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Abstract

An axisymmetric numerical simulation approach to the hole-tone self-sustained oscillation problem is
developed, based on the discrete vortex method for the incompressible flow field, and a representation of
flow noise sources on an acoustically compact impingement plate by Curle’s equation. The shear layer of
the jet is represented by ‘free’ discrete vortex rings, and the jet nozzle and the end plate by bound vortex
rings. A vortex ring is released from the nozzle at each time step in the simulation. The newly released
vortex rings are disturbed by acoustic feedback. It is found that the basic feedback cycle works
hydrodynamically. The effect of the acoustic feedback is to suppress the broadband noise and reinforce the
characteristic frequency and its higher harmonics. An experimental investigation is also described. A hot
wire probe was used to measure velocity fluctuations in the shear layer, and a microphone to measure
acoustic pressure fluctuations. Comparisons between simulated and experimental results show quantitative
agreement with respect to both frequency and amplitude of the shear layer velocity fluctuations. As to
acoustic pressure fluctuations, there is quantitative agreement w.r.t. frequencies, and reasonable qualitative
agreement w.r.t. peaks of the characteristic frequency and its higher harmonics. Both simulated and
measured frequencies f follow the criterion L/u. + L/cy = n/f where L is the gap length between nozzle
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Nomenclature SPL  sound pressure level
t time
Ay amplitude of forced excitations, see Eq. Uyt slip velocity above (+) and below (—)
(53) the nozzle edge
oty ring area used in the computation of the u = (uy,u,) hydrqdynamic velocity (of the in-
monopole acoustic pressure, see Eq. compressible ‘background flow’)
(42) v = (vy, v,) acoustic perturbation velocity
o speed of sound VFL  velocity fluctuation level
dy diameter of nozzle and hole in end plate X axial coordinate in the axisymmetric
D, distance from the point of observation cylinder coordinate system (x, r)
to the nth ring force, see Eq. (39) Xe axial position of the nozzle exit
E complete elliptic integral of second Xs axial position of the end plate
kind, defined by Eq. (4) X axial distance between point of obser-
f characteristic hole-tone frequency vation and end plate
fa forcing frequency Y strength of vortex sheet
S max Nyquist frequency r strength of Yortex ring .
f, force vector with components (£, ) d(x) the usual (Dirac) C>glelta function, defined
G Green’s function, see Eq. (31) such  that  [70) F(x)(x — xx) dx =
H(s) the Heaviside unit function, which is F(xx)
zero for s<0 and unity for s>0 o(r)/mr the axisymmetric delta function, defined
o0~ s
Hgl) Hankel function of first kind and zeroth such that [~ 7 (r)o(r — ry) dr = %«/”(V*)
order € vortex ring smoothing parameter
HPL  hydrodynamic pressure level Po fluid density
i complex unit, v/—1 o complex function defined by Eq. (38)
I Bessel function of mth order Tn retarded time given by t — D, /co
k acoustic wavenumber, w/co { axial coordinate in the Fourier-trans-
K complete elliptic integral of first kind, formed domain
defined by Eq. (4) D, velocity potential defined by Eq. (34)
L length of the gap between nozzle exit V] acoustic perturbation velocity potential
and end plate defined by Eq. (43)
n, n normal vector L4 stream function for vortex ring, defined
)4 pressure in the (z, x, r)-domain by Eq. (3) .
P pressure in the (o, x, r)-domain 0 angglgr velocity
P pressure in the (o, {, r)-domain Q vorticity
r radius in the axisymmetric cylinder ° the Fourier transform of e
coordinate system (x,r) [ 1, expression inside [ ] to be evaluated at
R, radial distance between the point of the retarded time 7, =t — D, /cp

observation and the nth ring force

exit and end plate, u, is the shear layer convection velocity, ¢ is the speed of sound, and 7 is a mode number
...). The experimental results however display a complicated pattern of mode jumps, which the

(=1,

1

3
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numerical method cannot capture.
© 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) Geometry and physical features of the hole-tone problem. (b) Flow visualization of the vortex roll-up.
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1. Introduction

The sound produced when a jet, issued from a circular nozzle or a hole in a plate, goes through
a second plate with a hole of the same diameter as the jet is referred to as the hole-tone. The
geometry of the problem is sketched in Fig. 1, which also shows the principal physical features. It
is widely accepted that the responsible mechanism is shear layer instability, and that the
characteristic, discrete tone is maintained by an acoustic feedback mechanism. This was suggested
already in 1896 by Rayleigh [1] (referring to the system as the ‘bird-call’), who explained the basic
mechanism as follows: ‘When a symmetrical excrescence [vortex ring]' reaches the second plate, it
is unable to pass the hole with freedom, and the disturbance is thrown back, probably with the
velocity of sound, to the first plate, where it gives rise to a further disturbance, to grow in its turn
during the progress of the jet.’

Rayleigh also pointed out that the disturbances are axisymmetric (varicose). Later experiments
[2] verified this,> and that the shear layer periodically rolls up into big, distinct vortex rings
(‘smoke rings’). It was furthermore found that the oscillations, caused by the impingement of
these vortex rings onto the end plate, occur in specific stages of approximately constant Strouhal
number St = (frequency) x (gap length)/(average jet speed), and that transference from one
stage to another is associated with hysteresis. In other words, the tone experiences jumps in the
frequency by increasing jet velocity, and the jumps back occur at other values when the velocity is
again decreased.

'Added by the authors.
2Chanaud and Powell [2] wrote that, ‘The disturbances were found to be unambiguously symmetrical, as observed by
other investigators.’
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Lighthill [3] argued that acoustic sources in a flowing fluid can be represented by monopoles
(associated with fluctuating volume sources), dipoles (associated with fluctuating surface forces),
and quadrupoles (associated with turbulent velocity fluctuations). In this pioneering work
Lighthill was mainly interested in the noise generation by turbulence in a free field. Curle [4]
extended Lighthill’s theory to show that the sound field from flow incident upon solid boundaries
can be represented by a surface distribution of dipoles. Powell [5] showed, by considering an
image system, that for an incident inviscid fluid the pressure dipole distribution on a plane, infinite
and rigid surface cancels out such that the effect of the surface is to account for the reflection of
quadrupoles only. Ffowcs Williams and Hawkings [6] generalized the work of Lighthill and Curle
to account for surfaces in arbitrary motion.

If U is a characteristic flow speed the intensity and power output in the far field (far away from
the (compact) noise sources) varies as U* for a monopole, as U® for a dipole, and as U® for a
quadrupole. For low-speed flows (small Mach number) the monopole is thus an efficient sound
source; a quadrupole is a very inefficient one.

Hole-tone experiments with low-speed jets [2] have indicated that the sound generated at the
end plate is mainly of monopole type if the hole diameter is much smaller, and the end plate
diameter much larger, than the acoustic wavelength 1 = (speed of sound)/(frequency). In this
case the hole is acoustically compact; the plate is not. On the other hand, the sound is mainly of
dipole type if the end plate is small (‘ring-like’) [7]. The monopole effect is due to the unsteady
volume flow through the hole. The dipole effect is due to the unsteady fluid forces on the plate.

An estimate of the characteristic (dominating/most unstable) frequency f can be obtained from
the criterion (Rossiter’s equation [7])

L L n

—t — == , 1

U ¢ f ( )
where L is the gap length, u. is the shear layer convection velocity, ¢ is the speed of sound, and »
is the mode number which may take the values %, 1,%. .. . The first term on the left-hand side

represents the time it takes a vortex to travel from the nozzle exit to the end plate; the second term
represents the time it takes the acoustic feedback signal to travel from the end plate and back to
the nozzle exit. The right-hand side represents the period of vortex ring separation. The shear
layer convection velocity u, is typically 0.6uy — 0.7uy, where uy is the mean jet speed [7,11]. As to
the meaning of the right-hand side, it is instructive to rewrite the equation as L/n = u {f(1 +
u./co)}; this expresses the distance between consecutive vortices. Accordingly, in the inverse
expression, n/L has the meaning of a wavenumber.

Howe [7] derived Eq. (1) from an expression for the acoustic pressure (at large distances
from the jet) generated by the large vortex rings. Assuming that vortex rings only are shed from
the jet nozzle at the beginning of the half-cycles where the pressure perturbations are positive,
the right-hand side takes the form (n—%)/f ,n=1,2,..., corresponding to the non-integer
values in Eq. (1). But the experimental and numerical simulation results to be presented in the
following, show that both integer and non-integer values of n in Eq. (1) are possible. The integer
values correspond to cases where vortex rings are shed at every half-cycle of the pressure
perturbations.

Despite the long history of the hole-tone problem, a comprehensive analytical/numerical
solution has not yet been given. In addition to the appeal as an unsolved classical problem, there
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are many practical motivations for further studies. One example is solid propellant rocket motors.
The fuel is often in the form of axially segmented rings, and holed restrictor plates, which separate
the fuel elements, initiate hole-tones [7-9]. Automobile intake- and exhaust-systems, ventilation
systems, gas distribution systems [10], and so on, may also generate undesirable hole-tones. A
better understanding of the problem may also lead to improvement of some musical wind
instruments (flutes, etc.), and to the design of new types. Improved understanding may thus be
rewarding for many branches of engineering.

For general surveys of hole-, ring-, and edge-tone problems, see [12,13,7]. As to mathematical
models, the main focus has been on purely 2D problems, such as the edge-tone problem [14,15],
and the cavity problem [7].

This paper presents an axisymmetric numerical simulation approach to the hole-tone problem,
based on the discrete vortex method [16] for the unsteady jet flow, and the theory of aerodynamic
noise [3] for the acoustic feedback. The discrete vortex method has previously been successfully
applied to several purely 2D (plane) representations of self-sustained oscillation problems, for
example a gas distribution system with closed side branches [10], plates in tandem in a duct [17],
and the resonator tube [18].

Lighthill’s approach [3] is based on the assumption that the acoustic field does not act back on
the hydrodynamic (incompressible ‘background’) flow field, in contrast to the present problem. In
the present paper it is suggested to model the acoustic back-reaction by applying the flow noise
equation iteratively, to modify the background flow field in small steps. In the numerical scheme
the feedback loop is modelled as follows. Hydrodynamic pressure fluctuations on the end plate
generates acoustic pressure fluctuations (compression waves). The corresponding acoustic
disturbance velocities acting near the nozzle exit are evaluated at each time step. These are
added to the hydrodynamic velocities generated by the discrete vortex rings which represent the
shear layer of the jet. As shed vortex rings proceed from the nozzle towards the end plate they roll
up to emulate a big vortex. This vortex hits the end wall and creates a new hydrodynamic pressure
fluctuation, which is thrown back to the nozzle exit as a new acoustic disturbance, just as in
Rayleigh’s explanation.

For low Mach number flows it is known that the feedback mechanism works hydrodynamically
(i.e., instantaneously, without acoustic/compressibility effects), as the nozzle then lies only a
fraction of the fundamental acoustic wavelength away from the end plate. This is also verified in
the present work. But it is still interesting to consider modifications due to acoustic back-reaction
on the flow, even though these are small. There is a monopole sound field due to the unsteady flow
through the hole in the end plate. But in the case considered the end plate diameter is relatively
small (5 x the jet/hole diameter and 0.15 x the typical acoustic wavelength) and the pressure
fluctuations due to the passage of the big vortex rings over the outer edge generates a much more
powerful dipole sound field. The corresponding acoustic feedback signal reinforces the
characteristic hole-tone frequency component and its higher harmonics. In this sense the acoustic
feedback mechanism can be said to provide a ‘compressibility correction’ to the governing
background flow.

Interaction between the background flow field and the acoustic field is included in two of the
above-mentioned discrete vortex method-based self-sustained oscillation problems [17,18]. In
these studies the whole acoustic field is determined in the frequency domain, numerically by
application of the finite element method in Ref. [17] and by a conformal mapping method in
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Ref. [18]. The first of these approaches would be very computationally demanding for the present
problem. The second approach works only for plane problems.

The plan of the paper is as follows. In Section 2 the discrete vortex model of the unstable jet
flow is discussed. Expressions for the acoustic pressure fluctuations are derived in Section 3, using
the differential form of Curle’s equation as start-point. Expressions for the acoustic feedback
velocities are derived in closed form in Section 4. A mechanism for forced acoustic excitation is
discussed briefly in Section 5. Section 6 discusses computational aspects of the problem.
Numerical results are presented and discussed in Section 7. Section 8 describes experiments and
compares experimental and computational results. Finally, in Section 9, the results are discussed
and some conclusions are drawn. The paper also includes three appendices, concerned with
specific mathematical details.

2. Basic jet flow
2.1. Vortex ring theory

An axisymmetric jet of radius r = ry is discharging from a nozzle at the position x = x, in the
axisymmetric cylindrical polar coordinate system (x,r). The shear layer of the jet is impinging
upon the edge of a circular hole (aperture), also of radius ry, in a parallel plate of radius rpjae,
placed at x = x; = x, + L.

The shear layers of the jets issued from the nozzle and from the end plate hole are first
thought to be represented by continuous vortex sheets, and the nozzle and end plate by bound
vortex sheets. These vortex sheets are then discritized (lumped) into necklaces of discrete
vortex rings. The present method is thus based on the ‘usual’ discrete vortex method which
considers a vortex sheet as lumped into ‘particles’ [19]. This is equivalent to the approaches of
Acton [20], Dahm et al. [21], and Jing and Sun [22], but different from, and simpler than, the
approaches of de Bernadinis et al. [23], Martin and Meiburg [24], and Nitsche and Krasny [25],
where the smooth sheets are discretized via interpolation of the integrals over distributed vortex
strength.

Nitsche and Krasny’s [25] vortex ring model is used. This is a ‘desingularized’ version of the
thin-cored circular vortex ring [26,27]. The induced velocity u = (u,, &) at a location (x, r) from a
single vortex ring, of strength I and located at (x,,r,), is obtained from

oY 1 oY

Uy (X, 7, Xp, 1) = . E(X’ FyXp Ty),  Up(X, T, X, 1) = — . a(x, ¥y Xy, Iy), (2

where the stream function ¥ is given by

r
ql(x, r, Xy, rv) = % (7/1 + 172){K(}“) - E(;“)}a
A=y —mn)/ny +my),
771 = {(X - xv)2 + (V - rv)z + 82}1/2’
ny = {(x — xo)° + (r + 1) + }V% 3)
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Here K(4) and E(4) are the complete elliptic integrals of first and second kind, respectively,
defined by [28]

/2 n/2
K(J) = / (1= 2%sin?0)""2d0, EQ) = / (1 — 2%sin®0)"/% do. (4)
0 0

These functions are evaluated numerically by using Carlson’s algorithms [29]. Analytical
evaluation of the derivatives in Eq. (2) is, for completeness, shown in Appendix A.

The parameter ¢ in the 5, and n, functions is a smoothing, or regularization, parameter,
corresponding in effect to a finite vortex sheet thickness. It is also called a vortex-blob
regularization [30]. [Considering the 2D case, a vortex-blob has a core of finite size,
contrary to a point-vortex.] It may also be thought of as ‘artificial viscosity’. Tryggvason
et al. [31] explain, in a study on roll-up of a 2D vortex sheet, that, ‘it may...not be possible
to identify a physically meaningful role for fixed values of a regularization parameter’, but
argue that e>0 works as viscosity, as the vorticity field is non-zero away from the vortex sheet.
It will be illustrated in Section 7 that &¢>0 also ‘smears out’ the vorticity in the present
problem.

On the axis r = 0 the induced velocity is

T 2
ux(xv 09 xU: rl}) =5 rU Z’ll‘(-x: 07 xv: rL‘) = 0 (5)

2 {(x —xp)* + r2+ 2y’

The (azimuthal) vorticity is

Ou, Ouy 10°% 0 /10%¥
- ( ). ©)

Tox o rox or\ror

The evaluation of this quantity (for » > 0) is also given in Appendix A. Eq. (5) gives that 2 = 0 on
the axis r = 0.

2.2. Representation of solid surfaces

The surface of the exit pipe is represented by Npi,. vortex rings, placed equidistantly
at the positions (x]‘?",ro), Jj=1,2,...,Nppe. Control points are placed at (x;.k“,ro), j=
1,2,..., Npipe — 1, midway between these vortices. The mean jet flow is provided by N, vortex
rings placed on the upstream end of the exit pipe, at the equidistant positions (xo,r;’”), j=
1,2,...,N,. The radii r;’b of these rings are placed in between N, + 1 control points, located at
(xo,rj’?"’), Jj=1,2,...,Ng+ 1. Similar to the exit pipe, the end plate is represented by Npjate
concentric vortex rings, placed equidistantly at the positions (x;, rj‘?"), J=12,..., Nplate, With the
control points (xs,rj’.’“"), J=12,...,Npare — 1, placed in between. A diagram of the system is
shown in Fig. 2.

The strengths I’ }.’Ound of the bound vortex rings are determined from the following conditions:

1. The r-composant u, of the velocity is zero on the surface of the exit pipe;

2. The (axial) velocity distribution of the mean flow-providing upstream end of the exit pipe end is
uniform;

3. The x-composant u, of the velocity is zero on the surface of the end plate;
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Fig. 2. (a) Schematic diagram showing the distribution of bound vortex rings on the nozzle and the end plate. (b) A cut
through the cylinder axis. Triangles indicate vortex rings and dots indicate control points.

4. The axial velocity u, at r =0 must be equal to the mean jet speed uy a little distance &
downstream from the nozzle exit (x, + &), and a little distance upstream from the end plate

(x5 — 8).

The velocity at some position (x, r) is obtained as the sum of the induced velocities from the bound
and the free vortices. Let Ns denote the sum of the Nyoung bound and Ny free vortices. The four
physical conditions above can then be expressed mathematically as

Ny

Zur(x 1o, X, 1) =0, j=1,2,. plpe_la

i=1

Z{ux(-x05 xl:rl) “x(an r;':lz],xia ri)} = 03 ] - 1 2 eva

Ny

D e xnr) =0, j=1,2..., Nouee — 1,

i=1

NZ NZ

Z ux(xe + éa 05 Xis ri) = U, Z uX(xS - éa 05 Xis ri) = Uy, (7)

i=1 i=1

which is a system of Nyound = Npipe + Nplate + New €quations for determining the same number of
unknown vortex strengths U4 — {3 ound P Rﬁ’b‘:z‘i}T. The matrix equation system corre-
sponding to Eq. (7) takes the form

Ar*od = p. (8)

Here the Npound X Npound Matrix A contains functions (combinations in accordance with Eq. (7))
of the influence coefficients du(x;, r;, xj,7;)/0I’;. The vector b contains the velocity contributions
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from the free vortices, i.e.,
Nree
bj = — Z e97{11()61‘, Vj,X,', V,')}, (9)
i=1
where Z { } symbolizes the four successive ‘operators’ defined in Eq. (7). It is noted that for bound
vortices (i.e., in the matrix A) the smoothing parameter ¢ in Eq. (3) is set equal to zero, as values
larger than zero will imply non-convergence of the solution by mesh-refinement [25]. The
impingement of vortex rings with ¢>0 onto the end plate, represented by bound rings with ¢ = 0,
does not cause any numerical problems; this will be clear from the numerical examples in Section 7.

2.3. Vortex-shedding mechanism

The rate of (continuous) shedding of circulation y from the nozzle is governed by

V=10 (10
where 7 is the time, u,, is the axial ‘slip’ velocity a little ‘above’ the nozzle edge, outside the tube,
and u,_ is the velocity a little ‘below’, inside the tube. This equation can be obtained by
integrating the tangential component of the Euler equations over the tube surface, and using the
Kutta condition, which demands that the pressure a little above the nozzle edge equals the
pressure a little below [16].

The vortex sheet is, at the nozzle edge (x.,r), convected downstream with the average slip
velocity

e = Lty + uy). (11)
The slip velocities are related to the sheet strength vy, at the edge (x.,79) by the relation
Ve = Ux— — Uxt (12)
(e.g., [16, p. 109]). Eq. (10) can then be written as
& it (13)
Egs. (11) and (12) give the relations
Upe = Uge +570r  Uns = Uye — 37 (14)

The vortex sheet is now discretized into a ‘necklace’ of discrete vortex rings. The shedding is
simulated as follows.

1. The strengths of the bound vortex rings are determined from the equation system (8).
2. Using Eq. (14), the slip velocities u,,u,_ are determined as

1 ybound 1 ybound
U =ty +AT0 0, =g — LI g, (15)

Here I E"und is the strength of the vortex ring placed at the edge, and ¢, is the distance between
the edge vortex ring and the neighboring ring in upstream direction. u,, is taken as the velocity
at the most downstream control point. With I’ Eound being positive, u,_ >u,,, and the vortex
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ring will, as it moves in the positive x-direction, rotate as if it rolled along the inner surface
of a tube.
3. A vortex ring is released from the edge and placed at

At
Xnew = Xe + 7(”)6-&- + ux—)a I'new = 70, (16)
and it is given the strength
iy = Atk —u). (17)
Once released, the ring keeps this strength throughout the simulation, that is,
d[vfree
d][ :09 jzla"'szl‘eea (18)

which is known as Kelvin’s theorem [19,27].
4. The positions (x;,r;) of all previously shed vortex rings are updated by solving the system of
ordinary differential equations

dy; dri & ,
E:Z ux(xiariaxj:rj)a E:Z ur(xi’ri5xj’rj)5 1= 1:"'7Nfr667 (19)

=1 =1
by means of the fourth-order Runge—Kutta scheme.’
5. The time is updated; ¢ == ¢t + At. If t<tyax, return to Point 1.

If included, the vortex shedding from the outer edge and from the edge of the hole in the second
plate is treated analogously to the shedding from the tube edge, and new expressions for the end
plate equivalent to Egs. (16) and (17) are added to points 3 in the algorithm above. But at the edge
of the hole u,, or u,_ may become negative. This indicates a non-separating, backward running
flow on the corresponding side of the edge, and the Kutta condition will not be satisfied. Thus, if
either u,, or u,_ is less than zero, the value is set to zero, in order not to interfere the shedding
process. The positions of the vortex rings shed from the end plate are just updated according to
the first-order Euler scheme.

3. Acoustic pressure fluctuations
3.1. Statement of the problem

Let x = (x1,x2,x3) be a point in space in rectangular coordinates (used for the time being),
and let the equation s(x) = 0 define the rigid surface of the end plate shown in Fig. 1, such
that s(x) <0 if x is within the solid surface and s(x)>0 if x is in the fluid. Let the fluid velocity
field be given by (u;,us,u3). By making use of the Heaviside unit function H(s), which takes
the value 1 if s(x)>0 and the value 0 if s(x)<0, the differential form of Curle’s equation [4]

3The first-order Euler scheme is also used in some cases, to investigate the influence of updating accuracy. When used,
this is explicitly stated.
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can be written as [32]

1 8 O*(HT;) 0 OH\ 0 OH
= V2 \[Hpl =~ | — P — 2
<cg o >[ P\ = xiox,  om <f Z axj> o (”0”1 ax])’ (@0)

where the (Einstein) tensor summation convention is to be applied. On the left-hand side, p is the
acoustic pressure,  is the time, ¢, is the speed of sound, and V? is the Laplace operator. On the
right-hand side, 7'; is the Lighthill stress tensor (accounting for turbulent fluctuations in
momentum flux), and f; is a compressive stress tensor (fluid force per unit volume). The first term
represents quadrupoles, the second dipoles, and the third monopoles.

It is noted that (20) is basically Lighthill’s equation [3]

1% _, Ty
= Vip=—"L 21
2or 7T vy @D

with the boundary condition

op
o 0 (22)
implemented into the differential equation by use of the Heaviside function. Here 0/0n
denotes the derivative in the direction of the (outward pointing) normal vector n to the
surface.

As mentioned in Section 1, experiments with hole-tone systems have shown that the sound
generated at the end plate is mainly of monopole type if this plate is much larger than the
characteristic acoustic wavelength, and mainly of dipole type if it is much smaller (i.e.,
acoustically compact). In the simulations to follow the end plate diameter dpjae is 250 mm (which
is equal to five jet diameters). It will be found that the characteristic frequency /" ~ 200 Hz (which
is in agreement with the experiments, see Section 8.2). The acoustic wavelength 4 is then ~ 1.7 m,
and the ratio dpjae /4 A~ 0.15, which is not large. It is then assumed reasonable to consider the plate
being acoustically compact.

The typical (reference) jet speed is 10 m/s. With a sound speed of 340 m/s the Mach number is
~ 0.03 which is very small. The quadrupole sources (in the model due to interaction of the discrete
vortex rings) are then expected to be weak (as also known from experiments). Accordingly,
quadrupole sources will be ignored in the following, and only monopoles and dipoles will be
considered.

Returning to cylindrical polar coordinates, the sound field generated by the hole-tone system is
then modelled by application of the following simplified version of (20) (valid when the
observation point (x,r) is within the fluid):

1 0% i

Sl V=V ftpy— 23

where V- is the divergence operator and

f(ta X, I") = (fxﬂ fr) = (fx(r)’ 0)5()6 - XS) (24)
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is a fluid force (per unit volume) acting at x = Xy, 1o <7 <rplate. 0(X — X;) is the usual, 1D (Dirac)
delta function. Similarly, the flow speed @ at x = x;, 0<r<ry, is written as

it = u(r)o(x — xy). (25)

3.2. Solution by Fourier transform

As Eq. (23) is linear, monopole and dipole pressure contributions can be solved for apart, and
added to give the total acoustic pressure. For clarity, only the solution for the dipole contribution
will be shown in detail.

Fourier transforms with respect to time and space are defined as

o0
p@&ﬂz/ Plo,x, e do,

P(w,x,r) = % /_ Z p(t, x, r)el” dt, (26)
and
P(w,x,r) = % /_: P(w,,r)e rdL,
P(w,(,r) = / h P(w, x,r)e™ dx, (27)

respectively. Here 1 = +/—1, w is an angular velocity, and { is the axial wavenumber. Using
Eq. (26) the governing (23) is converted into the reduced wave equation (considering the dipole
term only)

V’P+ kP =V-f{, (28)

where k = w/cy is the acoustic wavenumber, and f is the Fourier transform of f. By using Eq. (27)
and integration by parts on the right-hand side, Eq. (28) can be converted into the ordinary
differential equation

0’2 102 L i
Tt 5+ (=27 = il (e, (29)

Note that f . 1s now a surface stress (pressure) due to the integration over Xx.
The free-space (out-going wave) solution to

0’G 130G, . O(r—r%)
e TN T (30)
is given by the Green’s function [33]
1 .
G(r,re) = —7 Hy (oelr — ), (31)

4

where H g) is the Hankel function of first kind and zeroth order. [In Eq. (30), 6(r — r*)/nr is the
axisymmetric delta function, defined such that [J° Z(r)o(r — r*)dr = Z(r*), where Z is any
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good function of r [34].] The solution of (29) is then given by
Holn = = [ (e G i
0
1.~
~ =D g T H Gl =), =k - (32)

Here f, is the Fourier transform of discrete fluid forces* f,, defined as follows. The section
between two consecutive bound vortex rings (on the end plate) is considered as a hollow circular
plate-shaped panel. The pressure p,,, acting on the nth panel is evaluated at a central control point
by using the unsteady Bernoulli equation [19],

P = —Po <§ Uy + ot )’ (33)

excluding reference pressure and velocity at infinity, which are assumed to be zero. The velocity
potential @, is evaluated by integrating up the radial velocity using the midpoint rule,

o, = / Cdr~ S b, (34)
o =1

where b; is the breadth of the jth panel and u,() indicates evaluation at the jth control point. The
time derivative is evaluated by a finite difference approach,

% ~ (‘Pn)t B (‘Pn)t—At
ot At )

(35)

The pressure is assumed to be constant over each panel. The equivalent ring force /', acting at the
mean panel radius is then evaluated as

fxn = 2nrnbnphn7 (36)

where r, is the mean radius of the nth panel. The integral in Eq. (32) is thus also evaluated by the
midpoint rule. It is noted here that only the pressure on the side of the end plate facing the nozzle
is taken into consideration, not the pressure difference across the plate. The pressure fluctuations
on the backside of the plate are assumed to be small.

From Eq. (32) the solution of Eq. (28) is obtained by Fourier inverse transform as

1~ [ .
P(w,x,r) = — § = 1o eI HO (gr — 1) L. (37)
n —00

Considering the integration contour running from —oo to co along the real axis in the complex
{-plane, the function ¢ = (k2 - Cz)l/ 2 has branch points at { = —k, k. Branch cuts above —k and
below +k ensure a decaying pressure amplitude for { < — k and {>k as r — o0, because then the

*Forces from now on (rather than pressure) due to the integration of over the plane x = x;.
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function ¢ takes the values
iWVE -k forl{<—k
o= K- for —k<(<k, (38)
iVEZ— Ik for (>k.

The integral in Eq. (37) can be evaluated analytically, see Appendix B. By introducing the
variables

Ry=lr—rl, X=|x,—xl, D;=R +X° (39)
the result can be written as
f‘cn X . i
P(w,x,r) = Z e E — ik ek, (40)

Finally, application of the Fourier inverse transform on Eq. (40) gives the physical dipole pressure
Pai(t, x,r) as

X 6f
. t’ X, r) = o Xn , 41

pdl( ) Z 47'CC D2 |: f :|T” ( )

where the terms in the square bracket with subscript 7, are to be evaluated at the retarded time
T, =1t — Dy,/co.

Similarly, the pressure from the monopole term in Eq. (23) is evaluated as
| ou, A, [Ou(ry)
t = —| 2ardr~ 42
pmono(:X,r) pO/O 47‘CD(V)[@Z:|T” nrar pozn: 4TCDn|: at :|T”’ ( )

where, as in Eq. (34), the integral is approximated numerically using the midpoint rule. Here r,, is
the radius from the center to the nth control point, and .7, is the ring area having r, as mean
radius. D, has the same meaning here as specified by Eq. (39).

It is interesting to note that Eq. (41) has exactly the same form in rectangular coordinates, see
e.g. [35], Eq. (2). The axisymmetric ‘nature’ is hidden in the definitions given by Egs. (36) and (39).
[The same applies to Eq. (42).]

It must be noted that, although no far-field approximations have been introduced, evaluation of
the acoustic pressure well within the outer edge of the end plate is likely to be unreliable. As
explained by Powell [5], if the extent of the plate was beyond the sound generating flow (and the
hole is ignored for the moment) the contribution from an image system should be added to the
acoustic pressure (making up a ‘double source system’, symmetric about the end plate).
Considering Eq. (41) it can be seen that the latter contribution will be equal to the contribution
from the physical sources, but with opposite sign, resulting in a complete cancellation of the
dipole pressure. In the present problem there is a hole in the plate, and the sound generating flow
extends to envelop the outer edge, so dipole sources will remain at both the inner and the outer
edge. But in between only quadrupole sources will survive. So use of Eq. (41) in this domain will
overestimate the acoustic pressure level.
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A quantitatively improved calculation of the sound pressure in the near-field domain can
perhaps be obtained by basing the solution to the acoustic problem on the exact Green’s function,
G* say, which satisfies the boundary condition 3G*/dn = 0 on the end plate. The assumption that
the plate is acoustically compact will simplify G*. Application of Howe’s vortex sound equation
[7,32] instead of (20) may also be of advantage.

4. An acoustic feedback mechanism

The acoustic velocity potential function (¢, x,r) can be obtained from the pressure function
p(t,x,r) as [36]
0 1
¥_2 lpz—/de—q(x,r). 43)
o pg Po
We choose the integration ‘constant’ ¢(x,r) =0 such that Y =0 for 7r<0. The acoustic
perturbation velocity is obtained as

V=(vx,0) = =V = <_§ - 5) (44)

As in the last section details are shown for the dipole contribution. Only the final result is given
for the monopole contribution. Let ,, denote the velocity potential in the frequency domain,
corresponding to the nth force composant. This is obtained from Eq. (40) as

f~ X . CO iD ,/,
1 iD,w (,[]. 45
lp (@,%1) = 4n pcoD2 T wD, © (45)
Use of the Fourier inverse transform gives the time-domain solution as
X . Co
t,x,r)= —— (il +—=— 71 ), 46
It = = s ([f L+ f> (46)
where
t
Jr(t) = / St — Dy/co)di. (47)

[This follows directly by consideration of Eq. (41) but, for completeness, a formal derivation of
this term is shown in Appendix C.] Eq. (44) then gives the final expressions

1 J X X2 Jof
x,di = A 2 1— xnle - Y >
oY | (1 5) (s 5 0) - [}

B XR, [3 . 3¢ 1 [of,
vr:dl T ; 4npycoD) {D_n[fxn]‘r” + F ff + C_O |: at :|Tn}' (48)

4rpycoD’
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In the calculations, the term .#¢ is evaluated by solving numerically the differential equation

0.7,

with the initial condition .#, = 0 at 1 = 0. This is done by using Acton’s second-order approach
[20]

Iyt + At):= I 4(t) + GO (1) — [t = A1) At (50)

The term 9f ,,, /0t is evaluated using the finite difference approach (35). It is noted that the zero-
frequency component of f,,, n = 1,2,..., will generate a steady, non-physical ‘feedback flow’. To
avoid this a time-domain filter is applied to f,,. Further details are described in Section 6.

The monopole pressure (42) gives the velocity contributions

XJZ{)'[ 1 1 Gur
Ux,mono - Z 47‘[Di {Dn [ur]‘rn + CO |:at :| Tn},

n

R, | 1 1 [Ou,
Ur,mono = Z 47ID§ {D_n[ur]rn +C_O |:at:|fn}’ (51)

n

where the symbols are as defined by Eq. (42).

The acoustic velocities acts as disturbances to the hydrodynamic velocity field near the nozzle
exit, at x = x,. In the numerical scheme the disturbances are applied to the free vortex rings
present within a specified influence distance x;; from x,, as corrections to the positions and radii
(x;,r;), according to the following law:

If x.<x;<x,+xi; then x;=x;+v.At, r;=r;+ v.At. (52)

5. Forced acoustic excitation

Forced acoustic excitation by a loudspeaker is simulated by adding the disturbance velocity
v, = Agqug cos(2nf 4t), (53)

where A, is a non-dimensional amplitude factor and f, is the excitation frequency. This
disturbance is also applied according to Eq. (52) (with v, = 0).

6. Computational aspects
6.1. Geometry of an experimental setup

Numerical results will be discussed for geometric and physical data corresponding to an
experimental setup with nozzle and end plate hole diameter dy equal to 50 mm. In the numeric
model the outer diameter of the end plate is taken to be 250 mm (although the experimental end
plate is different; see Section 8.1). The reference gap length L is 50 mm. Variation of L between d|
(50mm) and 2.5d, (125 mm) will be studied in Section 8.2. The reference mean velocity uq of the
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air-jet is 10 m/s. At 20 °C this corresponds to a Reynolds number Re = uydy/v ~ 3.3 x 10* and a
Mach number M = uy/co ~ 0.03, where the speed of sound ¢y = 340m/s and the kinematic
viscosity v = 1.5 x 107> m?/s. Variation of u, between 10 and 25m/s will also be studied in
Section 8.2.

Discussions of numerical results will be referred to a coordinate system (x, r) with origo at the
nozzle exit (before denoted by x,). In this coordinate system the nozzle exit is thus located at x = 0
and the end plate at x = L.

6.2. The hydrodynamic part of the analysis

In the computations to be presented, the length of the exit pipe is 2.5dj. [The outer radius of the
end plate is also 2.5d, as mentioned before.] The number of vortex rings on the flow-providing
upstream end of the exit pipe N,, = 6. The number of vortex rings covering the exit pipe surface
and the end plate is Npipe = 24 and Npjae = 24, respectively. It has been verified this discretization
is sufficiently fine, and that the hole-tone dynamics is insensitive to changes in these parameters.
With the given values of N, Npipe, and Npjaee, the equation system (8) is of size 54 x 54. It is
solved at each time step using the LU decomposition method [29].

The vortex updating scheme requires O(N3) evaluations at each time step, with Ny vortex rings
involved. In order to reduce the computation time, the influence on any free vortex from other
free vortices further away than ten nozzle diameters is ignored. It has been verified that this has
negligible influence on the resulting convection velocities, or any other aspect of the vortex
dynamics. Complete removal of vortex rings is not done; this was found to cause numerical
instability.

Vortex shedding from the edge of the end plate was included in the initial numerical
computations, but was found to have no influence on the vortex dynamics between nozzle and end
plate. It is therefore not included in the results to be presented. Vortex shedding from the outer
edge of the end plate is also ignored.

The basic time step is chosen to be At = 0.025d,/uy. This corresponds, if vortex roll-up is
ignored for the moment, to discretization of the shear layer between nozzle and end plate into 40
equidistant vortex rings. Results obtained with Az = 0.05d,/uy and 0.0125d,/uy will also be
shown, to confirm that the value 0.025d,/uy is sufficiently small. Adaptive step-size control in the
Runge—Kutta method may increase both accuracy and computation speed. But the interest here is
in the frequency spectrum, and analysis with a standard fast Fourier transform method requires
evenly spaced time intervals. [This problem could of course be managed by recording data only at
times conforming with one particular value of A¢, but this has not been done here.] Simulations
were performed with between 1500 and 2400 time steps, in order to obtain transient-free
frequency spectra of fluctuating velocities and acoustic pressures. Of the 1500 to 2400 time steps,
the last 2!° = 1024 steps were analyzed by fast Fourier transform; the first 476 to 1376 steps were
discarded, as transients.

With At = 0.025d,/uy the Nyquist criterion gives the maximum ‘useful’ frequency f .. =
1/(2A1) = 20uy/dy. With uy = 10m/s and dy = 0.05m this gives f ., = 4kHz.

The relative smallness of the equation system hints that single precision calculations may be
sufficient [29,19]. To check this, calculations were performed in both single and double precision.
These were carried out using a VI WSi computer with Pacific-Sierra Research’s VAST Fortran 90
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compiler, running on an Intel Pentium IV 2.8 GHz processor. A few calculations were also done in
quadruple precision, using Fujitsu’s Fortran 90 compiler running on an UltraSparc 300 MHz
processor. A simulation running 2400 time steps required approximately 24h on the VT WSi
computer.

6.3. The acoustic part of the analysis

As mentioned in Section 4, if the mean value of each f,, (n = 1,2,...), is not exactly zero (i.e., if
the zero frequency Fourier composant of f, is not zero) a non-physical feedback flow will be
generated. To avoid this, a (time-domain) linear, recursive bandpass filter [29, p. 552] is applied to
f »- Lower and upper cutoff frequencies are set to 10 Hz and 10 kHz, respectively. Eliminating the
spurious very-low-frequency content from the acoustic fluid force is plausible from a physical
point-of-view, since Eq. (40) shows that, in reality, there is no noise contribution (and thus no
contribution to the acoustic feedback) for w = 0. The very-high-frequency content (>f,,,) also is
not of use.

The discretization of integral (32) can be viewed as a simple boundary element discretization
into ‘lumped’ elements, with a central control point, and constant mechanical properties within
each element. The length of each element is (0.1/24) m ~ 0.004167 m. It is recommended for
boundary element analysis [37] that the nodal distances should be smaller than the speed of sound
¢o times the time step Az. With A7 = 0.025dy/uy, up = 10m/s, and dy = 0.05m, At x ¢y =
0.000125s x 340m/s = 0.0425m, which indeed is much larger than the element length of
0.004167m. For solution of acoustic (and other wave-related) problems with the finite element
method it is recommended that the element lengths should be smaller than th of the minimum
wavelength [38]. Applying this criterion to the present analysis it is noted that the interest is in
frequencies smaller than 1kHz. The smallest acoustic wavelength is thus A, = 0.34m, and
Zmin/10 = 0.034 m which also is much larger than the element length. Finally, it is noted that the
integral in Eq. (42) is evaluated using ten subintervals.

In the calculations to follow the retarded time corrections D, /¢, are always very small, and will
be neglected. [See Eq. (41) and the explanation following this equation.]

7. Numerical results
7.1. Computations without acoustic feedback

7.1.1. Influence of smoothing parameter ¢

Fig. 3 shows the computed distribution of vortex rings during one period, based on the
characteristic (dominating) frequency f (explained a little later). The shown domain is 0 < x<2d,,
—dy<y<dy. The nozzle exit is thus just on the left frame-line and the end plate is in the center of
the figure parts. The results were obtained with smoothing parameter ¢ = 0.05d,. The sequence
indicates how the shear layer surrounding the jet rolls up into distinct, big vortices (‘smoke rings’)
which separate from the shear layer and hit the end wall, for then to spread outward, and move
over the plate. The simulated sequence agrees well with the sketch and description given in Ref. [2]
(Fig. 1, p. 903, and ‘Section A. Preliminary Observations’, p. 905). The frequency of vortex
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Fig. 3. Simulation of the jet with ¢ = 0.05dy. Vortex shedding from the end plate is not included. The nozzle exit is
located on the left frame of the figure parts. The end plate is seen in the center. One period of oscillation is shown.

~
Il
oo
~
—~
o0
~
N/

formation equals 203.3 Hz, corresponding to a Strouhal number St = fL/uy ~ 1.0. It will be seen
a little later that this frequency also is dominating in the acoustic spectrum, and is thus identified
with the characteristic hole-tone frequency.

Figs. 4 and 5 show similar sequences for ¢ = 0.1dy and 0.125d,, respectively. Increasing ¢
implies limitation of the roll-up, from a tightly rolled-up smoke ring for ¢ = 0.05d to just a single
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Fig. 4. As Fig. 3 but with ¢ = 0.1d,.

curl for ¢ = 0.125d,. The hole-tone frequency is however not affected much; it is also 203.3 Hz for
¢ =0.1dy, and 187.6 Hz for ¢ = 0.125d.

Figs. 6 and 7 show the vorticity field (6) for ¢ = 0.05d, and 0.125d,, respectively, corresponding
to Figs. 3 and 5. [Note that the end plate is not shown. Its location can be seen from Figs. 3 and 5,
as the plotting domain is the same.] It is seen that increasing ¢ results in thickening of the vorticity
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Fig. 5. As Fig. 3 but with ¢ = 0.125d.

layer. In this sense the smoothing parameter ¢ acts as viscosity, as discussed in Section 2.1. Figs. 6
and 7 verify the indication given by Figs. 3—5 that the shear layer rolls up into big, distinct vortex
rings. [Aref [39, p. 380] warns that apparent vortex roll-up, as indicated by discrete vortex
markers, may sometimes be misleading.].
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t=T7/(8f) t=28/(8f)

Fig. 6. Iso-vorticity levels for the jet with ¢ = 0.05d,. The shown sequence fits the simulation in Fig. 3; the plotting
domain is also the same. [Note that the end plate is not shown. Its location can be seen from Fig. 3.]

Fig. 8 shows the acoustic dipole and monopole pressure signals at the positions (x,r) =
(0.5,5)dy (part a) and (x,r) = (0.0,0.5)d, (part b), for ¢ = 0.125d,. It is seen that the monopole
contribution is much smaller than the dipole contribution. The difference is most pronounced
near the nozzle (part b). The monopole contribution is thus ignored in the results to follow.
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Fig. 7. Iso-vorticity levels for the jet with ¢ = 0.125d,. The shown sequence fits the simulation in Fig. 5; the plotting
domain is also the same. [Note that the end plate is not shown. Its location can be seen from Fig. 5.]

Fig. 9 shows the acoustic (dipole) pressure level (41), (in dB; reference pressure
Prer = 2 x 107> N/m?) at the position (x,r) = (0.5, 5)dy, for values of ¢ ranging from 0.025d, to
0.13dy. The values of the characteristic (dominating) frequency f for the different values of ¢ are
listed in Table 1. It is noticed from Fig. 9 that second and third harmonic of f come out quite clear
for e =0.1 ldo e 0125d0
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Fig. 8. (a) Sound pressure at the position (x,r) = (0.5, 5)dy; (b) The same at the position (x, r) = (0.0, 0.5)dy. Thick line
(and largest amplitude): dipole pressure pgy; thin line (and smallest amplitude): monopole pressure p,,..o-

Increasing the value of ¢ reduces the broad-band noise level. This is because the
‘artificial viscosity’ associated with this parameter damps out the small-scale random (‘chaotic’)
motions of the individual vortex rings [39]. Comparison of Figs. 3-5 also gives a good indication
of this.

As mentioned in Section 1, the shear layer convection velocity u. is typically 0.6uy — 0.7u.
Computed vortex ring convection velocities are shown in Fig. 10. It is noted that the axial
velocities are shown. As seen from Figs. 3-5, near the end plate the vortices bend off and move
over it. This is why the depicted axial velocities go towards zero there. The computed values are
too high for ¢ = 0.025d, ... 0.11d), but reasonable for ¢>0.115d,. It is interesting to note that the
changes in vortex convection velocities does not seriously affect the hole-tone frequency (see
Fig. 9). Considering the mean value of u, in the range 0<x<0.8L, of the four ‘good’ cases the
following values are estimated: u, ~ 0.7uy for ¢ = 0.115d, and 0.12d, and u. ~ 0.65uy for ¢ =
0.125d, and 0.13d,.

Fig. 11 shows the hole-tone frequency f as function of the non-dimensional convection velocity
u./up, calculated according to Eq. (1) for n = 1 (lower curve), % (middle curve), and 2 (upper
curve). Inserting the just mentioned vortex convection velocities and the hole-tone frequencies
found from Fig. 9, it is seen that the three cases ¢ = 0.115d,, 0.12dy, and 0.125d, fit the n = %curve
quite well (¢ = 0.125d in particular). Returning at this point to the discussion of (1) and to Figs.
3-5, it can be verified that the distance between the individual smoke rings (big vortices) ~ %L.

Figs. 1215 illustrate how the smoothing parameter ¢ affects the hydrodynamic pressure level
(HPL) and velocity fluctuation level (VFL) at various locations. Figs. 12 and 13 show the
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Fig. 9. Influence of the smoothing parameter ¢ on the sound pressure level (in dB; reference pressure
Pt =2 x 107°Nm~2) at the position (x,7) = (0.5, 5)dy. Single precision calculations (7 digits). (a) & = 0.025do; (b)
& = 0.05dy; (¢) e = 0.1dy; (d) e = 0.11d; (e) e = 0.115dy; (f) e = 0.12d,; (g) ¢ = 0.125d; (h) & = 0.13d,.
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Table 1

Characteristic frequency f for various values of the smoothing parameter ¢

¢/dy 0.025 0.05 0.1 0.11 0.115 0.12 0.125 0.13
f (Hz) 140.7 203.3 203.3 203.3 195.5 195.5 187.6 148.6

hydrodynamic pressure level at two locations on the end plate, Fig. 12 at the edge of the hole and
Fig. 13 about midway between the edge of the hole and the outer edge. These spectra are similar
to the sound pressure spectra shown in Fig. 9, particularly for ¢>0.115d,. Figs. 14 and 15 show
the velocity fluctuation level at two locations in the shear layer; Fig. 14 at (x,r) = (0.5,0.5)d,,
midway between nozzle exit and end plate, and Fig. 15 at (x,r) = (0.9, 0.5)d,, near the end plate.
The zero component in these spectra is due to a slow drift in the mean values of the velocities.
Time histories of the non-dimensional velocity (u, — ug)/ug at the two locations are shown in
Fig. 16.

The ‘artificial viscosity’ introduced by increasing ¢ is seen to reduce the broad-band noise level
of the pressure fluctuations on the end plate (Figs. 12 and 13) but to a smaller extent than by the
sound (Fig. 9). The velocity fluctuations in the shear layer are only weakly influenced by changes
in ¢ (Figs. 14 and 15) but a ‘too large’ value (=0.13d) changes the characteristic frequency.

7.1.2. Influence of machine precision

The computations presented sofar were carried out in single precision (7 digits). To investigate
the effect of the machine precision, three cases (¢ = 0.05d, 0.1dy, 0.125d)) were recalculated using
double precision (15 digits). The results are shown in Fig. 17. Comparison with Fig. 9 shows that
the location (value) of the characteristic frequency f is not affected. For ¢ = 0.05d the peak at f is
lower by the double precision calculation. There are no significant differences for ¢ = 0.1d, and
0.125d,. As to higher (second and third) harmonics, these are ‘sharper’ by the double-precision
calculation for 0.1d, but basically ‘wiped out’ by the double-precision calculation for 0.125d,. As
to the vortex convection velocities there are no significant differences for any of the three ¢ values.
The calculation for ¢ = 0.125d, was also repeated using the Fujitsu Fortran 90 compiler’s
quadruple precision (29 digits). The result is shown in Fig. 22 (Section 7.2). It will be seen that
there is basically no difference between this solution and the one obtained in double precision.

From this point onwards the smoothing parameter ¢ will be prescribed to the value 0.125d,. The
reasons for this choice are that this gives (i) the most uniform vortex convection velocity u. (Figs.
10 and 17), (ii) a mean value of u, that agrees well with values found in the literature (see also Fig.
11), and (iii) a relatively low broad-band noise level and a clear and distinct characteristic
frequency f.

7.1.3. Influence of time-step

As one vortex ring is released from the nozzle at each time-step A¢, a change in Az corresponds
effectively to a change in the discretization of the shear layer, that is, a chance in the spacing
between consecutive vortex rings.

The results presented in Fig. 18 were obtained using fourth-order Runge—Kutta integration and
double precision. Doubling the basic time-step (to Az = 0.05dy/up) results in a significant
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Fig. 11. The hole-tone frequency f as function of the non-dimensional convection velocity u./ug, for three different
mode numbers #, in terms of the function f = (1/u, 4+ 1/¢o)"'n/L. Values obtained from numerical simulations: ©,
e=0.115dy; 8, e =0.12dy; @, c=0.125d,; B, ¢ = 0.13d,.
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Fig. 12. Influence of the smoothing parameter ¢ on the hydrodynamic pressure level (in dB; reference pressure
Dref = %pou%) at the position (x,r) = (1.0,0.5)dy, that is, at the edge of the hole in the end plate. Single precision
calculations. (a) ¢ = 0.1dy; (b) ¢ = 0.11dy; (¢) ¢ = 0.115dy; (d) ¢ = 0.12dy; (e) £ = 0.125d,; (f) ¢ = 0.13d.

reduction of the peak noise level at the characteristic frequency (part a). Furthermore, the vortex
convection velocity is reduced, to an average value of ~ 0.55u, (part b). Halving the basic time-
step (to At = 0.0125d/up) results in a more clear appearance of the higher harmonics of the
characteristic frequency f (part c), but the basic value of f is unaffected, as is the vortex
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Fig. 16. Time history of the fluctuating axial velocity in the shear layer, at two different locations.

convection velocity (part d). Comparing the results of Figs. 17 and 18, and weighing the gain in
accuracy with the increase in computation time, it is decided to use the time-step Az = 0.025d,/uy

in the calculations to follow.

7.1.4. Influence of integration method

The first-order Euler method is often used—and considered sufficiently accurate—for updating
the positions of discrete vortices, e.g. [19,40]. The results shown in Fig. 19 were calculated
using this method, and single precision. The calculations were repeated in double precision,
but in this case extended machine precision has no appreciable influence. Comparing with the
previous results (obtained using the fourth-order Runge—Kutta method) it is seen that the Euler
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Fig. 17. Computations with double precision (15 digits). (a) Sound pressure level, (in dB; reference pressure
DPref = 2 X 107 N'm~2) at the position (x, r) = (0.5, 5)d, for & = 0.05d,. (b) Corresponding vortex convection velocity.
(¢) Sound pressure level for ¢ = 0.1dy. (d) Corresponding vortex convection velocity. (e) Sound pressure level for
e =0.125d,. (f) Corresponding vortex convection velocity.

method gives a little lower hole-tone frequency f, and a strong weakening of the higher
harmonics.

7.1.5. Influence of forced acoustic excitation

As a preliminary to the influence of acoustic feedback, this section considers the influence of
forced acoustic excitation, as described in Section 5. The forcing frequency f, is prescribed as
200 Hz (~ f), and the influence distance x;; as 0.2d, (see Eq. (52)), that is, the excitation acts in the
domain 0<x<0.2dy. [This value was chosen in accordance with the experimental setup, see
Section 8.1.] Three velocity amplitudes are considered, namely 4; = 0.01,0.05 and 0.1. The
effective forcing amplitude of the velocity perturbations, vy, say, which takes into account the
effect of the finite time step, may be estimated as follows [40]. Rewriting the last of the expressions
in Eq. (52) as rii=ri+ Ar, (53) gives Ar = Aquycos2nf ;0)At. Then vmax = (dAr/de),. =
2nf yAquoAt. Inserting f; = 200 Hz and At = 0.025d,/uq gives vmax =5 Aq [m/s]. With the three
excitation levels 4, = 0.01,0.05, and 0.1, the velocity ratio vmax/uo takes the values 0.001571,
0.007854, and 0.01571, or equivalently, 0.1571%, 0.7854%, and 1.571%, respectively. These
values are comparable with the forcing levels used in experiments (typically 0.2%-2%, see Refs.
[41,42], and references therein).

The influence of the forcing on the sound pressure level at the position (x,r) = (0.5, 5)d, is
shown in Fig. 20. Calculations are performed in both single precision (parts a—f) and double
precision (parts g-1), using both fourth-order Runge—Kutta integration (parts a—c and g-i) and
first-order Euler integration (parts d—f and j-1). For the single precision calculations with
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Fig. 20. Influence of forced excitation on the sound pressure level (in dB; reference pressure p.; = 2 X 107N m2) at
the position (x,r) = (0.5,5)dy (for ¢ = 0.125d,). The forcing frequency f = 200 Hz. Parts (a—f) are single precision
calculations (7 digits); parts (g-1) are double precision (15 digits). (a,g) Excitation amplitude 4 = 0.01uy, integration by
the fourth-order Runge—Kutta (RK) method; (b,h) 4 = 0.05u4y, RK integration; (c,i) 4 = 0.1y, RK integration; (d,j)
A = 0.01yg, integration by the first-order Euler (E) method; (e,k) 4 = 0.05uy, E integration; (f]) 4 =0.1uy, E
integration.

Runge-Kutta time-integration (parts a—c) the acoustic excitation destroys the sharp sub-
harmonics (compare with Fig. 9g) but does not affect the characteristic hole-tone frequency for
any of the three amplitude levels. Considering next the calculations with Euler time-integration
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(parts d—f), the acoustic spectrum is unaffected by the excitation with 4; = 0.01 but respond
markedly different from the previous results by the excitations with 4; = 0.05 and 0.1. By 4, =
0.05 the subharmonic % fo 1s excited, together with the combinations % fqs+fsand % fa+2f,; By
Ag = 0.1 the subharmonic % f4 comes out very strongly, ‘taking over’ from f. The combination
%(% fa+f4) 1s also distinct, as is any combination of the three just mentioned frequencies.

In contrast to the single precision calculations, the acoustic excitation reinforces the sub-
harmonics of f; by the double precision calculations with Runge—Kutta time-integration (parts
g—i), and they come out very strongly at the most powerful excitation. The double precision
calculations with Euler time-integration (parts j-1) are, on the other hand, virtually identical to the
single precision calculations.

The forced excitation results give some important indications concerning the numerical
representation of the acoustic feedback. It is evident that first-order Euler integration and single
precision computations are sufficient to represent the hydrodynamic behavior of the vortex
system. But the Euler integration is not accurate enough to trace the effect of acoustic
disturbances to the vortices. The integration error by far overshadows the roundoff errors in
single precision, so nothing is gained by going to double precision. In the case of the fourth-order
Runge—Kutta integration, higher machine precision has a clear influence on the representation of
the higher harmonics of the characteristic frequency.

7.2. Computations with acoustic feedback

As in the previous forced excitation examples the influence distance x;; of the acoustic feedback
is specified as 0.2dj. [It was initially thought that only the latest released vortex ring should be
disturbed. In this way each vortex ring receives a velocity perturbation one time only during its
‘life’. This turned out to have too little effect, and a finite influence domain was chosen.] In the
light of the forced excitation results the calculations will be done in, at least, double precision,
with time-integration by the fourth-order Runge—Kutta method.

A time series for the acoustic velocity feedback due to the dipole pressure (41) is shown in
Fig. 21. The amplitude of the radial component v, is approximately 0.025xy while the axial
component v, is very small. [The magnitude of v, will be greatly increased by a smaller hole in the
end plate.] The amplitude of v, is comparable with the values considered by forced excitation in

Time[s]

Fig. 21. Acoustic feedback velocities (double precision calculation). The velocity with largest amplitude is v,; the one
with smallest amplitude is v,.
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Fig. 22. Influence of acoustic feedback on the sound pressure level (in dB; reference pressure p,.; = 2 x 103N m™2) at
the position (x,r) = (0.5,5)dy. [Time integration by fourth-order Runge-Kutta method. Smoothing parameter
& = 0.125d,.] (a) No feedback, double precision (15 digits). (b) Feedback, double precision. (¢) No feedback, quadruple
precision (29 digits). (d) Feedback, quadruple precision.

the previous subsection. Using the method outlined there the forcing amplitude of the velocity
perturbations is, with uy = 10m/s, estimated as vpmax ~ 0.03927m/s. To check the order of
magnitude of this result it may be useful to apply the far-field approximation for the acoustic
particle velocity, v, say, corresponding to an acoustic pressure p, which is obtained as v, = p/(pco)
[32]. Setting v, = 0.03927m/s, this corresponds to a pressure amplitude ~ 16Pa, or a sound
~ 118dB. This is a quite loud sound, but it appears reasonable as the feedback works in the
acoustic near-field, very Close to the unstable shear layer. It also agrees well with Fig. 8(b). [A
pressure amplitude of 0.26 x 2 pou3 corresponds to 118 dB.] The acoustic velocity feedback (51)
due to the monopole pressure was, in comparison, found to be negligibly small. This can also be
understood from Fig. 8.

Fig. 22 illustrates the effect of acoustic feedback on the sound spectrum at the position (x,r) =
(0.5,5)d,. Parts (a) and (c¢) are the results without feedback; parts (b) and (d) are the results with
feedback. Parts (a) and (b) are obtained with double precision, parts (c) and (d) with quadruple
precision. It is seen that the effect of the feedback is to suppress the broad-band noise and reinforce
the characteristic frequency f and its higher harmonics. The level of f itself is not significantly
affected, but the levels of the higher harmonics are significantly raised. As discussed in the
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previous subsection, the representation of the higher harmonics is sensitive to roundoff errors, as
the peaks at these frequencies clearly are higher by the quadruple precision calculation. The sub-
harmonic components % f ~ 50Hz and }T f +% f ~ 150Hz are also suppressed by the acoustic
feedback.

8. Comparison with experiment

Prior to the present theoretical/numerical work a number of experiments have been carried
out by the second author (M.N.) at Yamagata University. In the following a brief discussion
of the experimental equipment is given, and calculated results are compared with experimental
data.

8.1. Description of experimental equipment

The experimental equipment is sketched in Fig. 23. The dimensions are as given in Section 6.1,
with the single exception of the outer shape of the end plate. While it is necessary to assume a

End plate FFT analyzer

Anemo-
meter

Microphone with

pre-amplifier -l

Nozzle 50

92 100

LD

Flow —pp T ‘

O
ONe)

Hot wire
probe (I-type)

Fig. 23. Schematic illustration of the experimental set-up.
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disc-shaped end plate in the theory, the experimental end plate is actually rectangular,
with dimensions 200mm (height) x 270 mm (width). [As mentioned before, the diameter
of the computational plate was chosen as 250mm, a little more than the average
{(200 + 270)/2} mm.]

Air from a centrifugal blower goes through a ~ 160 mm long mouthpiece before leaving the
nozzle. Fluctuating flow velocities are measured by a Dantec I-type hot-wire probe, and sound
pressure levels by a condenser microphone (Ono Sokki MI-1232). Data are passed through an
anemometer (Dantec 56C01 CTA) and a microphone preamplifier (Ono Sokki MI-3220),
respectively, to an Ono Sokki CF-5220 multi-purpose FFT analyzer.

The hole-tone setup is also equipped with an apparatus for forced acoustic excitation of the
jet near the nozzle exit, consisting of a chamber with a loudspeaker and an excitation nozzle
(not shown in Fig. 23). The influence domain of the excitation jet was estimated to be
~ 1cm ~ 0.2dy, as mentioned in Section 7.1.5. [Experiments with forced excitation will however
not be considered here.]

The photograph shown in Fig. 1 is from a video sequence, recorded with a high-speed video
camera (Fastcam Ultimate, 4500 frames/s). The vortex roll-up is visualized by use of the smoke-
wire pulse method.

As in the previous examples the mean flow speed uy = 10m/s and the gap length L = dy =
50 mm, unless stated otherwise.

8.2. Comparison between theory and experiment

Velocity fluctuation levels in the shear layer (in dB, reference 5 m/s (which corresponds to 1V)),
measured at (x,r) = (0.6,0.5)dy, are shown in Fig. 24(a). It is seen that there is good agreement
between the experimental and computational hole-tone frequency f, and also the second
harmonic 2f, both with respect to location and peak level. The agreement is not so good for the
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Table 2
Comparison between experimental and computational values of frequencies and peaks of the velocity fluctuation
spectrum at (x,r) = (0.6,0.5)dy, shown in Fig. 24(a)

n 1 2 3 4

f, (Hz) Experimental 198 395 594 790
Computational 188 383 579 766

VFL,, (dB) Experimental —15.8 -30.9 -31.0 -32.9
Computational —18.6 -30.4 -394 —51.2

third and fourth harmonics of f. The numerical values of frequencies and peaks are summarized
in Table 2.

Fig. 24(b) shows experimental and computational sound pressure levels. The experimental
spectrum was recorded at the position (x,r) = (0.5, 1.8)d,. It must be noticed that this position is
in the very near-field, well within the outer edge of the end plate. Computation of the sound
pressure here is very difficult, as discussed at the end of Section 3. The computational spectrum in
Fig. 24(b) is thus not recorded at (x,r) = (0.5, 1.8)dy, but at (x,r) = (0.5, 5)dy as in the previous
examples. The two spectra can therefore be compared quantitatively with respect to frequencies
but only qualitatively with respect to peak levels. The frequencies are seen to agree well but, on the
contrary to part (a), the levels of the higher harmonics appear here to be, relatively, too high. It
must also be remarked that the broad-band noise levels of the computations are significantly
higher that the experimental ones. This may be explained by the random (chaotic) motions of
individual vortices [39] which however are damped by the ‘artificial viscosity’, expressed by the
parameter ¢.

The characteristic frequency f is shown as function of jet speed uy in Fig. 25(a). The full
lines depict (1), drawn with u. = 0.65uy, as estimated in Section 7.1.1. The experimental
results (open dots) display a complicated pattern of mode-jumping. For 5.0m/s<uy<9.0m/s
they follow the n =25 line, and for 9.0m/s<uy<148m/s the n=1.5 line. But
frequencies following the n = 3.0 line are also present in the range 12.0m/s<u<14.8m/s. The
line n=4.0 is followed in the range 14.8m/s<up<19.0m/s. The last data point, for uy =
20.0m/s, lyes on the n = 3.0 line. The simulation results (solid dots) all follow the n = 1.5 line.
Here it is remarked that in the experiment the velocity uy = 10m/s, which corresponds
to a Strouhal number fL/uy ~ 1.0, gives the most distinct characteristic frequency and the
loudest sound. This may indicate that n = 1.5 is the ‘preferred’ mode for the considered
geometry, and may give a hint to why the computations ‘hinge’ to this mode. But it must be
emphasized that more work is needed in order to understand the mechanism behind the
mode jumps.

Fig. 25(b) shows the characteristic frequency f as function of the non-dimensional gap length
L/dy. No experimental results are available to check this investigation; it is included anyway in
this section because of its relation to Fig. 25(a). As in part (a) the full lines depict (1), drawn with
u. = 0.65uy. Open dots represent calculations with the fourth-order Runge—Kutta method, while
solid dots represent calculations with the first-order Euler method. Here mode jumps occur, but
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Fig. 25. (a) Variation of hole-tone frequency f, with jet speed uy. —, Eq. (1); e, computation; o, experiment. (b)
Variation of hole-tone frequency f|, with non-dimensional gap length L/dy. —, Eq. (1); e, computation with fourth-

order Runge—Kutta integration; o, computation with first-order Euler integration.

the results are highly dependent upon the accuracy of the time integration. It turns out that by
increasing the gap length the broadband noise level in the sound spectrum is significantly raised
and the characteristic frequency does not come out as distinct as by the small initial gap, L = d.
On the contrary, many components of nearly equal magnitude compete. In this way mode jumps
easily occur.

9. Conclusions and discussion

An axisymmetric numerical simulation approach to the hole-tone feedback cycle problem has
been presented. It is based on the discrete vortex method, using axisymmetric vortex rings,
combined with an acoustic feedback mechanism which is based on Curle’s equation. The main
findings from the numerical study can be summarized as follows.

1. The simulated shear layer velocity fluctuations are in good agreement with experiments, both
with respect to frequencies and amplitude levels. The frequencies of sound pressure fluctuations
are also found to agree well with the experimental values. The numerical method is however
incapable of providing results for the very near-field where the measurements were made, so
sound pressure levels can only be compared qualitatively.

2. The simulated results follow the criterion (1), in agreement with the experimental results. But
the simulations lock on to a single value of the mode number n, while the experiments display a
complicated pattern of mode jumps.

3. The smoothing (vortex-blob regularization) parameter ¢ defined in Eq. (3) works as ‘artificial
viscosity’, as it increases the thickness of the shear layer.

4. The smoothing parameter significantly affects the appearance of the rolled-up ‘smoke rings’,
the vortex convection velocity, and the level of broadband noise in sound and velocity
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spectra, but the characteristic hole-tone frequency is fairly insensitive to changes in this
parameter.

5. The basic feedback cycle works hydrodynamically. In the present context this means that the
discrete vortex method alone, without acoustic feedback, can predict the fundamental
characteristics of the problem.

6. For the geometry considered, where the diameter of the end plate is much smaller than the
acoustic wavelength, the produced sound is mainly of dipole type. The effect of the
corresponding acoustic feedback is to suppress the broadband noise and reinforce the
characteristic hole-tone frequency and its higher harmonics, as dictated by the hydrodynamics.

7. In cases with disturbance of the vortices by forced acoustic excitation or acoustic feedback,
high precision computer arithmetics and accurate time integration becomes particularly
important.

Following up on item No. 2, we emphasize that more work is needed to understand the
mechanism behind mode jumps. Linearized models [14,15] can give the characteristic frequency
for any given mode number n, but the selection of » may be governed by nonlinear processes.
Nonetheless, Brevdo [43] recently suggested a selection criterion based on a linearized model.
Considering oscillations with time-dependence exp(—iw?) it is suggested as a hypothesis that the
system will select the mode corresponding to the complex root w; = Re(w;) 4+ 1Im(w;) of the
dispersion function Z(w) for which Im(wj) is largest and thus ‘most unstable’.

Finally, following up on item No. 4, the level of broadband noise in the computational
frequency spectra is higher than in the experimental ones for any useful value of the smoothing
parameter. Many different regularization methods have been proposed (for example vortex patch
regularization, viscous regularization, and surface tension; see Ref. [30] for a recent review), and
another method than the vortex-blob regularization used here might be more efficient for the
present problem. Better suppression of the numerical noise may lead to improved behavior of the
numerical scheme with respect to mode jumping, and to a better understanding of this
phenomenon. Improved smoothing schemes is thus an important and interesting problem for a
future study.
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Appendix A. Evaluation of the derivatives in Egs. (2) and (6)

Evaluation of the terms 0¥ /dx, 0¥ /or, 0*¥ /0x? and 0*¥ /or?, which appear in Eqgs. (2) and (6),
is shown in this appendix.
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A.1. First derivatives

Use of the chain rule on the first of the equations (3) gives
GT_x—xy 6‘P+x—xy oY

ox  my ony o omy Ony’
GT_r—rUG‘P r+r, 0¥

= + ,
or m  on N, On
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and similar with respect to 7,. The second of the equations (3) gives
oL 144 oL 1—12
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By making use of Eq. (4) it is found that
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and thus,
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Collecting these results, Eq. (55) can be written as
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A.2. Second derivatives

Differentiation of Eq. (54) gives
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Differentiation of Eq. (60) gives, after some algebra,
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Appendix B. Evaluation of the integral in Eq. (37)

Ref. [44] gives the result

o % s
/ e"”ngl)(c\/ b —x2)dx = — _ A b p? (63)
—00 Vet +p?

where b, ¢, and p here are scalar parameters. But an integral on the form ffoooxeil’”‘H(Ol)(c(b2 —
x2)1/ 2)dx appears in Eq. (37). This can be obtained by differentiating Eq. (63) with respect to p,
followed by multiplication with —i. This gives the formula

o 2 1 b/
/ e HY (V5 = ) dx = 57 —ib | ePVER, (64)
o ¢+ \ V2 + p?

by which Eq. (37) is evaluated.

Appendix C. Inversion of the last term in Eq. (45)

To evaluate the inverse Fourier transform of the last term in Eq. (45),
o i .
/ FonePr0 — e doo, (65)
oo W
use can be made of the convolution theorem in form [7, p. 60]

| @i o= [ f@se-od (66)
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Eq. (65) can thus be written as

%/_:fxn(r — D, /co)H(t — 1)dr, (67)

where H(t — ) is the Heaviside unit function, which is zero for 7 <¢ and unity for > ¢. The final
result is

/_t fn(t — Dy/co)dr. (68)
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