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Abstract

Flexible structures are extensively used in many space applications, for example, space-based radar
antennae, space robotic systems, and space station, etc. The flexibility of these space structures results in
problems of structural vibration and shape deformation, etc. In recent years, active control methods have
been developed to suppress structural vibration and improve the performance of these flexible space
structures. In this paper, we developed an approach for active vibration control of flexible structures with
integrated piezoelectric actuators using control theory. First, dynamic models for a flexible circular plate
with integrated piezoelectric actuators and sensors are derived using the Rayleigh–Ritz method. An active
robust controller is designed to suppress vibration of the circular plate. Robustness of the control system of
the circular plate is discussed for the model parameter uncertainty. This active robust vibration control
method is tested via experimental implementation. The experimental results show that the proposed robust
active control method is efficient for active vibration suppression.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible structures are extensively used in many space applications, for example, space-based
radar antennae, space robotic systems, and space station, etc. The flexibility of these space
structures results in problems of structural vibration and shape deformation, etc. In recent years,
active control methods have been developed to suppress structural vibration and improve the
performance of flexible structures [1–11]. Crawley and de Luis [2] investigated piezoelectric
see front matter r 2005 Elsevier Ltd. All rights reserved.
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actuators as elements of smart structures and derived the static and dynamic models for
segmented piezoelectric actuators bonded or embedded in the flexible structures. Bailey and
Hubbard [1] designed an active distributed parameter damper for a cantilever beam using
piezoelectric actuators, and developed an algorithm to actively control the damper using the
Lyapunov second method. Hagood and Chung [9] established an analytical models for general
structures with piezoelectric materials coupling the mechanical and electrical coordinates using
Hamilton principle and demonstrated the applications of the general models using a cantilevered
beam. Dosch et al. [5] presented a method for synthesizing an antenna model using identified
single input and single output transfer functions. The identified model was used to design a
positive position feedback and H1 controller and the damping in all the modes in the targeted
frequency range were increased. Garcia et al. [7] developed an active control method to suppress
vibration of flexible ribbed antenna structures using piezoceramic components as both sensor and
actuator simultaneously. Most published papers in the area of active vibration control design
vibration controllers based on dynamic models of flexible structures without consideration of
uncertainties. However, the system model uncertainties from parameter variation, mode
truncation, etc., have a significant influence on the system performance.
In recent years, the research topic of robust active control for flexible structures has received

considerable attention [4,11,12], etc. Damaren and Le-Ngoc [4] developed an active vibration
control method for a bandsaw blade usingH1 control theory, and analyzed the robust stability of
the closed-loop system. Kar et al. [11] presented a H1 robust method for controlling the bending
and torsional vibration of a plate structure using a reduced order model which is derived from the
first three vibration modes. Sadri et al. [12] developed a robust control approach for active
vibration control of plate-like structures based on H1 control theory, experimentally
implemented the proposed robust controller for cantilever plate with two piezoelectric actuators
and two non-collocated sensors, and compared the performance of the H1 controller and linear
quadratic Gaussian controller. It is found that H1 control theory is an attractive method to be
used to design robust vibration controllers for the suppression of flexible structures. However, the
H1 controller was found to be very sensitive to controller parameter variations if the order of the
controller is reduced to a certain range, and the controller implementation requires powerful
computer processing [12]. In some space applications, computer processing power is limited, for
example, microsatellite on-board computer. Thus, it is necessary to develop robust control
methods which can deal with system uncertainties and be easily implemented using limited
computer processing power. In this paper, a robust active vibration control method is developed
based on robust control theory. Robustness of the active control system is analyzed and the
stability of the closed-loop system is proved based on Lyapunov stability theory.
2. System modeling

In this section, a circular plate structure with bonded piezoelectric actuators and sensors is
considered, and the circular plate is clamped in the center circular area. The circular plate
structure is described as in Fig. 1. In order to establish the mathematical model of the circular
plate structure, it is assumed that the piezoelectric elements are perfectly bonded to the structure
with zero glue thickness.
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Fig. 1. Configuration of circular plate with bonded actuators and sensors.
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First, the constitutive relations for piezoelectric ceramic are introduced. The constitutive
equations of piezoelectric ceramic are expressed as

s ¼ Cpe�DTpE, (1)

D ¼ Dpeþ KE, (2)

where s and e are stress and strain vectors of the piezoelectric ceramic, D and E are vectors of
electrical displacement and field, Cp is the elastic stiffness matrix of piezoelectric ceramic, Dp is the
piezoelectric stress coefficient matrix, and K is the permittivity matrix. Eqs. (1) and (2) describe the
converse and direct effect of piezoelectric ceramic.
In order to derive the dynamic equation of the circular plate structure, the transverse

displacement is approximately expressed as

wðr; y; tÞ ¼
Xn

i¼1

fiðr; yÞqiðtÞ ¼ fðr; yÞqðtÞ, (3)

where r and y are polar coordinates with origin at the center, qðtÞ ¼ ½qT1 ðtÞq
T
2 ðtÞ . . . q

T
n ðtÞ�

T are the
generalized coordinates of the structure, and fðr; yÞ ¼ ½f1ðr; yÞf2ðr; yÞ . . .fnðr; yÞ� are displacement
shape functions. Using the Rayleigh–Ritz method and consideration of damping, the motion
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equation of the circular plate structure with piezoelectric actuators is obtained as [9]

M€qþ C_qþ Kq ¼ Bvv, (4)

where q is the generalized coordinate vector of the structure, v is the vector of applied voltage on
piezoelectric actuators,M is the structure inertia matrix, C is the structures damping matrix, K is
the structure stiffness matrix, Bv is the input matrix which is used to apply forces to the structure
by piezoelectric actuators.
3. Controller design

In the previous section, the mathematical model of the circular plate with bonded piezoelectric
actuators is established. In this section, we develop an active robust vibration control method for
the circular plate structures with model uncertainty. In order to design a controller to suppress
structural vibration, the dynamic model of the circular plate is expressed as the state space form

_x ¼ Axþ Bv, (5)

where

x ¼ ½qT _qT�T; A ¼
0 I

�M�1K �M�1C

� �
; B ¼

0

M�1Bv

" #
,

and where we assume the pair (A;B) is controllable. The above state-space form of the flexible
structure is the model representation of the flexible structure without consideration of parameter
perturbation. A number of control methods have been developed to control structural vibration
without consideration of uncertainty, for example, linear quadratic Gaussian [8], positive position
feedback [6], etc. For the dynamic model with uncertainties, the desired performance of the system
cannot be reached using the control methods without consideration of uncertainties. Thus, it is
necessary to develop robust control approaches to suppress vibration of flexible structures with
model uncertainties.
Model uncertainties of flexible structures include two categories, one is parameter perturbation

which is known as structured uncertainty, the other is mode truncation which is known as
unstructured uncertainty. In this paper, the parameter perturbation uncertainty is considered, and
the model of flexible structures with parameter uncertainty is expressed in the state-space form

_x ¼ ðÂþ DAðtÞÞxþ ðB̂þ DBðtÞÞv. (6)

Â and B̂ are the estimated or available values of A and B; and the pair (Â; B̂) is controllable, DAðtÞ
and DBðtÞ are the model uncertainties of system and input matrices A and B: DAðtÞ and DBðtÞ are
assumed to be expressed as

DAðtÞ ¼ B̂DHðtÞ, (7)

DBðtÞ ¼ B̂DGðtÞ, (8)

where DHðtÞ and DGðtÞ are two matrices which represent the uncertainties of matrices A and B:
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The state-space form of the flexible structure with parameter perturbations is obtained in Eq.
(6). It is noted that the linear quadratic regulator method is successfully used to control the
vibration of flexible structures if the model of flexible structures is exactly known. For the system
with parameter perturbations, it is difficult to get the desired performance. Thus, a robust
vibration control scheme is developed based on the flexible structure model (6). The robust
vibration controller for flexible structures is defined as

v ¼ v0 þ Dv, (9)

where v0 is the controller part for the nominal system, and Dv is the part to overcome the effects of
model uncertainty. The controller part for a nominal system without model uncertainty is
described as a standard linear quadratic regulator [13],

v0 ¼ Kx, (10)

where the feedback gain K is calculated based on the standard algebraic Riccati equation, and
Âþ B̂K is a Hurwitz matrix, i.e. all eigenvalues of Âþ B̂K are located in the open left half plane.
By Lyapunov theory, there exist symmetric positive definite matrices P and Q which satisfy the
Lyapunov equation

ðÂþ B̂KÞTPþ PðÂþ B̂KÞ ¼ �Q. (11)

To analyze the stability of the closed-loop system, the state-space form (6) can be described as
using Eqs. (7)–(10)

_x ¼ ðÂþ B̂KÞxþ B̂Dvþ B̂Djðx; tÞ, (12)

where

Djðx; tÞ ¼ ðDHðtÞ þ DGðtÞKÞxþ DGðtÞDv. (13)

It is noted that the system perturbation is described by Djðx; tÞ: In order to design the control part
Dv to compensate for the effect of the term Djðx; tÞ on the system performance, the control signal
Dv is designed based on nonlinear robust theory [14]:

Dv ¼ �
B̂
T
Pxrðx; tÞ

kB̂
T
Pxkrðx; tÞ þ �

rðx; tÞ, (14)

where � is a positive scalar constant control parameter, P is defined in Eq. (11), and rðx; tÞ is a
positive scalar function of the system state which is defined in the following. From the expression
of Djðx; tÞ; the norm of Djðx; tÞ can be written as

kDjðx; tÞkpkDHðtÞk 
 kxk þ kDGðtÞKk 
 kxk þ kDGðtÞk 
 kDvk. (15)

It is noted that the input matrix B consists of two parts, the estimated part B̂ and the
model error part DBðtÞ; and B can be expressed as B ¼ B̂ðIþ DGðtÞÞ using Eq. (8). It is reasonable
to assume that all elements of the matrices A and B are bounded and have less than 100%
parameter errors. Thus, it is assumed that kDGðtÞkokIk ¼ 1: Defining kDHðtÞk ¼ d1ðtÞ;
kDGðtÞKk ¼ d2ðtÞ; kDGðtÞk ¼ d3ðtÞ; noting 1� d3ðtÞ40; and using Eq. (14), the norm of Djðx; tÞ
is obtained as

kDjðx; tÞkpðd1ðtÞ þ d2ðtÞÞkxk þ d3ðtÞrðx; tÞ9rðx; tÞ. (16)
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Thus, rðx; tÞ is well defined as

rðx; tÞ ¼ ð1� d3ðtÞÞ
�1
ðd1ðtÞ þ d2ðtÞÞkxk. (17)

In the follow section, robustness analysis of the vibration control system is given. The
convergence of the system state is analyzed with respect to the uniform ultimately boundedness
[14] in the following theorem.

Theorem. Given the flexible structure system described in Eq. (12). For a given �40 and rðx; tÞ in

Eq. (17), if the control signal Dv is chosen as Eq. (14), then the system state variable x is uniformly
ultimately bounded with respect to the set S defined as

S ¼ fx 2 R2n jxTPxplmaxðPÞsg, (18)

where lmaxðPÞ is the maximum eigenvalue of P and s is defined as

s ¼
2�

lminðQÞ

� �1=2
. (19)

Proof. The Lyapunov function candidate is chosen as

V ðxÞ ¼ xTPx. (20)

Differentiating V with respect to time, using Eq. (12), and noting P defined in Eq. (11) is a
constant symmetric positive definite matrix, the derivative of the Lyapunov function candidate is
obtained as

_V ðxÞ ¼ xTððÂþ B̂KÞTPþ PðÂþ B̂KÞÞxþ 2ðDvþ Djðx; tÞÞTB̂
T
Px. (21)

Using Eqs. (11) and (16), we obtain

_V ðxÞ ¼ � xTQxþ 2ðDvþ Djðx; tÞÞTB̂
T
Px

p� xTQxþ 2DvTB̂
T
Pxþ 2kDjðx; tÞk 
 kB̂

T
Pxk

p� xTQxþ 2ðB̂
T
PxÞT Dvþ

B̂
T
Px

kB̂
T
Pxk

rðx; tÞ

 !
. ð22Þ

Substituting Eq. (14) into Eq. (22), the derivative of VðxÞ can be expressed as

_V ðxÞp� xTQxþ 2�
kB̂

T
Pxkrðx; tÞ

kB̂
T
Pxkrðx; tÞ þ �

p� xTQxþ 2�. ð23Þ

Note that

lminðQÞkxk2pxTQxplmaxðQÞkxk2, (24)

where lminðQÞ and lmaxðQÞ are the minimum and maximum eigenvalues of Q; and lminðQÞ40
since Q is a positive definite matrix. Using Eq. (23), we obtain

_V ðxÞp� lminðQÞkxk2 þ 2�. (25)
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Thus, _V ðxÞo0 for all t only if

kxk4
2�

lminðQÞ

� �1=2
¼ s. (26)

Define a closed ball, BðsÞ; centered at x ¼ 0 and with radius s defined in the above equation.
Thus, _VðxÞo0 for all t 2 R1 and all xeBðsÞ: This implies that the system state x is bounded.
Furthermore, following Ref. [14], the uniform ultimately boundedness of the system state x can be
proved easily.
In this section, a robust vibration control method for flexible structures has been developed.

This control scheme can be used to suppress the vibration of flexible structures with model
parameter perturbations. The robustness of the control system is analyzed based on nonlinear
robust control theory. The proposed controller is described by Eqs. (9), (10), and (14).
4. Experimentation

Theoretical analysis and computer simulation are important but not sufficient for investigating
the usefulness of new results, as practical factors such as measurement noise, unmodeled
truncated modes, actuators saturation, etc., are neglected in the theoretical and simulation
analysis. The ultimate justification for the value and applicability of the proposed controller lies in
the actual hardware implementation. To examine the performance of robust vibration control
method for flexible structures, an experimental evaluation of the proposed control scheme was
conducted on a setup consisting of a thin circular plate integrated with piezoceramic actuators
and piezofilm sensors.

4.1. Description of experimental system

The experimental system consists of a thin circular aluminium plate with bonded eight
piezoceramic actuators and two piezo film sensors, five power amplifiers, two charge amplifiers,
one non-contact laser displacement sensor, an interface unit, and a control system implemented
on a Pentium III PC host computer. The circular aluminium plate with radius 0.17m and
thickness 0.0008m is clamped at the center area with radius 0.02m. The eight piezoceramic
actuators, PZT BM532 manufactured by the Sensor Technology Limited, and two piezo film
sensors, SDT1-028K manufactured by the Measurement Specialties Incorporated, are bonded on
both surfaces of the plate symmetrically as shown in Fig. 2. In this experiment, only four
piezoceramic patches as shown in Fig. 1 are used as control actuators to suppress the plate
vibration. One of the other four piezoceramic patches is used for vibration excitation and three of
the other four piezoceramic patches are not used in this experiment. The material properties of the
thin circular plate and piezoceramics are presented in Table 1. The first five natural frequencies of
the circular plate integrated with actuators and sensors determined by the experiment are 26.4,
27.9, 34.5, 81.6, and 141.5Hz. The power amplifiers, BOP 500M manufactured by KEPCO Inc.,
are bipolar amplifiers with �500V output voltage used to supply driving signals for the
piezoceramic actuators. The charge amplifiers, 5010B manufactured by the Kistler Instrument
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Fig. 2. Overview of experimental setup.

Table 1

Material properties of plate and piezoceramics

Properties Aluminium plate PZT BM532

Young’s modulus, E ðNm�2Þ 69� 109 71:4� 109

Density, r ðkgm�3Þ 2730 7350

Poisson ratio, n 0.33 0.3

Piezoelectric constant, d31 ðmV
�1Þ 2:00� 10�10

Electric permittivity, e ðFm�1Þ 1:504� 10�8

Y.-R. Hu, A. Ng / Journal of Sound and Vibration 288 (2005) 43–5650
Corporation, are used to amplify and filter the output signals from the piezo film sensors. The
noncontact laser displacement sensors, LB-72 manufactured by Keyence Corporation, are used to
measure the displacement of the surface of the thin circular plate. The view of the overall
experimental setup for the active robust vibration control of flexible structures at the Canadian
Space Agency (CSA) is shown in Fig. 2.

4.2. Experimental results

In this section, experimental evaluation of the performance of the proposed control scheme is
presented. To show the performance of the active vibration control method, two experiments were
conducted in the following two cases: (1) the circular plate structures is excited by an impulse
signal, (2) the circular plate structure is excited by a continuous sinusoidal signal with a constant
amplitude. In the first case, the impulse signal load is applied to the plate by a hammer. In the
second case, the plate vibration is excited by applying a constant amplitude, sinusoidal voltage
signal to a piezoceramic patch bonded on the surface of the plate. To control the plate vibration in
the above two cases, four piezoceramic actuators as shown in Fig. 1 are used to apply control
signals to suppress the plate vibration. To compare the performance of the vibration control in
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Fig. 3. Displacement response of impulse signal without control.

Fig. 4. Displacement response of impulse signal with control.
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Fig. 5. Displacement response of sinusoidal signal without control.

Fig. 6. Displacement response of sinusoidal signal with control.
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Fig. 7. Input voltage of actuator 1.

Fig. 8. Input voltage of actuator 2.
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Fig. 9. Input voltage of actuator 3.

Fig. 10. Input voltage of actuator 4.
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two cases, the reference point on the plate is chosen as point A (see Fig. 1). For the impulse
excitation, the displacement responses of point A with and without the proposed active vibration
controller are shown in Figs. 3 and 4. It is shown that the vibration caused by the impulse load is
damped quickly with the active controller, and without control it takes much longer to damp the
vibration of the circular plate structure. For the second case, to verify the robustness of the
control algorithm against parameter uncertainty, an additional mass (20% of the plate mass) is
attached to the circular plate. The displacement response of the point A without control is shown
in Fig. 5 and the displacement responses of the point A under controllers with and without
robustness are shown in Fig. 6. The control inputs of actuators 1–4 with and without robustness
are shown in Figs. 7–10. It is clear that the vibration caused by the continuous sinusoidal
excitation is effectively suppressed by applying the proposed active robust vibration control
scheme. Comparing the control inputs of actuators 1–4 with and without robust control, the
energy requirement of actuators 1–4 for robust and non-robust control is almost the same.
5. Conclusions

In this paper, a robust active vibration control scheme has been developed to suppress the
vibration of the circular plate structure with integrated piezoelectric actuators. The controller
consists of two parts, the standard linear quadratic regulator and nonlinear control signal to
overcome uncertainty of the system model. Robustness of the control system has been analyzed
for the model parameter uncertainty based on Lyapunov stability theory. It is proved that the
system state is uniformly ultimately bounded. Although the thin circular plate is used as an
example for design of the controller, the proposed control scheme is applicable for all structures.
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