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Abstract

An analysis of the behavior of spherical elastic wave radiation from an impulsively loaded cavity
embedded in an infinite space has been carried out. It is confirmed that the propagating waveform is
dominated by the natural vibration mode of the cavity and the magnitude of the dominant response
depends only on the impulse of the time function of the load, and not the profile of the time function. This
finding supports the fact that the dynamic signals recoded away from the blasting explosive contain mainly
the characteristics of the natural vibrations of the geological structures near the cavity created by a blast.
Based on this finding, two promising methods are proposed for the identification of geo-structures and
parameters.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic waves have been used for a long time in applications in geophysics, seismology, earth
exploration, and non-destructive evaluation of materials and structures [1]. With the help of
advanced computational inverse techniques [2,3], systematic procedures can be developed for
quantitatively determining the parameters (dimensions, material properties, parameterized
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Nomenclature w characteristic circular frequency of the
cavity (: (1/To)V/1— 52)

Al Lame’s constants of elastic material a decaying parameter of the cavity
p density of material (=¢/To)
¢y longitudinal wave speed 1 impulse of the excitation load
Cs transverse wave speed T duration of the excitation load
14 ratio of wave speeds (= ¢,/c,) n relative ratio between the duration of
o radius of an embedded cavity excitation load and the characteristic
Ty characteristic time of the cavity time of the cavity (= 7'/T)

(= ro/2¢s) Y dimensionless time variable (= ¢/T)

configurations, etc.) of the systems [4-10], geometries of structural configurations [11-15], and
profiles of wave sources and loadings [16]. For effective inverse analyses or identification of any
system, a good understanding of the features of wave response is essential. This paper aims to
reveal some of the important features of the wave response to the explosive loading by analyzing
the wave response to the impulsive loading applied in cavity embedded in infinite elastic media.

Estimation of blasting waves plays an important role in safety evaluations of engineering
blasting and in the prediction of geophysical structures. The importance of the studies on the
sources of blasting vibration has been recognized since the very beginning of the research works,
as mentioned by Sharpe [17], ““of the three physical processes involved in seismic exploration,
namely the initiation of the seismic waves, their propagation, reflection, refraction, and
dispersion, and the recording of some form of the motion of the surface, we possess the east
satisfactory understanding of the initiation process”. Although many theoretical models have
been established [18-25], due to the extreme complexities of real site conditions, the practical
estimations are usually based on some empirical or semi-empirical methods ([26-30], etc.). With
the development of the measurement and computational techniques as well as the computer
technologies, it is possible to go beyond some empirical and simple analytical results and to obtain
a more accurate description of blast-induced vibrations under real conditions. More importantly,
a better understanding is required on the main source and propagation features of the blasting
wave, because it allows one to overcome the difficulty of the limitation of the site data and to
extract the most important factors from extremely complex real site conditions.

In seismic studies (on natural earthquakes and blast-induced quakes), the seismic source has
long been assumed as a point source moment, whose time function is determined from the far-field
waveform and its spectrum features [20]. The inverse problem of the seismic source becomes the
determination of the form of the point moment and its time function. Of course, the equivalent
cavity theory developed in early times [17-19] is also an efficient source model for blasting waves.
However, with its lack of different kinds of load models and lack of studies on the time functions,
it has not drawn enough attention by researchers recently. The semi-empirical method based on
the source scaling and wavelet deconvolution has also attracted researchers [26,27]. The
development of numerical methods [21,31] in this field has always been a challenge due to the
inherently complicated properties of rock mass, blasting process, and highly nonlinear and strain
rate-dependent dynamic responses.
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As the point source moment takes the form of a spatial divergence in the equilibrium
equations and the non-smoothness of the derivative of Dirac function, in the best case,
is in H27%(Q)(¢>0) space (the dual space of Sobolev Space H>*(Q), where H**¥(Q) is the
space of functions and its derivatives of order less than 2 4 ¢ are square integrable in the
domain @ [32]), the best smoothness of the solution of the dynamic linear elastic equations
under the action of the point source moment is in the space H>(t; H>~¢)N L*(t; H~*). This
implies that the solution corresponding to the action of the point source moment is a
generalized function, which cannot be defined in a point-to-point manner, but as a functional.
Therefore, it may be concluded that the analytical solution of the point source moment is
singular, resulting in the appearance of components of infinitely high frequencies. In other
words, these components of high frequencies come from the spatial singularities of the
load. Therefore, if we do not limit the frequency range, a waveform with a limited bandwidth
cannot be obtained. This is why people have to limit the bandwidth in applying a point
source moment.

Due to simplicity, the cavity theory gives some explicit results revealing the features of blasting
waves. Using numerical methods, results for cavities of different shapes can also be obtained.
However, for quantitative determinations of the cavity shape, size, and the applied load model,
time function, there exists no suitable theory or rule.

A reliable numerical model validated against field measured data, will provide a cost-effective
means of examining the blasting wave propagation in engineering systems. Since rock damage and
stress wave propagation are highly dependent on material properties and explosion process, it is
necessary to properly model the explosion process, effects of existing discontinuities in rock
mass, cumulative damage of rock mass caused by blasting loads, degradation of stiffness
and strength and plastic deformations of rock material, wave speeds and attenuation properties,
etc. With the complexity of site conditions, it is nearly impossible to handle all these factors
without simplification. In practice, either semi-empirical equivalent source models or equivalent
material approaches are used to simplify the situations. The better the understanding of
physical laws governing the process in blasting vibration we get, the more accurate simulation we
shall make.

It is known that, in a process of fragmenting blasting, the charge may be regarded as an
impulsive load of very short time duration acting on the surrounding media. The energy released
by the charge is mainly transferred to the surrounding media through this impulse load,
resulting in deformation, damage and movement of the media. Obviously, the impulse load
has not been transferred in a form of sharp impulse, but rather propagated outward through
the filtering of the surrounding media. Many researchers believed that the filtering mainly depends
on the inelastic properties of the media (such as plasticity, damping, etc.). Recently, Ding and
Zheng [33] have developed a new source model for blasting vibration which combines the cavity
theory and the moment tensor representation. The model is especially established for numerical
purpose, and the numerical results have shown a good accordance with the experimental data.
The physical mechanism for the model is based on the fact that the propagating wave signal
mainly comes from the natural vibration of the geophysical structure after blasting. This fact not
only reveals the physics in the process of blasting vibration but is also applicable to engineering
problems in geophysics, such as the identification of weak layers and the determination of the
macroscopic material strength of rock.
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In this paper, the fact observed by Ding and Zheng will be again revealed by analyzing the
asymptotic behaviors of the spherical elastic wave radiation from an impulsively loaded cavity.
Applications of these important facts to engineering geophysics will also be discussed.

2. Analysis of elastic wave radiation

Consider an infinite media with a spherical cavity of elastic material defined by r=ry in a
spherical coordinate system with the origin at the center of the cavity. The elastic media is loaded
by a uniform pressure P(¢) at the cavity’s boundary defined by r = ry. Due to spherical polar
symmetry, all field variables depend only on the radial distance r and time ¢. The displacement is
in the radial direction only and is denoted by u(r, ). The solution u(r,?) is given by (see the
appendix)

_99
u= or (1)
with
R @
?
and
f(1) = e “(Acos t(wt) + Bsin t{wt)) + 1 (1), (3)
fp(0) = e7(g,(t) cos(t) + g,(1) sin(w1)), 4)
g,(t) = ﬁ / [ e® sin(ws)P(s) ds, ®)
Hw Jo
rocs [
gr(t) = ,u—a) /0 e® cos(ws)P(s)ds. (6)

As the duration of blasting load is very short, an asymptotic approximation of the solution f(z)
given by Eq. (3) can be made as follows. Suppose that the pressure can be written in the form of

P(1) = Ip (1), (7)
in which 7 is the impulse of the load, and
1
pr(t) = F:0(t/T) ®)

is an arbitrary dimensionless function, and p(¢) satisfies
p(t)=0 for r>1 and / pdt =1, p(0+)=0. 9)

It is seen that P(¢) has a constant impulse / for different duration 7T of time. The assumption
p(0+) = 0 implies that the initial jump of the applied load is zero. For fragmenting blasting, the
shock wave is smoothed by the inelastic material properties in the damaged region; therefore this
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assumption of zero initial jump is correct for pressure caused fragmenting blasting. Under this
assumption, we have

S =7,(0). (10)
For an excitation of the form (7), we let
T

Then for very short-time excitation duration 7" (compared with the characteristic time Ty that is
related to the cavity size (see the appendix)), n should be very small. Solution f,(7) can be
approximated in the following asymptotic form:

S (@) = fo®) + O, (12)
where the dominant term
2
Fo(t) = — 05 fe=argin o (13)
oy

depends only on the impulse of the load, and does not depend on the form of the time function
p(t). The dominant term contains the natural vibration mode of the cavity. Therefore, it is found
that the response to short-time excitation is dominated by the natural vibration mode. To obtain
expression (12), we first make a change of variable

t

V= (14)
Then we use the Taylor’s expansion of functions
e’ =14 O(x), (15)
and
cos(x) = 1 + O(x?), (16)
sin(x) = x + O(x?) (17)

to approximate the integrands in Eqgs. (5) and (6), which can be expressed as

_9(0)

t/T Za .
0 _ /0 ¢ sin(y)p(y) dy

t/T
_ 4 /O (1+ OBy + OGP Np() dy

t/T
— A0() /0 p()dy = Oy, (18)
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t/T
_90_ /O ¢ cos(ny)p(y) dy
t/T
_ 4 /O (1 + 01 + OGP)p() dy

t/T
_ 4 / () dy + O, (19)
0

in which

A:r‘)—cz and f=1/1-¢&, (20)

oy
For t=T, Eq. (19) gives
1
020 ==A1 | )3+ O = A+ 0 @1
and for t< T, we have
sin(wt) = 1By + O(r)) = O(n). (22)

Estimates (18), (21), (22) and (4) lead to the asymptotic expansion (12).

An example is given in the following to show the contrast of f(¢) with its dominant term f,(¢)
for different time duration ratios #.

Let 0 =t/Ty and 07 = T /T, taking a special form of p(z),

1, relo0,1],
o o

0 otherwise.

Note here that for simplicity we chose the above form of rectangular pulse for p(7), where
p(0+)#0. However, this does not affect the findings given in the following, as one can
approximate function (23) by a smooth function with zero initial jump and this approximation
does converge for f(¢) and its first derivative, and the effect of p(0+)#0 leads only to another term
of natural vibration in the solution. Then we get

Al e0(&sin(B0) — B cos(fO)) + P, t<T, o
9= 5.\ (& sin(B0r) — feos(BOr) + f. 1T, )
AT [ (& cos(BO) + Bsin(p0)) — &, t<T, 5
9:(1) = 07 | 07 (Ecos(BOr) + Bsin(BOr)) — &, t=T. (25)
Normalizing f,(7) by Al gives
F(1) =@ = G1(0)e™? cos(B0) + Go(H)e<’ sin(B0), (26)

Al
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in which
I [ e(Esin(B0) — Beos(BO) + B, 1<T,
G0 =9; { (e sin(B0r) — feos(BOr) + . (=T, 7
1 [ e“(& cos(BO) + Bsin(BO)) — &, t<T,
@0="g { e (Zcos(Blr) + Bsin(B0r) — & (=T -
and the normalized dominant part is given by
Fo(?) =% = —e~sin(p0). (29)

Fig. 1 shows the comparisons of F(¢) with its dominant part Fy(¢) for different time ratio #.
From the figure, it can be seen that for short excitation, the response F(¢) is very close to its
asymptotic approximation, i.e. the dominant part Fy(z).
Since we do not have experimental data for the estimation of #, some reference data are hence
used to give some approximate bounds of it. From the experimental results of [30], the

characteristic time of the blasted cavity could be estimated as (using Ty = (1/w)\/1 — &, & = 3)
o =84 ms/kg!/’ (30)

From the experimental results of [34], the duration of the stress wave near the blasted region could
be estimated as

31
3.2ms/kg!/®  for dry situation. D

To 0.35ms/ kgl/ 3 for saturated situation,
o'/ =

@)
Fo(8)
@)
Fo(8)

-0.1

F o(8)

Fo(8)

-03

o)
Fe)

-03

-04
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8

Fig. 1. Comparisons of F(¢) with its dominant part Fy(¢) for different time ratio #.
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The experimental results given by Sun are in the condition between saturated situation and dry
situation, and hence the maximum value of # should be between 0.05 and 0.53. In practice, for
fragmenting blasting it is believed that #<0.25, and therefore the far-field signal comes mainly
from the dominant part Fo(f), and the wave forms depend only on the geostructure near the
blasted region and the properties of the medium in the propagation pass.

3. Applications to engineering problems in geophysics

From the above discussion, we conclude that the vibrating signals recorded away from the
blasting explosive contain the characteristics of the natural vibrations of the geological structures
near the broken (blasted) region (this is true even for the case that is without the assumption
P(0+) = 0). For fragmenting blasting, the wave radiated from the blasting should be the emission
of the natural vibration mode excited by the impulse load by explosion, like the solution f (). So
the equivalent blasting vibration source could be modeled as a distributed moment tensor
enclosed in a certain region around the explosive, and the time variation of the moment tensor
depends mainly on its impulse. This gives a strong explanation of the findings given in Ref. [33].
From site observation, it is not difficult to obtain the wave speeds and, the main frequency of the
wave signals. As the main frequency stays nearly unchanged in a certain range of the propagation
pass, it is not affected very much by the propagation pass medium. From this point of view, the
characteristic time of the blasting source region, i.e. the period of the main frequency of the
blasting vibration, could easily be estimated, and thus the size of the loading region in the source
model [33]. Then the moment tensor and the impulsive intensity / of the source model could be
determined by an identification process. On the other hand, the mechanism presented in the
source model could be used to identify the characteristics of geostructures from observing the data
of the blasting wave. Several trial applications are as follows.

3.1. Identification of the strength property of geomaterial

From the analysis in the previous section and the site data, it is strongly suggested that the size
of the loading region in the source model is proportional to the main frequency of the wave signal.
As the size of the loading region has statistical and integrated information of the strength
properties of medium, combining with some other information, we can extract the strength
properties of medium from the data of main frequencies of waves from a well-defined test with
specified blasting load conditions.

3.2. Identification of thin weak layers and crack

Because the vibration signal retains the characteristics of the natural vibration of the
geometrical structure modified by the explosion near the source, we can use explosives sources to
identify the thin weak layers in engineering geostructures. Fig. 2 gives a schematic explanation of
this method.

We have done some numerical testing to confirm the feasibility of the method. The testing
results have been done for a weak layer placing under the ground surface at depth.
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Numerical simulations have been done for a model as shown in Fig. 3. The block has a
dimension of 41m x 41m x 41 m. The horizontal weak layers centers are under the ground
surface at a depth of 30.5m, and with the thickness of 1 m and different dimensions (10 m, 22 m,
34m, etc.). Blasting sources are placed along the vertical central line of this block with different
depths. LS DYNA with the source model of blasting vibration proposed by [33] is used to
perform the numerical tests, the moment tensor is isotropic in a 1 m x I m x 1 m region and the
time function is of the form of an isosceles triangle with constant area (constant impulse) for all
numerical tests. All media are supposed to be isotropic and elastic. For solids above and below
weak layers, £ =24 x 10", v = 0.3, p = 2400. For weak layers and broken regions, E =
2.4 x 10%,v = 0.3, p = 2400. Each face of the block is imposed transmitting boundary conditions
but the upper face (ground surface) is stress free. Sensors are installed at points such as A or B on
the free surface in the experiment to pick up blasting vibration signals. The position of A or B on
the free surface does not affect the qualitative effects of the results, so for the following, the
position of A or B will not be mentioned.

Fig. 4 shows the comparison of the numerical results for cases with weak layer and without
weak layer when the explosive is placed in the weak layer. And Fig. 5 shows the comparison of the
numerical results for cases with weak layer and without weak layer when the explosive is placed in
the position near the ground surface (1.5m below the free surface).

From the results, we could find that when the explosive is placed in the position near the ground
surface, the existence of the weak layer does not affect strongly the observed signal at the ground
surface (see Fig. 5). But in contrast, when the explosive is placed in the position near the weak
layer, the characteristics of the signal are totally different (see Fig. 4). The signal reflects the
information of the weak layer. As the constant source’s impulse and the isotropic moment tensor
with a constant region have been used for all calculations, the results need some comments: in
general, for different material, the region occupied by the moment tensor will be different, and the

Fig. 2. Schematic explanations of the method to identify the thin weak layers and cracks in engineering geostructures.
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weaklayer blasting source

Fig. 3. Numerical model for horizontal weak layers.
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Fig. 4. Comparison of the wave forms with and without weak layer when the explosive is placed in the same position
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Fig. 5. Comparison of the wave forms with and without weak layer when the explosive is placed in the same position
near the ground surface.



H. Ding et al. | Journal of Sound and Vibration 288 (2005) 91-106 101
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Fig. 6. The numerical results for different lengths of the weak layer in the frequency domain.

weaker the material is, the larger the region will be; the variation of the impulse will be in an
inverse manner. As the main frequency of the signal depends on the dimension of the
region occupied by the moment tensor, for the real case, the contrast in frequency should be
more important than the calculated results. And for the real case, the contrast in amplitude
should be less than the calculated results. The results for different lengths of weak layer are shown
in Fig. 6

It is shown that as the length of the distribution of the weak layer augments, the peaks’
positions will all go to the frequency direction, and the lowest frequency peak augments while
others decrease. This conclusion should be true for the real case according to the comments given
above.

4. Conclusions and discussions

The asymptotic analysis of the wave radiation from a loaded cavity confirms that for short-time
excitation, the spectrum of the radiated wavefield will depend on the resonances of the cavity and
not on the details of the actual excitation. And the discussion that the time ratio # for
experimental data is in general less than 0.25 leads to that for fragmenting blasting; the dynamic
signals recoded away from the blasting explosive contain mainly the characteristics of the natural
vibrations of the geological structures near the cavity created by a blast.

From the numerical results given in the previous section, we could suggest the obvious contrasts
that the vibrations should exhibit when the weak layer exists. The longer the layer length is, the
less the characteristic frequencies of the vibration signals will be.

In the numerical simulation, the constant source’s impulse and the isotropic moment tensor
with a constant region have been used for all calculations. This is just for the qualitative tendency
of the phenomena. Anisotropic moment tensor should be used and calibrated by real tests for real
applications in combination with other effects of weak layers such as the shallow effect for
transmitting waves, and this will be the future work.
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Appendix A. Elastic wave radiation from a loaded cavity

Within the linear elastic zone, at radial distances r > r( there is spherical polar symmetry around
an origin at the center of the source, and all field variables depend only on the radial distance r
and time 7. Displacement is in the radial direction only and is denoted by u(r, ¢). There arc two
components of stress, the radial component

0
o= (20 2 422" (A1)
or r
and the normal stress in any direction perpendicular to the radius
Qu u
g =A—+ 24+ w)—, (A.2)
or r

in which 4 and u are Lame’s constants. The linearized equation of motion is (on neglecting body
forces)

<

O, 2(o, + app) o
w)_ , " A.
or r Par> (A3)

in which p is the density. Then

u 20u 2 1 Q%u
2 e AT gon (A4
in which

¢ = (A+2w/p, (A.5)

is the dilatational wave speed. It is convenient to express the radial displacement u in terms of the
displacement potential ¢,

u= %, (A.6)
or
for then it can be seen that ¢ must obey the familiar wave equation for spherical waves
o 1o
@(Wf)) = c_gﬁ_tz(rd))' (A7)
Eq. (A.7) has the solution
1 _
¢m0:40—rrﬁ, (AS)
r ¢
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where only outgoing waves have been considered and f(¢), with dimensions of volume, is known
as the volume injection function. This equation is valid throughout the region where the basic
equations (A.1)~(A.3) apply, that is for r>ry and ¢ — (r —r9)/c,>0. The displacement in this
linear region is found from Eq. (A.6)

1, 1.
u(r,t) = ——f"(1) — 5 f(0), (A9)
rep r
where the prime indicates differentiation with respect to the argument, and
r=1—""10 10, (A.10)
Cp
with
f(x)=0 for 7<0. (A.11)
The radial stresses can be obtained as
w4, 4c} .
= —— — — , A.12
o = 2 S/ (f+rcpf O +—5/ (A.12)

in which ¢, is the share wave speed and given by

;= u/p. (A.13)

Suppose that at the inner boundary of the linear elastic zone, a uniform pressure P(f) is
imposed, i.e.

on = —P(1) for r=ry (A.14)
or
2 2 2
£/ + 25 () + 2% (1) = = 2% pay, (A.15)
FoCp rS u
Eq. (A.15) has solution of the form
f(2) = (A cos(w?) + Bsin(wt)) + £ (1), (A.16)
in which f () is given by
1,(0) = e(g,(1) cos(wt) + g,(1) sin(w?)), (A.17)
and with
g.() = s / Lo sin(ws) P(s) ds, (A.18)
Hw Jo
ga(t) = rocs / s cos(ws) P(s) ds, (A.19)
Ho Jo
a= i , (A.20)

Ty
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1 2
o= \1-&, (A.21)
_ '
To=5 (A.22)
i=5 (A.23)
Cp

T is the characteristic time of the local geostructure. From Eq. (A.16), we see that the solution is
decomposed into two parts: one is due to the natural vibration of the blasted geostructure (around
the cavity) with frequency w and decaying factor e, and it is excited by the initial jump of the
load P(7), and another is the direct excitation f,(7) by the load P(7).

Under the initial condition

u(r,0)0=0 and u(r,0)=0 (A.24)
or
1 / 1 1 /! 1 / /
—r—f 0)—=/(0)=0 and ——77(0)—=/(0)=0, (A.24)
0Cp s roCp g
we have
A= A(é)ﬁP(O) and B= B(é)ﬁP(O) (A.25)
4u 4u
with
2B
A) = 2o (A.26)

B(&) (A.27)

1
V1= 203 - 2828 — 1) + (48 — 1)/(28)

From Eq. (A.25), the amplitude of the natural vibration mode is proportional to the initial jump
of the applied load. But, in the elastic zone boundary, this jump is generally equal to zero, due to
deformation and medium damping.
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