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Abstract

A study of symmetric wave propagation in a fluid-saturated incompressible porous medium is presented.
The governing equations are solved by the method of characteristics. Characteristic equations and the
relations for discontinuities across the wave fronts are derived and Heaviside step input function is taken
for the numerical investigation.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The problems related to fluid-saturated porous media are attracting more and more attention
because of their significance in the field of geophysics, soil-mechanics and other such field of
engineering. So many porous media theories have been presented. Biot theory [1] is based on the
assumption of compressible constituents and propagation of two dilatational and one rotational
waves have been concluded. Another interesting theory is given by Bowen [2] and Boer and Ehlers
[3]. In this theory, all the constituents of a porous medium are assumed to be incompressible. One-
dimensional transient wave propagation in fluid-saturated incompressible porous media has been
discussed by Boer and Ehlers [4]. The saturating fluid is assumed to be inviscid and the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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incompressibility constraint exhibits only one independent dilatational wave propagating in both
the solid and fluid phases.
In this paper, we have discussed the propagation of symmetric waves in a fluid-saturated

incompressible porous medium. The porous medium is modeled as a two-phase system composed
of incompressible solid and fluid phases, where the general field equations are directly adopted as
the work of Boer and Ehlers [3]. The method of characteristics is applied to solve the governing
equations. The advantage of this method is that, it gives the simple description of wave fronts,
path of waves and can be used for arbitrary input functions. The method of characteristics for one
space variable has been successfully used by many investigators [5–13] and [14–16] have applied
this method for two space variables where these authors have sufficiently discussed the numerical
integration along the bi-characteristic lines. Ideas used by these authors are given in the standard
texts [17–20]. The numerical integration procedure along the characteristic directions is simple,
stable and is rapidly convergent. Sneddon [20] has presented another important property of this
method describing the fact that if there is a discontinuity at any point of a characteristic curve,
then there must be one at all the points of this curve. It is this property which identifies a
characteristic curve as a wave front. So following this method, the analytical results for
discontinuities across the wave front are obtained and Heaviside unit step input is taken for
numerical investigation.
2. Basic equations

Within the framework of modern porous media theory [3], the equations governing the
deformation of an incompressible porous medium are

divðZS _xS þ ZF _xF Þ ¼ 0, (1)

divTS
E � ZS grad p þ rSðb� €xSÞ � PF

E ¼ 0, (2)

divTF
E � ZF grad p þ rF ðb� €xF Þ þ PF

E ¼ 0, (3)

where _xi and €xi ði ¼ F ;SÞ denote the velocities and accelerations of solid and fluid phases,
respectively, and p is the effective pore pressure of the incompressible pore fluid. rS and rF are the
densities of the solid and fluid phases, respectively, and b is the body force per unit volume. TS

E ; T
F
E

and PF
E are called the extra quantities for which the constitutive equations must be formulated and

ZS; ZF are the volume fractions satisfying

ZS þ ZF ¼ 1. (4)

If uS and uF are the displacement vectors for solid and fluid phases then

_xS ¼ _uS; €xS ¼ €uS; _xF ¼ _uF ; €xF ¼ €uF . (5)

The investigations to follow are restricted to an isotropic, linear elastic porous solid filled with
an inviscid liquid. So the constitutive equations for extra stresses and extra momentum are given
by de Boer and Ehlers [3] as

TS
E ¼ 2mSES þ lS

ðES:IÞI, (6)
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TF
E ¼ 0, (7)

PF
E ¼ �SV ð_uF � _uSÞ, (8)

where lS and mS are the macroscopic Lame’s constants of the porous solid and ES is the linearized
Langrangian strain tensor defined as

ES ¼ 1
2
ðgrad uS þ gradT uSÞ. (9)

In the case of isotropic permeability, the tensor SV ; describing the coupled interaction between the
solid and fluid is given by Boer and Ehlers [3] as

SV ¼
ðZF Þ

2gFR

KF
I, (10)

where gFR is the effective specific weight of the fluid and KF is the Darcy’s permeability coefficient
of the porous medium.
3. Formulation of the problem

We consider an infinite fluid-saturated incompressible porous medium having a cavity
(spherical or cylindrical) of radius r0: Initially the surface r ¼ r0 is not loaded. So each particle of
the medium is at rest. As time progresses, a time-dependent input f ðtÞ is applied at r ¼ r0 either
suddenly or gradually. In the scope of infinitesimal deformation, all the terms of higher order are
neglected. Moreover, the small variation in the volume fractions is also neglected. So considering
the motion to be spherically (cylindrically) symmetric, taking body forces to be absent and after
using Eqs. (5) and (7); we can write Eqs. (1)–(3) as

ZS qvS

qr
þ ZF qvF

qr
¼ 0, (11)

qtr

qr
þ

N

r
ðtr � tyÞ � ZS qp

qr
þ SV ðv

F � vSÞ ¼ rS qvS

qt
, (12)

�ZF qp

qr
� SV ðv

F � vSÞ ¼ rF qvF

qt
, (13)

where tr; ty are the components of stress on the porous solid, vS; vFare the only non-zero
components of velocities of solid and fluid particles respectively, and N is a constant and its value
is zero for plane wave, one for cylindrical wave and two for spherical wave. Also Eqs. (6) and (9)
in component form are simplified as

tr ¼ ðlS
þ 2mSÞ

quS

qr
þ NlS uS

r
, (14)

Nty ¼ N lS quS

qr
þ ðNlS

þ 2mSÞ
uS

r

� �
. (15)
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The initial and boundary conditions are

vSðr; 0Þ ¼ vF ðr; 0Þ ¼ 0; r4r0, (16)

tr ¼ �f ðtÞ at r ¼ r0, (17)

where f ðtÞ is a function of time.

Also vS; vF ! 0 as r ! 1 (18)

Eq. (11) on integration and with the help of Eq. (18) provides

ZSvS þ ZF vF ¼ 0. (19)

Eqs. (12) and (13) with the help of Eqs. (4) and (19) and also the stress–strain relations (14) and
(15) yield

ZF qtr

qr
� ZFrS qvS

qt
� ZSZF qp

qr
¼ SV vS �

ZF N

r
ðtr � tyÞ, (20)

ZFrS qvS

qt
� ðZF Þ

2 qp

qr
¼ �SV vS, (21)

qtr

qt
� ðlS

þ 2mSÞ
qvS

qr
¼ NlS vS

r
, (22)

N
qty
qt

� lS qvS

qr

� �
¼ NðNlS

þ 2mSÞ
vS

r
. (23)

Eqs. (20)–(23) form a system of four linear first-order partial differential equations with tr; ty; vS

and p as dependent variables and r and t as the independent variables. These equations are fully
hyperbolic and they permit the propagation of jumps in the partial derivatives of dependent
variables along the characteristic directions, which are going to be presented in the next section.
4. Method of characteristics

The characteristic directions for the set of Eqs. (20)–(23) can be shown readily to be

I�:
dr

dt
¼ �c0, (24)

II: dr ¼ 0. (25)

The Iþ characteristic represents the line along which the discontinuities in the partial derivatives
of the dependent variables propagate to the right and I� is the path of propagation of these
discontinuities to the left. The II characteristic is the degenerate case of dynamic wave at a given
radial location. c0 is the velocity of propagation and is given by

c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZF Þ

2
ðlS

þ 2mSÞ

ðZF Þ
2rS þ ðZSÞ

2rF
:

s
(26)
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If the pore liquid is absent or gas is filled in the pores, then rF is very small as compare to rS and
can be neglected. So the relation (26) reduces to

c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lS

þ 2mS

rS
:

s
(27)

This gives the velocity of a wave propagating in an incompressible porous solid, where the change
in volume is due to the change in porosity and is a well-known result of the classical theory of
elasticity. In an incompressible non-porous solid medium ZF ! 0; then again from Eq. (26) we
have c0 ¼ 0 and is physically acceptable as a longitudinal wave cannot propagate in an
incompressible medium.
The characteristic equations along I� are

ðZF Þ
2 dtr 	 c0fðZF Þ

2rS þ ðZSÞ
2rF gdvS ¼ SV vS �

NðZF Þ
2

r
tr � ty 	

lSvS

c0

� �� �
dr (28)

and the characteristic equation along II is

NlS dtr ¼ �2NmSlS
fðN þ 1ÞlS

þ 2mSg
vS

r
dt þ NðlS

þ 2mSÞdty. (29)

These equations govern the propagation of discontinuities in the derivatives of x and vS: Jumps
also occur in the values of x and vS as the wave propagates back and forth in the medium. To
derive the analytical results for these discontinuities, we draw a characteristic of the family I� and
take two points P and Q on it which are sufficiently close to each other. Through these points, we
draw the characteristics Iþ1 and Iþ2 of the family Iþ and also draw a characteristic PR of the family
II as shown in Fig. 1(a). Integrating Eq. (28) for the lower sign from P to Q we get

ðZF Þ
2
fðtrÞQ � ðtrÞPg þ c0fðZF Þ

2rS þ ðZSÞ
2rF gfðvSÞQ � ðvSÞPg ¼

Z Q

P

Adr.

Taking the limit as Q ! P and as the integrand is bounded, so we have

ðZF Þ
2
½tr
 þ c0fðZF Þ

2rS þ ðZSÞ
2rF g½vS
 ¼ 0. (30)

Similarly integration of Eq. (29) from P to R and in the limiting case as R ! P yields

½tr
 ¼
lS

þ 2mS

lS
½ty
. (31)

As the points P and Q are lying on the characteristics of the family Iþ so writing Eq. (28) for the
upper sign along Iþ2 and Iþ1 ; subtracting one from the other and in the limiting case as Q ! P; we
have

ðZF Þ
2 d½tr
 � c0fðZF Þ

2rS þ ðZSÞ
2rF gd½vS
 ¼ SV ½v

S
 �
NðZF Þ

2

r
½tr
 � ½ty
 �

lS
½vS


c0

� �� �
dr.

This equation with the help of Eqs. (30) and (31) and on integration, yields

½tr
 ¼ Ke�ðL=2Þrr�ðN=2Þ, (32)
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procedure.
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where K is a constant and is evaluated by using the boundary condition and

L ¼
r0SV

c0fðZF Þ
2rS þ ðZSÞ

2rF g
. (33)

Using the relation (32) in Eqs. (30) and (31) we get the equations for the variation of ½vS
 and ½ty

as

½vS
 ¼ �
c0

ðlS
þ 2mSÞ

Ke�ðL=2Þrr�ðN=2Þ, (34)

½ty
 ¼
lS

ðlS
þ 2mSÞ

Ke�ðL=2Þrr�ðN=2Þ. (35)

Similarly the equations for the discontinuities across dr=dt ¼ �c0 are

½tr
 ¼ Ke�ðL=2Þrr�ðN=2Þ, (36)

½vS
 ¼
c0

ðlS
þ 2mSÞ

Ke�ðL=2Þrr�ðN=2Þ, (37)

½ty
 ¼
lS

ðlS
þ 2mSÞ

Ke�ðL=2Þrr�ðN=2Þ. (38)
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Using the incompressibility relation (19), we can easily derive the corresponding relations for
discontinuities in particle velocity for fluid phase. If the pore liquid is absent then SV ¼ 0; so
L ¼ 0 and the relations (32)–(38) take the form

½tr
 ¼ Kr�ðN=2Þ, (39)

½vS
 ¼ 	
c0

ðlS
þ 2mSÞ

Kr�ðN=2Þ, (40)

½ty
 ¼
lS

ðlS
þ 2mSÞ

Kr�ðN=2Þ. (41)

These results can also be compared with the well-known results of the classical theories, e.g.
Ref. [5].
5. Numerical computation

Before presenting the numerical procedure, we introduce the non-dimensional quantities as

r0 ¼
r

r0
; t0 ¼

c0t

r0
; t0r ¼

tr

E
; t0y ¼

ty
E
; vS0

¼
ðlS

þ 2mSÞ

E

vS

c0
; vF 0

¼
ðlS

þ 2mSÞ

E

vF

c0
,

where E is the Young’s modulus of the solid phase, so that the results are true for any value of the
physical parameters. The straight-line r ¼ 1þ t and r ¼ 1 are the projections of the leading wave
front and the straight-line r ¼ r0 in the new r � t plane. We divide the straight-line r ¼ 1 by a
number of points in such a way that the distance between any two consecutive points is same
throughout and is very small. Let this distance be dt and from the geometry of the characteristic
lines, it is clear that dr ¼ dt: Through these points we draw two families of the characteristic lines
defined by Eq. (24) and then draw the characteristic lines of the family (25), joining their points of
intersection as shown in the Fig. 1(b). The region between the straight line and r ¼ 1 and r ¼ 1þ t
is thus replaced by the discrete points as shown in the figure. The suffixes ij are attached to each
grid point and it is clear that for any i; j varies from 1 to i and it provides a very good logic for the
computer programming of the numerical technique. All these points can be divided into four
categories. The point 11 is included in first category. It corresponds to the situation when the load
is just applied and at this point all the quantities are known. The points lying on the straight line
r ¼ 1þ t are included in the second category and as this straight line is a line of discontinuity, so
the discontinuity relations are used to evaluate tr; ty and vS where as the geometry of the
characteristics network provides the values of r and t: If i1 is any point of this category then

ðtrÞi1 ¼ Ke�ðL=2Þri1ðrÞ
�ðN=2Þ
i1 , (42)

ðvSÞi1 ¼
c0

ðlS
þ 2mSÞ

Ke�ðL=2Þri1ðrÞ
�ðN=2Þ
i1 , (43)

ðtyÞi1 ¼
lS

ðlS
þ 2mSÞ

Ke�ðL=2Þri1ðrÞ
�ðN=2Þ
i1 , (44)
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ti1 ¼
i � 1

2

� �
dt, (45)

ri1 ¼ 1þ ti1. (46)

All the interior points are included in the third category. The values of r; t; tr; ty and vS at a typical
interior point ij may be computed if all these quantities are known at the neighboring points
i � 1j � 1; ij � 1 and i � 1j: Here the geometry of the characteristics net work provides the values
of r and t: The corresponding characteristic equations are written in finite difference form and the
quantities tr; ty and vS are evaluated from the algebraic equations so obtained. So we have

tij ¼ tij�1 þ
1
2
dt, (47)

rij ¼ rij�1 �
1
2
dt. (48)

ðtrÞij ¼
P1 þ P2

2
, (49)

ðvSÞij ¼
P1 � P2

2
, (50)

ðtyÞij ¼ ðtyÞi�1 j�1 þ Q2fðtrÞij � ðtrÞi�1 j�1g þ Q3dt
ðvSÞi�1 j�1

ri�1 j�1
, (51)

where

P1 ¼ ðtrÞi�1j � ðvSÞi�1j þ A1ðrij � ri�1jÞ, (52)

P2 ¼ ðtrÞij�1 þ ðvSÞij�1 þ A2ðrij � rij�1Þ, (53)

A1 ¼ LðvSÞi�1j �
N

ri�1j

fðtrÞi�1j � ðtyÞi�1j � Q2ðv
SÞi�1jg, (54)

A2 ¼ LðvSÞij�1 �
N

rij�1
fðtrÞij�1 � ðtyÞij�1 þ Q2ðv

SÞij�1g, (55)

Q2 ¼
lS

Q1

, (56)

Q1 ¼ lS
þ 2mS (57)

and

Q3 ¼
2mSfðN þ 1ÞlS

þ 2mSg

Q2
1

. (58)

Along the straight-line r ¼ 1; where one of the variables is described remaining two may be
determined from the two equations along I� and II characteristics and these points are included in
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fourth category and two suffixes are equal for these points. So we have

tii ¼ ði � 1Þdt, (59)

rii ¼ 1, (60)

ðtrÞii ¼ �f ðtiiÞ, (61)

ðvSÞii ¼ ðvSÞii�1 � ðtrÞii þ ðtrÞii�1 þ A3ðrii � rii�1Þ, (62)

ðtyÞii ¼ ðtyÞi�1i�1 þ Q2fðtrÞii � ðtrÞi�1i�1g þ Q3dtðvSÞi�1i�1, (63)

where

A3 ¼ LðvSÞii�1 �
N

rii�1
fðtrÞii�1 � ðtyÞii�1 þ Q2ðv

SÞij�1g. (64)

Particle velocity for fluid phase is evaluated by using incompressibility relation (19). The
pressure term neither appears in the equations of characteristic lines nor in the characteristic
equations. This is due to the fact that the wave motion in porous medium may be expressed by the
solid and fluid displacements or the solid extra stress but it cannot be expressed by the pore
pressure, which of course is nothing else than the Langrangian multiplier corresponding to the
incompressibility constraint of the binary medium. However, the pore pressure is evaluated from
Eqs. (20) and (21) by eliminating the derivatives with respect to t and by writing the equations so
obtained in difference form along the characteristic lines.
6. Discussion

For a particular model, we have taken Heaviside unit step input and the numerical values of the
various physical parameters are taken from Boer and Ehlers [3]. Discontinuities in various
quantities attenuate according to Eqs. (32)–(38). The variation of tr; ty; vS and vF have been
presented in Figs. 2–6. In particular the Figs. 2(a) and (b) show the solid velocity changing with
respect to time and radial distance. It is evident that for a given r; the velocity of a solid particle
decreases uniformly with time to some very small value. But if we consider the variation with
respect to radial distance, we see that the velocities at all values of time approach to zero with
increase of radial distance. Only difference is that for smaller value of time, the decrease is quick
where as it is slow at large values of time. Figs. 4(a) and (b) show the variation of radial
component of solid stress with respect to r and t: The magnitude of solid stress increase with time
and approaches to its constant value at large values of time and so the curves are asymptotic to
the straight line, tr ¼ �1; which represents the load applied at the cavity. Curves are drawn for
three values of r and it is clear that the radial stress decrease with the increase of radial distance
and it is again justified if we consider the variation with respect to radial distances at some fixed
values of time Fig. 4(b). Here, starting from its maximum value which is 1 in our case, the
magnitude of radial stress approaches very quickly to zero at small value of time but slowly at
large values of time. Behaviour of circumferential component of stress, Figs. 5(a) and (b) is almost
similar to that of radial component. The only difference is that the variation is small as compare
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Fig. 3. Variation of vF -versus (a) time and (b) radial distance.

Fig. 2. Variation of vS-versus (a) time and (b) radial distance.
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to radial component. But one thing is very clear that the solid stresses increase with time at a given
radial distance and decrease with distance from the loading surface at a given time. The pore
pressure also decreases with time Fig. 6(a) and the trend of the curves show that the pores pressure
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Fig. 4. Variation of radical component of solid stress versus (a) time and (b) radial distance.

Fig. 5. Variation of circumferential component of solid stress versus (a) time and (b) radial distance.
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at all the radii will approach to zero at large value of time. Unlike the stress, the pores pressure
increases with radial distance very quickly near the cavity then increases gradually and ultimately
becomes constant as shown in Fig. 6(b). As the result of incompressibility constraint, the motion
of fluid phase is opposite to that of solid phase. That is why the graphs for fluid phase, Figs. 3(a)
and (b), are the mirror images of the corresponding graph for solid phase. The magnitude of
velocity of a fluid particle is greater than, equal to or less than that of the corresponding solid



ARTICLE IN PRESS

Fig. 6. Variation of pore pressure versus (a) time and (b) radial distance.
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particle according as the quantity ZS=ZF is greater than, equal to or less than 1. Another important
significance of the investigation is that, for the same medium and for the same input, the
magnitude of the velocities, stresses and the pores pressure due to cylindrical wave is more than
that due to spherical wave but less than that due to plane wave.
7. Conclusion

The propagation of plane, cylindrical and spherical waves in a fluid-saturated incompressible
porous medium has been discussed. Saturated porous medium is modelled as two phase system
with two incompressible constituents, where the general field equations are directly adopted
according to the work of Boer and Ehlers [3]. The assumption of two incompressible constituents
does not only meet the properties appearing in the many branches of soil mechanics, but it also
avoids the introduction of many complicated material parameters as considered in the Biot
theory. The governing partial differential equations are solved numerically using the method of
characteristics. The incompressibility constraint exhibits only one wave propagating in both the
solid and liquid phases. It has been observed that the discontinuities across the wave front are (i)
inversely proportional to e L=2ð Þr for plane wave, (ii) inversely proportional to e L=2ð Þr and square
root of the radial distance for cylindrical wave and (iii) inversely proportional to e L=2ð Þr and radial
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distance for spherical wave. Heaviside step loading is taken for numerical investigation and the
variation in various quantities, with time at various values of radial distance and with radial
distance at various value of time is graphically presented.
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