nature. Clearly, the choice of a linear reference model as in Eq. (5) can be made
independent of the nonlinear terms in the plant model, and a suitable feedback linearizing control
as in Eq. (3) can be derived for a wide class of nonlinear systems. Likewise, an adaptation law of
the form Eq. (16) can be obtained—the elements of the vector hðxpÞ will vary depending on the
nonlinear terms in the plant model—and the Lyapunov analysis can then be carried out along
similar lines as shown in this paper.
The issue of devising an adaptation law and a suitable, possibly persistently exciting, forcing

signal, which will also guarantee convergence of the nonlinear parameters, remains a subject for
future work.
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