Available online at www.sciencedirect.com

. JOURNAL OF
scmncs@mnscr SOUND AND
g X ! VIBRATION
ELSEVIER Journal of Sound and Vibration 288 (2005) 107—131

www.elsevier.com/locate/jsvi

Dynamic analysis of an inclined beam due to moving loads

Jia-Jang Wu*

Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Hai-Chuan Road, Nan-Tzu,
Kaohsiung 811, Taiwan, Republic of China

Received 10 March 2004; received in revised form 2 August 2004; accepted 23 December 2004
Available online 10 March 2005

Abstract

It has been found that if each of the moving loads on the beam is considered as a moving mass element,
then one can easily formulate the problem with all the pertinent factors relating to the multiple moving
loads considered. To this end, the property matrices of the moving mass element are derived by taking
account of the effects of inertial force, Coriolis force and centrifugal force induced by the moving mass.
Combination of the element property matrices for each of the moving loads and the associated overall
property matrices for the inclined beam itself determines the overall effective property matrices of the entire
vibrating system. Since the property matrices of each moving mass element are dependent on the
instantaneous position of the moving load on the inclined beam, they are time-dependent and so are the
overall effective mass, damping and stiffness matrices of the entire vibrating system. To validate the
presented theory, the dynamic responses of a horizontal pinned—pinned beam subjected to a moving load
are determined and compared with those of the existing literature and good agreement is achieved. Finally,
the following factors having something to do with the title problem are studied: the moving-load speed, the
Coriolis force, centrifugal force, the frictional force, the inclined angle of the beam and the total number of
moving loads. Numerical results reveal that all the above-mentioned parameters have significant influence
on both the vertical (y) and the horizontal (X) dynamic responses of the inclined beam except the frictional
force.
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1. Introduction

The literature concerning the moving-load-induced-vibration problem is numerous. For
example, Xu et al. [1] have used the finite difference method and the perturbation technique to
study the longitudinal and transverse motions of a finite elastic beam subjected to a moving mass.
Michaltsos et al. [2] have studied the influence of mass and velocity of the moving load on the
dynamic response of a simply supported beam. Esmailzadeh and Ghorashi [3,4] have investigated
the dynamic behavior of a beam traversed by uniformly and partially distributed moving masses.
Mofid and Shadnam [5], Cifuentes [6], Fryba [7], Foda and Abduljabbar [8], Akin and Mofid [9],
Ichikawa et al. [10], Wu [11], Stanisik and Hardin [12] and Beneditti [13] have performed the
dynamic analysis of beams due to moving masses by means of various analytical or numerical
methods.

From the review of the existing literature, it is found that all the above-mentioned researches
are limited to the cases that the external load is moving on the horizontal beams. If the last
horizontal beams are replaced by the inclined ones, then the approaches presented in the foregoing
researches cannot be directly applied to solve the problem. For this reason, this paper presents the
concept of moving mass element, so that one can easily determine the dynamic characteristics of
the inclined beams subjected to moving loads, with the effects of inertia force, Coriolis force and
centrifugal force considered.

Firstly, under the assumption of all the moving loads being always in close contact with the
inclined beam, each of the moving loads is considered as a moving mass element and the related
element property matrices are derived based on the local (xy) coordinates of the beam element on
which the moving load applies. Next, the last matrices are transformed into those with respect to
the global (Xy) coordinates of the entire vibrating system. It has been found that, using the
presented concept, one can easily take account of the effects of inertia force, Coriolis force and
centrifugal force induced by all the moving loads by directly adding the last property matrices of
each moving mass element to the overall ones of the entire inclined beam itself. Because the
property matrices of each moving mass element are dependent on the instantaneous position of the
moving load on the inclined beam, they are time-dependent and so are the overall effective mass,
damping and stiffness matrices of the entire vibrating system.

Before the title problem is studied, the dynamic responses of a horizontal pinned—pinned beam
subjected to a moving load are determined and compared with those of the existing literature and
good agreement is achieved. In addition to present the theory regarding the moving mass element,
the factors having something to do with the title problem are also investigated. Among which, the
moving-load speed, the Coriolis force, the centrifugal force, the inclined angle of the beam and the
total number of moving loads are found to have significant influence on both the vertical (¥) and
the horizontal (X) dynamic responses of the inclined beam. However, the effect of frictional force
is negligible.

2. Property matrices of a moving mass element

Fig. 1(a) shows a concentrated mass m, moving on an inclined beam element. If, at any instant
of time, the moving mass m, is located at point i of the beam element, then the interaction forces
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Fig. 1. (a) The equivalent nodal forces (f,—f) of an inclined beam element due to a moving concentrated mass m,;
(b) For any point on the inclined beam, its displacement components in the x and y directions (1, and u,) and those in
the X and y directions (u; and u;) are related by uz = u,cos 0 — u, sin 0 and u; = u, sin 0 4 u, cos 0.

in the x and y directions, induced by the moving mass m,, are respectively given by [6]

F, = mciixa (la)

Fy = m(iiy + 2V, + Vi), (1b)

where the overhead dot (-) and prime (') represent the differentiations with respect to (w.r.t.) time ¢
and coordinate x, respectively, V represents the velocity of the moving mass m,. in the local x
direction, u, and u, represent the displacement components of contact point 7 in the local x and y
directions of the beam element, respectively, while m.ii,, 2m, Vit’y and m, Vzu’y/ represent the inertia
force, Coriolis force and centrifugal force (due to the fact that the mass is moving along the
deformed shape of the beam), respectively. Note that Eq. (1) is obtained under the assumption
that the moving mass and the beam element are always in close contact.

For an arbitrary point on the inclined beam, its displacement components in the local x and y
directions, u, and u,, and those in the global % and y directions, u;z and u;, have the following
relationships (cf. Fig. 1(b)):

Uz = Uy cos 0 —u, sin0, (1c)

uy = uy sin 0 + u, cos 0. (1d)

It is noted that u, and u, are in the axial and transverse directions of the inclined beam, while uz
and u; are in the horizontal and vertical directions, respectively. Egs. (Ic) and (1d) are two
important expressions, because based on which most of the phenomena appearing in the
numerical results may be easily explained.

The equivalent nodal forces of the beam element induced by the two forces given by Egs. (1a)
and (1b) are given by (cf. Fig. 1(a)) [14]

Jr=0Fx (k=1,4), (2a)
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Jr=¢F, (k=2,3,5,6), (2b)
where ¢, (k =1 to 6) are the shape functions defined by [14]
$=1-g,

¢2 = 1 - 3Q2 +2C37

by = (c— 25 + ),

b4 =¢,
b5 =37 —2¢°,
be = (=" + ) (3a)
with
= (3b)

In the last expressions, £ represents the total length of the beam element on which the moving
mass m, applies, while x; represents the local x coordinate of the moving mass m, with respect to
the left end of the beam element (see Fig. 1(a)).

Based on the definition of shape functions [15], the displacement components of the contact
point i in the x and y directions, u, and u,, can be obtained from

Uy = Gy + Pyuy, (4a)

U, = Gotts + Pp3u3 + Psus + Pelis, (4b)

where u; (i = 1, ..., 6) are the nodal displacements of the beam element on which the moving mass
m, applies.
The time derivatives of Eq. (4) give

iy = iy + ila, (5a)

ity = ¢yiiy + P3its + Psiis + Pyl (5b)

Substituting Eq. (5) into Egs. (1a), (1b) and (2), and writing the resulting expressions in matrix
form yield

U} = [ml{a} + [} + [kNul, (6)

where
= f2 f3 fa s f6]Ta (7a)
1", (7b)

(i) =iy iy i3 dig Us s
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(7c)

(7d)

(8a)

(8b)

(8¢)

For convenience of application of the finite element method (FEM), two coordinate systems are
introduced in Fig. 1(a). Where xy represents the local coordinate system of the beam element and
Xy represents the global one of the entire vibrating system. If u; (i = 1,...,6) denote the nodal
displacements w.r.t. the local xy coordinate system and @; (i = 1,..., 6) denote the corresponding

ones w.r.t. the global Xy coordinate system, then according to Ref. [16], one has

where

{u} = [T{a},
[ur ur ws us us ugl,
@, @ @3 iy ds i),

)

(10a)

(10b)
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rcosf sinf O 0 0 07
—sinf cosf 0 0 0 0
0 0 1 0 0 0
=1 0 0 cos sinf 0 (1
0 0 0 —sinf cosfO O
0 0 0 0 0 1]

In the last expression, 0 is the inclined angle of the beam element (see Fig. 1(a)), while [T7] is the
transformation matrix between the local xy coordinate system and the global X7 one.

Similarly, the nodal forces in local xy coordinate system, f; (i = 1,...,6), can be transformed
into those in global Xj coordinate system, f; (i = 1,...,6), by using

{1 =TI} (12)
where {f} and [T] are given by Egs. (7a) and (11), respectively, while {f} takes the form
V=01 f2 Js Ja Fs Jd" (13)
Differentiating Eq. (9) w.r.t. time yields
{uy = [T]{a), (14a)
{it) = [T){a), (14b)
where
@ = &b i d s 1), (15a)
(i) =iy i i ity s )" (15b)
Introducing Egs. (9), (12) and (14) into Eq. (6) leads to
{f} = i) + [}y + (K], (16)
where
(] = [T]' [m][T], (17a)
[ = [T]' [T, (17b)
(] = [T [K][T]. (17¢)

In Eq. (17), the right superscript T of [T'] denotes the transpose of the matrix [7'], while [7], [¢] and
[k] are the mass, damping and stiffness matrices of the moving mass element w.r.t. the global
Xy coordinate system. Because the numerical values of the last property matrices for a moving
mass element are dependent on the shape functions of the beam element on which the
associated moving mass m, applies (see Eq. (8)), they are to vary with the position of moving mass
m, on the beam.
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3. Equations of motion of the entire vibrating system

For a multiple-degree-of-freedom damped structural system, its equation of motion is given by

[M(0]{g(0} + [CONG(D)} + [KONG0)} = {F(1)}, (18)

where [M(1)], [C(l)] and [K(?)] are the instantaneous overall mass, damping and stiffness matrices,
respectively: {g(f)}, {q(t)} and {g(¢)} are the acceleration, velocity and displacement vectors,
respectively; while {F(7)} is the instantaneous external force vector. It is worthy of mention that the
symbols [M ()], [C(£)] and [K(#)] in Eq. (18) are called the instantaneous matrices, because they are
time-dependent and composed of the constant overall mass and stiffness matrices of the entire
inclined beam itself and the time-dependent element property matrices of the moving mass
element. Since the position of the moving concentrated mass m,. changes from time to time, {F(f)}
is also a time-dependent external force vector.

3.1. Overall property matrices

To take the effects of inertia force and centrifugal force of the moving load into account, one
must add the contribution of the mass and stiffness matrices of the moving mass element, [2] and
[k], to the overall corresponding ones of the entire inclined beam itself, [M}] and [K}]. In other
words, the instantaneous overall mass matrix [M ()] and stiffness matrix [K)] of the entire
vibrating system are established by

[M () = (M + [l (19a)
[K(I)]nxn = [Kb]nxn + [lg]6><6v (19b)

where
My=M; (Gj=1,....n), (20a)
Kj=Kpy (i,j=1,....n) (20b)

except
MS,‘S]' - Mb,SiSj + I/hlj (l’.] = 17 ceey 6)9 (213)
KS,‘S/ = K[),S,'Sj + lgl] (i7j = 1? MR 6)' (21b)

In the last equations, n represents the total degrees of freedom of the entire vibrating system, [M]
and [K}] represent the overall mass and stiffness matrices of the inclined beam obtained by
assembling all its element mass and stiffness matrices [16], respectively, while the subscripts s; and
s; (i,j =1,...,6) represent the numberings for the 6 dof of the two nodes of the beam element on
which the moving mass m, applies at time ¢.

Since it is difficult to find the damping matrices of the structural elements from the existing
literature, the overall damping matrix [Cp] of the inclined beam is determined by using the theory
of Rayleigh damping [17]

[Cp] = a[M (] + b[K (] (22a)
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with
D w; — Ew;
g— cocq,(fw_, 25./@)’ (22b)
w} — o
2 w) — o
b= 28— o) (22¢)
w? — 7

J

where [M ;] and [K ;)] are respectively the overall mass and stiffness matrices given by Egs. (19a)
and (19b), while ¢; and ¢; are damping ratios corresponding to any two natural frequencies of the
structure, w; and w;.

If the Coriolis force induced by the moving mass m, is considered, one must add the
contribution of the damping matrix of the moving mass element, [¢], to the overall damping
matrix of the inclined beam itself, [Cp], to establish the instantaneous overall damping matrix,
[Cwl ie.,

[Cinluxn = [Chluxn + [Tloxes (23a)

where
Ci=Cry (j=1,...,n) (23b)

except
Csisj = Cpgs, + ¢ (G,j=1,...,6). (23¢)

3.2. Equivalent nodal forces and overall external force vector

The equivalent force vector P induced by the moving concentrated mass m,. at any time ¢ is
given by

P=iP.+jpP, (24)

where i and j are respectively the unit vectors in the local x and y directions (see Fig. 2), while P,
and P, are the corresponding force components given by

P, = —mgsin 0 — Fy, (25a)

P, = —m.g cos 0. (25b)

In the last expressions, ¢ is the acceleration of gravity and 0 is the inclined angle of the beam.
Besides, F is the frictional force at the contact point 7 between the moving load and the inclined
beam. The force equilibrium along the inclined beam in the x direction requires that

Fr = pm.g cos 0 =m.g sin 0. (26a)
Thus,
1= tan 0, (26Db)

where u is the friction coefficient. It is evident that Eq. (26a) must be satisfied then a load may
move along an inclined beam with a constant speed V. Note that Eq. (26b) is obtained under the
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P=m.g

Point i

» X

Fig. 2. The equivalent nodal forces (f’ (ISLf gy)) of an inclined beam element on which the moving load P = m_g applies.

assumption that there exists no sliding between the concentrated mass m,. and the inclined beam.
For a horizontal beam (i.e., 8§ = 0°), the effect of frictional force is usually neglected. This is
equivalent to u = tan 0° = 0. In other words, Eq. (26b) is available for either the inclined beam or
horizontal beam.

The equivalent force vector P given by Eq. (24), with its components given by Egs. (25) and
(26), changes its location on the inclined beam from time to time. For convenience of the finite
element analysis, it is replaced by an equivalent nodal force vector

V'(S)} — [/1’(13) '(23) . fgs)]T (27a)

with
V= pPe k=19, (27b)
9 — P, (k=2,3,5,6), (27¢)

where the superscript s refers to the numbering of the beam element on which the moving mass i,
applies, while ¢, (k = 1,...,6) are the shape functions given by Eq. (3).

The equivalent nodal forces given by Eq. (27) are in the local xy coordinate of the beam
element, they must be transformed into the global Xy coordinate of the entire vibrating system
before assembling by using

7 = 1117y, (282)
where
=0 7 TOT (28b)

It is noted that Eq. (28a) is derived from Eq. (12) with [T]~! = [T]".
Since all the nodal forces of the entire vibrating system are equal to zero except those at the two
nodes of the sth beam element on which the moving mass m, applies, the overall external force
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vector {F(l)} in Eq (1 8) takes the form:
F- =(s =(s =(s =(s =(5) =(s T >

where f ES) (i=1,...,6) are the nodal forces equivalent to P in global Xy coordinate of the entire
vibrating system and are determined by Eq. (28). They are the s;th coefficients of {F(¢)}, where s;,
i=1,...,6, represent the numberings for the 6 dof of the beam element on which the moving
mass m, applies at time ¢.

4. Dynamic responses of the inclined beam due to moving loads

If the effects of inertia force, Coriolis force and centrifugal force induced by the moving loads
are considered, then the dynamic responses of the inclined beam subjected to the moving loads
may be obtained with the following steps:

1. Determine the transformation matrix [7] with Eq. (11).

2. Calculate the instantaneous mass, damping and stiffness matrices, [17], [¢] and [k], of the
moving mass element with Eq. (17).

3. Determine the instantaneous overall mass and stiffness matrices, [M()] and [K)], (see
Egs. (19)(21)), the instantaneous overall damping matrix [C,] (see Egs. (22)—(23)) and the
instantaneous overall force vector {F(¢)} at time ¢ (see Egs. (24)—(29)).

4. Determine the dynamic responses of the inclined beam by solving for the equation of motion,
Eq. (18), with the Newmark direct integration method [17].

5. Repeat steps 1-4 to obtain the dynamic responses of the inclined beam at time ¢ = ¢, =
t,_1+ At (with r = 1,2,... and ¢y = 0), where Az is the time interval.

5. Numerical results and discussions

The size and physical constants for the uniform undamped pinned—pinned beam studied in this
paper are (cf. Figs. 3, 5, 13): the cross-section is rectangular with width » = 0.018113m and

< =

P>
Section A-A
Fig. 3. A horizontal undamped pinned—pinned beam, with total length L = 4.352m, width » = 0.018113m and

thickness 4 = 0.072322 m, subjected to a concentrated mass m, = 21.8 kg moving from the left end to the right end of
the beam with a constant speed V' =27.49m/s.
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thickness 7 = 0.072322 m, the moment of inertia is I = bh3/12 =571 x 107" m*, total length is
L =4.352m, mass density is p = 15267.1756kg/m* and Young’s modulus is E = 205.9936 x
108 kg/m? = 2020.797216 x 108 N/m?2. All the numerical results presented in this paper are
obtained based on the acceleration of gravity g = 9.81m/s?, the time interval Az = 0.001 s and the
friction coefficient u = tan 0 with 0 representing the inclined angle of the beam. Besides, the
overall damping matrix of the entire vibrating system, [C(,], is obtained based on the damping
ratios &; = & = 0.005 and the associated natural frequencies w; and w,. For convenience of
comparison, the dimensions and material properties of the beam studied in this paper are chosen
to be identical to those of Ref. [6].

5.1. Validation

Although the presented technique is developed for the dynamic analysis of the inclined beam
subjected to moving loads, it is also available for that of the horizontal beam if the inclined angle
of the beam element, 0, in transformation matrix [7] given by Eq. (11) is taken to be zero. In this
subsection, the undamped pinned—pinned beam with inclined angle 6 = 0° (i.e., an horizontal
beam) and subjected to a moving load with magnitude m. = 21.8 kg and constant speed V =
27.49m/s (see Fig. 3) is studied, and then the formulation presented and the computer programs
developed for this paper are validated by comparing the dynamic responses of the beam with
those of the existing literature [6]. The finite element model of the beam is composed of 14
identical beam elements and 15 nodes.

Fig. 4 shows the time histories for the vertical (y) displacements of the contact point between
the moving mass and the horizontal beam. In which, the solid curve with cross (—+—) represents
the vertical () displacements obtained by using the presented concept of moving mass element,
while the dashed curve (- - - -) represents those obtained from Ref. [6]. It is seen that the differences
between the last two curves are negligible.

5.2. Influence of moving-load speed

The present example is the same as the last one except that the inclined angle is 8 = 30° (see
Fig. 5). The concentrated mass m. = 21.8 kg is assumed to move from the lower end to the upper
end of the beam with constant speeds V' = 5.0,10.0 and 20.0 m/s. For convenience, the moving
mass m,. is assumed to be properly propelled, so that it can move along the inclined beam with a
constant speed V.

Figs. 6(a) and (b) respectively show the time histories for the vertical (y) and horizontal (X)
displacements of the center point of the inclined beam, where the solid curves with circles (—o—)
represent the time histories with moving-load speed V' = 5.0m/s, those with crosses (—+—)
represent the ones with 7 =10.0m/s and those with triangles (—A-) represent the ones with
V' =20.0m/s. From the last two figures, one sees that the larger the moving-load speed, the larger
the maximum vertical () and horizontal (X) central displacements of the inclined beam. The last
result is reasonable, because the dynamic response of the inclined beam increases when the
moving-load speed approaches to the critical speed of the moving load, V¢ = L/ (%T )=2w1L =
2 x 3.58 x 4.352 = 31.1603 m/s, where w; = 3.58 Hz is the fundamental natural frequency of the
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Fig. 4. Time histories for the vertical (j) displacements under moving concentrated mass.

Fig. 5. An inclined pinned—pinned beam, with total length L = 4.352m, subjected to a concentrated mass m. = 21.8 kg
moving from the lower end to the upper end of the beam with a constant speed V.

inclined beam studied. For convenience, in this paper, the moving speed is called the critical speed
and denoted by V., if the response amplitudes of the inclined beam increase linearly with
time when load moves with speed V' = V. It is evident that the dynamic responses of the
inclined beam will reach maximum when the moving speed of the concentrated mass m, is equal to
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Fig. 6. Time histories for the (a) vertical (§) and (b) horizontal (x) displacements of the center point of the inclined
beam, with inclined angle § = 30°, subjected to a moving load m, = 21.8 kg with constant speeds V" = 5.0, 10.0 and

20.0m/s.
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Ve, 1e., V= V. On the other hand, the dynamic responses of the inclined beam will be smaller
than the last maximum responses, if V' >V or V< V,. The fundamental frequency w; of the
inclined beam is independent of its inclined angle 0. Because the critical speed V. has close
relationship with w; and w; changes with the total number of moving mass, the critical speed for
the case of multiple moving masses will different from that for the case of single moving mass.
However, the difference will be negligible if total magnitude of the multiple moving masses is
equal to magnitude of the single moving mass.

5.3. Influence of Coriolis force

From the formulation of this paper, one can see that the effect of Coriolis force induced by the
moving mass is to appear in the damping matrix [c] of the moving mass element as one may see
from Eq. (8b). Hence, if the damping matrix of the moving mass element is taken to be zero, i.e.,
[c] = [0], then the effect of Coriolis force due to the moving mass will disappear.

The same beam as that of the last subsection is investigated and the vertical (¥) and horizontal
(%) displacements of the center point of the inclined beam are respectively shown in Figs. 7 and 8.
Where the solid curves denote the dynamic responses of the beam with the Coriolis force
considered, while the dashed curves denote those with Coriolis force neglected. Among the solid
and dashed curves, those with circles, (—o— and --0--), crosses (—+— and - -+- -) and triangles
(—&— and -A--) are for the cases with V' =5.0, 10.0 and 20.0 m/s, respectively. From the last
figures, it can be seen that the influence of the Coriolis force on the vertical () and horizontal (X)
central displacements of the inclined beam increases with increasing the moving-load speed. This
is to be expected, because the magnitude of the Coriolis force appearing in the damping matrix [¢]
of the moving mass element is proportional to the moving-load speed V, as one may see from
Eq. (8b). Although the difference between the time histories with and without Coriolis force is
small for the example studied in this subsection, it does not mean that the last effects may be
neglected for other cases. Therefore, it may be better to consider the last effects in the analysis.

5.4. Influence of centrifugal force

Similarly, one can also ignore the effect of the centrifugal force due to moving mass by taking
the stiffness matrix of the moving mass element to be zero, i.e., [k] = [0]. The same example as that
of the last subsection is studied and the vertical (§) and horizontal (¥) displacements of the
center point of the inclined beam are respectively shown in Figs. 9 and 10. The legends for the
curves in the last two figures are exactly the same as those in Figs. 7 and 8 except that the
Coriolis force is replaced by the centrifugal force. From Figs. 9 and 10, one sees that the influence
of the centrifugal force on the vertical (J) and horizontal (X) central displacements of the
inclined beam also increase with increasing the moving-load speed. This is because the magnitude
of the centrifugal force appearing in the stiffness matrix [k] of the moving mass element is
proportional to the square of the moving-load speed (see Eq. (8c)). For the current example, the
difference between the time histories with and without centrifugal force is small. Nevertheless, the
last effects may be significant for other cases. Therefore, it should be better to consider the last
effects in the formulations.
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Fig. 7. Influences of Coriolis force on the time histories of the vertical (y) central displacements of the inclined beam,
with inclined angle 0 = 30°, subjected to a moving load m, = 21.8 kg with constant speeds (a) V' =5.0m/s, (b) V =

10.0m/s and (c) ¥ =20.0m/s.

5.5. Influence of frictional force

The current example is the same as that of Section 5.2 except that the moving-load speed is
V' =10.0m/s. Figs. 11(a) and (b) show the vertical (y) and horizontal (¥) displacements of the
center point of the inclined beam, respectively. In which, the solid curves (—) are for the case with
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Fig. 8. Influences of Coriolis force on the time histories of the horizontal (%) central displacements of the inclined beam,
with inclined angle 0 = 30°, subjected to a moving load m, = 21.8 kg with constant speeds (a) V' = 5.0m/s, (b) V =
10.0m/s and (c) ¥V =20.0m/s.

frictional force neglected, while the dashed curve with circles (--o--) are for the case with frictional
force considered (with u = tan 6 = tan 30° = 0.577). From the figures, one sees that the influence
of the frictional force on the vertical () and horizontal (X) central displacements of the inclined
beam is negligible. This is because the frictional force is always along the axial (x) direction of the
inclined beam and the transverse displacement at the central point of the beam induced by the
frictional force is always zero (i.e., u, = 0). Besides, because the axial stiffness of the inclined beam
is much greater than its transverse bending stiffness, the axial central displacement (u,) induced by
the frictional force is negligible comparing with the transverse one induced by the inertial force,
Coriolis force or centrifugal force, i.e., u, ~ 0. It is evident that the substitution of the last
frictional-force-induced axial central displacement (u, ~ 0) and transverse one (1, = 0) into Eqs.
(Ic) and (1d), one obtains uz ~ 0 and u; ~ 0. Note that if the mass traverses downward, the sign
of V" may be kept unchangedbut the sign of u is reversed.

5.6. Influence of inclined angle of the beam

In this subsection, the concentrated load m,. = 21.8 kg is assumed to move, with a constant
speed V' = 10.0m/s, from the lower end to the upper end of the inclined beam with 6 = 0°, 15°
and 30°.

The time histories for the vertical (¥) and horizontal (X) displacements of the center point of the
inclined beam are respectively shown in Figs. 12(a) and (b). In which, the solid curves with circles
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Fig. 9. Influences of centrifugal force on the time histories of the vertical (7) central displacements of the inclined beam,
with inclined angle 0 = 30°, subjected to a moving load m, = 21.8 kg with constant speeds (a) V' =5.0m/s, (b) V =

10.0m/s and (c) V' =20.0m/s.

(—o—) are for the case with 8 = 0°, those with crosses (—+—) are for the case with # = 15° and
those with triangles (—A—) are for the case with 8 = 30°. From the last two figures, one sees that the
larger the inclined angle 6 of the beam, the smaller the vertical (y) central displacements and the
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Fig. 10. Influences of centrifugal force on the time histories of the horizontal (¥) central displacements of the inclined
beam, with inclined angle 0 = 30°, subjected to a moving load m, = 21.8 kg with constant speeds (a) V' = 5.0m/s,
(b) ¥ =10.0m/s and (c) ¥ =20.0m/s.

larger the horizontal (X) ones. The reason for the last phenomenon is stated as follows. Since the
axial stiffness of the inclined beam is much greater than its transverse stiffness, the axial central
displacement (u,) of the beam is negligible comparing with its transverse one (u,). In such a case,
its vertical central displacement (#;) and horizontal one (u;) are given by u; ~ u,cos 0 and
uz ~ —u,sin0 as one may see from Eqs. (Ic) and (d). It is evident that the magnitude of u;
decreases and that of u; increases when the inclined angle 6 (<45°) of the beam increases. Thus, if
only the displacement in the transverse (y) direction of the inclined beam is interested, then
increasing the inclined angle 0 (<45°) will be beneficial for reducing the transverse response of the
beam, because the force component in the transverse (y) direction induced by the moving loads
decreases when the inclined angle 6 of the beam increases.

5.7. Influence of total number of moving loads

To show the applicability of the presented technique for the multiple moving loads, the dynamic
analysis of the inclined beam with 6 = 30° subjected to two identical loads (m; = m, =
21.8/2 = 10.9 kg) moving from the lower end to the upper end of the beam with the same constant
speed V' = 10.0m/s is performed (see Fig. 13). For convenience, the spacing ¢ between the last
two moving loads is assumed to be a constant for each case. The forced vibration responses of the
inclined beam are calculated for the period beginning from the instant that the first moving mass
m; reaches the lower end of the inclined beam and ending at the instant that the second moving
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Inclined beam

Fig. 13. An inclined pinned—pinned beam subjected to two concentrated masses m; = m, = 21.8/2 = 10.9 kg moving
from lower end to upper end of the inclined beam with a constant speed V' = 10.0m/s (0 = 30°, ¢ = 0.2, 0.4 and 0.6 m,
L =4.352m).

mass m; leaves the upper end of the beam. Four cases with spacings ¢ = 0.01, 0.2, 0.4 and 0.6 m
are studied (cf. Fig. 13).

Figs. 14(a) and (b) show the vertical (¥) and horizontal (X) displacements of the center point of
the inclined beam, respectively. In the last figures, the solid curves with triangles (—A-), the solid
curves (—), the dashed curves (- - -) and the solid curves with crosses (—+—) are respectively for
the case with spacings ¢ = 0.01, 0.2, 0.4 and 0.6 m. From Fig. 14, one sees that the solid curves
with triangles (—A-) are very close to those shown in Fig. 12. This is to be expected because the
dynamic responses of the two moving masses, m; and m;,, will be very close to those of a single
moving mass, m,, if the spacing between m; and m; is small (i.e., e ~ 0) and m; 4+ my = m,. In
addition, it is also found that the maximum central displacement of the inclined beam decreases
with increasing the spacing between the two moving masses. This is reasonable because the
dynamic responses of the beam due to a moving concentrated load are larger than those of the
same beam due to a moving distributed load if the magnitude of the concentrated load is equal to
the combined magnitude of the distributed load. The dimensionless time histories corresponding
to Figs. 14(a) and (b) are shown in Figs. 15(a) and (b), respectively. The same trend as Figs. 14(a)
and (b) can be observed from Figs. 15(a) and (b).

6. Conclusions

1. The main difference between the inclined beam and the conventional horizontal beam is that
both the frictional force between the moving load and the beam and the influence of inclined
angle of the beam must be considered for the inclined beam and this is not true for the
horizontal beam. Based on the theory of moving mass element presented in this paper, one may
easily take account of the effects of inertia force, Coriolis force and centrifugal force induced by
the moving loads in addition to the effects due to frictional force and inclined angle.
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Fig. 14. Influences of spacing on the time histories for the (a) vertical (7) and (b) horizontal (%) central displacements of
the inclined beam subjected to two moving loads m. = m = 21.8/2 = 10.9 kg with a constant speed V' = 10.0m/s
when the inclined angle of the beam is 6 = 30°.
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2. If the moving-load speed is smaller than the critical speed, then the larger the moving-load
speed, the larger the maximum vertical (§) and horizontal (X) displacements of the center point
of the inclined beam.

3. Because the frictional forces induced by the moving loads on an inclined beam are always in the
axial (x) direction of the beam and the axial stiffness of the beam is much greater than its
transverse stiffness, the axial central displacement (u,) due to the frictional forces is much
smaller than its transverse one (u,) due to the other force (such as inertial force, Coriolis force
or centrifugal force). Therefore, the influence of the frictional forces on the dynamic behavior
of the inclined beam is negligible.

4. In general, the axial stiffness of a beam is much greater than its transverse bending stiffness.
Thus, for an inclined beam subjected to the moving loads, its axial displacement at the center
point is negligible (i.e., u, = 0). In other words, if only the displacement in the transverse ()
direction of the inclined beam is interested, then increasing the inclined angle 0 (<45°) will be
beneficial for reducing the transverse response of the beam, because the force component in the
transverse () direction induced by the moving loads decreases when the inclined angle 0 of the
beam increases.

5. It is well known that the dynamic responses of a beam due to a moving concentrated load are
larger than those of the same beam due to a moving distributed load if the magnitude of the
concentrated load is equal to the combined magnitude of the distributed load. Therefore, if an
inclined beam is subjected to two identical moving masses, then the maximum displacement of
the center point of the inclined beam decreases with increasing the spacing between the two
identical moving masses.
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