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Abstract

It is shown that energy transport parameters for vibrations in a complex structure may be extracted from
the kind of data that might be obtained from limited and cost effective direct numerical simulations (DNS).
A diffusion model is proposed which promises to avoid the requirement of statistical energy analysis (SEA)-
like substructuring. The model is successfully fit to simulated data with an underlying nature which is
unambiguously diffusive, as opposed to DNS data where the underlying nature is in question. The data is
constructed with noise that mimics the sorts of fluctuations expected in practice. The algorithm’s robustness
depends heavily on the number of adjustable parameters.
r 2005 Published by Elsevier Ltd.
1. Introduction

It has long been appreciated that direct numerical simulations (DNS) of the dynamics of large
structural acoustic systems, though possible in principle, can be impractical due to high
computational demands. Meeting such demands can be particularly challenging if fine resolution
is required in either space or time, or if the solution at late times is required. Moreover, such a
solution is necessarily sensitive to the fine details of the structure. A DNS to the dynamics of one
see front matter r 2005 Published by Elsevier Ltd.
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Nomenclature

d, D N � N symmetric matrix representing
smooth underlying energy flow in an
SEA description, R � R symmetric ma-
trix representing energy flow in a
measurable quantity description

GðtÞ Green’s function
g R � N matrix of (site specific frequency

dependent) gains to translate from the
SEA description to the measurables
description

h, H N � N diagonal matrix containing
mode counts for an SEA description,
R � R diagonal matrix for a measurable
quantity description

n, N substructure index, total number of
substructures

r, R receiver index, total number of receivers
Nt total number of times
vi, Vi eigenvectors associated with the ith

eigenvalue in the SEA energy density
(N � 1) and measurables (R � 1) de-
scriptions, respectively

li, Li ith eigenvalue in the measurables and
SEA descriptions, respectively

p̂, P̂ N � 1 forcing in the SEA description,
R � 1 forcing in the measurables de-
scription

s fractional standard deviation of noise
added evolution of energy density

c tð Þ,C tð Þ N � 1 vector of local underlying SEA
energy densities, R � 1 vector of mean
square signals
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structure, then, is of little value when considering the dynamics of another structure that differs in
its details. Investigators have therefore been seeking efficient statistical descriptions of responses.
Statistical energy analysis (SEA) [1–5] is one approach to obtaining such estimates. In

conventional SEA steady-state energy densities are predicted for bandlimited responses in the
presence of dissipation. SEA models require a partition of the system into weakly coupled
substructures; they also require modal densities and dissipation estimates for each substructure,
and estimates of the coefficients that determine energy flow between them. Direct finite element
numerical simulations [5–9] have been used to estimate the parameters of an SEA model, though
more commonly they are estimated from analytic models or experimental observations. Recent
years have seen extensions of SEA to the time domain [10,11] and development of some hybrid
methods [12].
Weaver [13] considered the problem of estimating bandlimited mean-square late-time responses

in large undamped systems. An undamped model is used to seek improved models of energy
transport in complex systems. The analysis of undamped systems is simpler than that of more
realistic systems; however, the undamped case does contain sufficient relevant and subtle issues to
recommend its study in connection to energy flow. The method was similar to SEA and transient
SEA1 in that it introduced concepts related to modal density and equipartition, but different in
that there was no substructuring. The regime of applicability of the procedures in this paper is the
same as that in Ref. [13]. Namely, it is similar to that of SEA, but more general in that it promises
to apply to systems that do not admit substructuring. The late time mean-square response at a
receiver with spatial distribution r (a normalized vector of generalized displacements) to a narrow
band source BðtÞ with spatial distribution s (a normalized vector of generalized forces) was
1Henceforth, we do not distinguish transient SEA from SEA, as they have the same logical basis and information

content.
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estimated by

Crs;Bðt ¼ 1Þ ¼
Er;BEs;B

2p3f 2
cDð2pf cÞ

R
B2ðtÞdt

, (1)

where

Es;B ¼

Z TB

0

BðtÞ
d

dt

Z t

0

ðsTGðt � tÞsÞBðtÞdt
� �

dt (2)

has the interpretation of the work done by the source BðtÞ with spatial distribution s. Reciprocity
is evident. In the above, f c is the center frequency of the frequency band, DðoÞ is the global modal
density, and TB is the duration of the source B. The matrix GðtÞ is the Green’s function. Diagonal
elements of GðtÞ for each receiver and source of interest are required. However, such knowledge is
needed for only short times, and thus may be obtained by a DNS with only modest computational
burden. Thus late time mean square responses are estimated efficiently in terms of local
impedances and global modal density.
Eq. (1) can be thought of as a product of admittances. We note that Eq. (2) can be rewritten [13]

as

Es;B ¼ �
1

p

Z 1

0

oj ~BðoÞj2I ~GssðoÞdo, (3)

where the tilde represents Fourier transform. The imaginary part of the admittance
(admittance ¼ inverse of impedance Z) is Ið1=ZÞ ¼ oI ~GðoÞ. Henceforth Es;B will loosely be
referred to as the admittance at site s.
This previous work showed that early time responses determine (frequency-smoothed) late-time

energies. It did not address energy flow at moderate times. But early time responses also describe a
degree of transport which, if observed in a DNS, could be extrapolated to later times. The
statistical energy ansatz supposes that energy transport is diffusive. If the parameters of that
diffusion model can be taken from the behavior of short-time-scale DNS, it may be that energy
flow can be extrapolated to long times using the diffusion parameters apparent at early times. This
is the goal of a project for which this paper is a part. We note, though, that a diffusion model need
not be identical to SEA. In particular, like Ref. [13], it need not require substructuring. Diffusion
models can be stated in different ways, and one such is described in Section 2 and found to be
related to SEA.
In the present paper the problem of estimating the parameters of a diffusion model from data

that might be obtained from a short time DNS is considered and an attempt to delineate the
requirements of such a fit is made. An undamped model is used in order to simplify the issues.
Further, we take data not from a DNS of the wave equation, but from the exact solution of
supposed underlying diffusion, with statistical fluctuations characteristic of a DNS. The aim of
this paper is not to compare DNS data with diffusion, but rather to develop procedures to fit a
diffusion model to data that is unequivocally diffusion-like. The program here uses time domain
data like Gregory and Keltie [14], but may be contrasted with their work in which experimental
data is used to estimate SEA parameters. Sections 3 and 4 contain a discussion of the generation
of this artificial data. The results of fits to data from a two room system and from a three room
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system are presented here. It is found that accurate fits can be obtained using data from only early
times. In Section 5, we conclude and indicate directions for future work.
2. Two descriptions of diffusion

In order to approximately describe the complicated dynamics of a vibrational system, we adopt
a diffusion-like model for energy flow. First, the form this model takes in terms of measurable
quantities such as mean square response and mean square forcing (the quantities used in Ref. [13])
is described. To the end of extracting the diffusion parameters of this measurables model, we
assume that the structure does admit a division into substructures. Thus there is an exact
correspondence, in this case, to SEA.
2.1. Description of the model in terms of measured quantities

We begin with an assumed diffusion-like energy flow equation governing the slow evolution of
band-limited energy. The description is in terms of slowly time-varying mean square displacement
C at each of R receivers avoids the need for substructuring, so it can be applied to a dynamical
system without first having to substructure it in order receivers and in terms of mean square
forcings P̂ (which may act through some of those receivers). In the absence of dissipation, the
equation takes the form

H
q
qt
C tð Þ ¼ P̂ tð Þ �DC tð Þ, (4)

where H and D are R � R, C contains the mean square displacements and is R � 1, and
P̂ represents average band-limited force squared and is also R � 1. The total number of receivers
(potential sources) is denoted by R. These are the measurable quantities discussed in Ref. [13]. Our
ansatz is somewhat more general than SEA, albeit still diffusive. SEA is one special case of our
theory. The proposed approach makes no assumptions about substructures: it can be applied to a
dynamical system without the need to substructure it in order to define modal energy density in a
substructure and coupling loss factors between substructures, and to systems that do not admit
discrete substructures. Whether or not it is valid to apply a diffusion-like model at all is another
matter, and a long standing question within SEA.
We imagine having generated that data C and P̂ by DNS over short times. Thus it is

inexpensive to employ a large number, R, of receivers; however, each source site requires a
separate DNS of the impulse response of the system, so use of multiple sources is more expensive.
It is desired to determine the diffusion parameters.
The matrix H must be diagonal in order that a forcing at one location does not instantaneously

result in a response at another location. Any such energy transport may be restricted to be a
consequence of possibly large off diagonal elements in the construction of D. The matrix D must
be symmetric as argued by reciprocity.2 In the Laplace transform domain, one finds that
2Reciprocity between force and displacement implies reciprocity between mean square force P̂ and mean square

displacement C.
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the solution is

C sð Þ ¼ ðD þ sHÞ
�1P̂ sð Þ. (5)

The matrix ðD þ sHÞ
�1 must be symmetric for all s implying that both H and D must be

symmetric.
In discussing the solution to Eq. (4), consider the generalized eigenvalue problem

DU ¼ LHU, (6)

with eigenpairs ðLr;V
rÞ; r ¼ 1; 2; . . . ;R. In the absence of dissipation, the first eigenvalue is trivial,

that is L1 ¼ 0. The eigenvectors are orthogonal and normalized:

VrTHVq ¼ drq, (7a)

VrTDVq ¼ Lrdrq, (7b)

where the superscript T denotes transpose.
Consider the ‘‘impulsive’’ band-limited forcing described by

P̂ tð Þ ¼ PdðtÞ (8)

along with quiescent initial conditions. One finds the solution to Eq. (4) to be

C tð Þ ¼
XR

r¼1

VrVrTPe�LrtYðtÞ, (9)

where YðtÞ is the Heaviside function. This solution is just an expansion in eigenvectors, each
multiplied by a decaying exponential. As summarized above in Section 1, previous work by
Weaver [13] shows that the mode associated with the trivial eigenvalue L1 ¼ 0 can be estimated
accurately and directly from a short time3 DNS. This mode is constructed via Eq. (1) as follows:

V1
r ¼

Er;Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p3f 2

cDð2pf cÞ

q . (10)

Knowing this for any site r requires a short time DNS with a source at r.
2.2. Description of the model in terms of energy density

As in SEA [1], we can also attempt to describe the diffusion in terms of energy flow between
several (N) substructures. The governing equation is much the same as Eq. (4) above. It is, in the
absence of dissipation,

h
q
qt
c tð Þ ¼ p̂ tð Þ � dc tð Þ, (11)

where h and d are N � N, c contains the modal energy densities (energy per mode) in some
frequency band Df in each substructure and is N � 1, and p̂ contains power, the rate at which
3A length of time comparable to the inverse of the desired frequency resolution.
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energy is deposited into each substructure, and is also N � 1. The number of substructures is
denoted by N.
The matrix h is diagonal and contains the known mode counts, so these are not parameters to

be extracted. Because SEA assumes equipartition of energy among the various modes across each
substructure in a frequency band Df , this definition implies that the left-hand side of Eq. (11) can
be interpreted as the time rate of change of total energy in each substructure. Through this
definition d must be symmetric. This follows from setting the net energy flux from substructure b
to substructure a (equal to dabcb�dbaca) to zero when ca ¼ cb. Alternatively, one argues that the
net flux is proportional (only) to the difference ca�cb.
In Ref. [11], the h matrix was is assumed to be the identity matrix, and d was non-symmetric.

That formulation may be obtained from this by changing the dependent variable from the modal
energy densities used here to total substructure energies used in Ref. [11] and elsewhere.
Again, there is a set of eigenpairs ðln; vnÞ, n ¼ 1; 2; . . . ;N associated with Eq. (11). In the

absence of dissipation, the first eigenvalue is trivial, that is l1 ¼ 0. The eigenvectors are
orthogonal and normalized:

vnThvq ¼ dnq, (12a)

vnTdvq ¼ lndnq. (12b)

The solution of Eq. (11) in the case of impulsive loading p̂ tð Þ ¼ pdðtÞ and quiescent initial
conditions follows in exactly the same way as for Eq. (4),

c tð Þ ¼
XN

n¼1

vnvnTpe�lntYðtÞ. (13)

Equipartition across the entire structure at late times implies that the first eigenvector is

v1n ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
trðhÞ

p
(14)

for all n. This is normalized (Eq. (12a)).
2.2.1. Connection to the measured quantity description

If a substructured description is valid (and one can imagine systems for which it is not), there
must be a connection between the measured quantities C and the substructures’ energies c. We
define g, a typically non-square (RXN) matrix of local frequency-dependant transducer functions
and sensitivities (henceforth simply called gains) such that

C tð Þ ¼ gc tð Þ. (15)

Elements of g are the sensitivities of the response of the transducer to the local dynamics
multiplied by the sensitivity of the local dynamics to the local geometrical details of the structure,
i.e. the admittances.
That there is a unique mapping in Eq. (15) between substructure energy and mean square

displacement at sites within the substructure is a consequence of the diffuse field assumption—
that total energy is statistically equivalent to energy density samples. Cases in which the mapping
is non-unique follow from failures of the diffuse field assumption, and/or poor substructuring.
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Presumably, if the structures of the SEA description are geometrically separated, g is especially
simple. That is, grn is non-zero if and only if receiver r is physically located in substructure n. This
implies that each row of g has only one non-trivial element. Unless otherwise noted in the sections
to follow, such a g is assumed, implying that the systems are such that
1.
 There is a strict substructuring such that the mean square response at any given receiver is
directly proportional to the energy density in (only) that substructure.
2.
 It is known in which substructure each receiver is located.

These requirements will ultimately need to be relaxed if the methods are to be applied to
systems which do not admit subtructuring. We will eventually want to consider fully populated
g matrices such that the response at any given receiver site may be some weighted average of the
energy density in different substructures. In particular one can think of at least two
counterexamples to the above assumption of the special case g.
1.
 One might imagine two large rooms with a small window providing the coupling between the
two rooms. Presumably, if a receiver is located close to the window, the response at that site
would be a weighted average of the local energy density in each room.
2.
 One can consider diffusion across a statistically uniform structure. Multiple scattering of waves
in such systems is often described by diffusion [15,16]. The concept of substructures in this case
becomes problematic, and one would expect an SEA description to fail and the need for g to
vanish in this case.

We proceed to derive the relationship between the eigenvalues and eigenvectors of the measured
quantities description and the energy density description. Substituting Eqs. (9) and (13) into Eq.
(15), we have

C tð Þ ¼
XR

r¼1

VrVrTPe�LrtYðtÞ ¼ g
XN

n¼1

vnvnTpe�lntYðtÞ. (16)

Thus it is inferred

Vr ¼ gvndrn for rpN, (17a)

gTP ¼ p, (17b)

Lr ¼
lndrn for rpN;

1 otherwise:

	
(17c)

establishing the relationships between the eigenvectors, power inputs, and eigenvalues in the
measurables description and the energy density description. In particular, the small eigenvalues
(rpN) in the measured quantities description are the same as those in the energy density
description while the large eigenvalues (r4N) are at least approximated to be infinite. Note that
to obtain the eigenvectors in the measured space, one left multiplies the corresponding
eigenvectors in the physical space with the g matrix in identically the same way as one obtains the
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C vector from the c vector. Also note that Eq. (17a) applied to r ¼ 1 allows us to solve for the
elements of g, at least for the strict substructuring g, since V1 and v1 are completely known.
We can consider the orthogonality of the eigenvectors in the SEA description and in the

measured data description. We have by substituting Eq. (17a) into Eq. (7a)

VrTHVq ¼ vrTgTHgvq ¼ drq (18)

as well as from Eq. (12a)

vpThvs ¼ dps. (19)

Therefore,

gTHg ¼ h. (20)

This appears to be NðN þ 1Þ=2 equations (orthogonality conditions) in R unknowns (diagonal
elements of H). If, however, only strict substructuring is considered, inspection of Eq. (20) reveals
that the equations associated with the off diagonal elements of h are automatically satisfied. Then
this is N equations in R unknowns, a completely determined system if there is one and only one
receiver in each substructure. If there is more than one receiver in any substructure, this means
there is some freedom in choosing how to distribute the H’s among the receiver sites in that
substructure.
3. Case study I: two room system

Our long range desire is to be able to fit short-time DNS measured data to a diffusion model in
order to be able to predict transport dynamics over longer times. Towards this end we here
generate data artificially and attempt to fit it to equations like Eq. (16). The parameters of
diffusion (i.e. l’s, v’s, and g) will be recovered by minimizing a w2 quantity by adjusting the
diffusion parameters, explained below.
We consider two simple case studies, each of the strict substructuring class which maps well

onto SEA. One has two substructures; another has three. For these studies mode counts are taken
as known and admittances (i.e. V1) are taken as known by a procedure like that of Weaver [13] for
sites with a source. Forcing P would be known in a DNS simulation, so these are not parameters
to be extracted by the program.

3.1. Description of data

The data to be fit is constructed first by evaluating the SEA solution Eq. (13) in a simple two
substructure system. With a view towards application to data gleaned from a DNS, with
inevitable stochastic fluctuations and local variations in sensitivities, we then add noise and
multiply by arbitrarily specified receiver gains g. Noise is constructed such that it has fixed4
4This is typical. Moreover the fractional standard deviation is s ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
DfDt

p
in real DNS applications or

measurements where Df is the bandwidth in a DNS or measurement, and Dt is the duration of the time window over

which energies are averaged [17–20].
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Fig. 1. Geometry of the two room system described in Section 3. The window coupling the two rooms is l12 ¼ 60 units

wide. Units of length are referenced to an arbitrary microscopic length scale L, equal to 1
300

of the room width.
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fractional standard deviation s, and it is constructed independently at each r, t. The details are in
Appendix A.
Our system in the first case study is equivalent to that used to describe room acoustics in the

structure pictured in Fig. 1 of size 400� 300 with a partition along its width. The partition has a
window of length l12 ¼ 0:20� 300 ¼ 60 allowing energy to flow between the two (two
dimensional) rooms. In practice, this window has to be small for ‘‘weak-coupling’’ but larger
than a few wavelengths to avoid localization. Therefore, the parameters of Eq. (11) with mode
counts being taken in the usual way (see, e.g. Ref. [21]) are the following:

hn ¼
2pf

c2
ðareanÞDf ,

d ¼
cl12

p

1 �1

�1 1

� �
�

number of modes

area
,

where c is the velocity of the waves, f is the center frequency of the frequency band, and Df is the
band width. The velocity and frequency are taken here as unity and the bandwidth is taken as
1=2p for the purposes of our artificial simulation. The fcg’s thus represent modal energy density,
plotted in Fig. 2. These parameters result in a first non-trivial eigenvalue of l2 ¼ 7:2� 10�4. The
gains in the g matrix were taken from a set of uniformly distributed numbers ½1

2
; 2�.

We considered four data sets each with a total of 20 receivers, 10 in each room, and took data
from two ‘‘experiments’’ corresponding to sources in each of the two rooms. Data was examined
out to one-tenth of a decay time, i.e. tmax ¼ 139, and 20 data points were constructed for each
receiver at evenly spaced times. Fractional fluctuations from the mean energy density were
different in each data set and taken to be s ¼ 0%, s ¼ 15%, s ¼ 30%, and s ¼ 50%.
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Fig. 2. The evolution of energy density in each of the two rooms for the period analyzed in Section 3. ————,

response in room 1; – – – – – –, response in room 2. Time is measured in units of L=c. The eigenvalues (in units of c=L)

are l1 ¼ 0 and l2 ¼ 7:2� 10�4. The eigenvectors are v1 ¼ f2:9; 2:9g � 10�3 and v2 ¼ f2:0;�4:1g � 10�3. Total time

considered was 1
10
ð1=l2Þ: (a) a single source in room 1; (b) a single source in room 2.
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3.2. Fitting procedure

We seek to fit the functional form in Eq. (16)

C tð Þ ¼ g
XN

n¼1

vnvnTpe�lnt (21)

to the artificial data. Since v1 is completely known (Eq. (14)) and V1 is taken as known for the two
source locations, elements in the rows of the g matrix corresponding to the source locations can
be calculated by Eq. (17a) (but remain unknown for its other 18 elements). One can calculate v2

using the two remaining orthogonality conditions:

v11h1v
2
1 þ v

1
2h2v

2
2 ¼ 0, (22a)

v21h1v
2
1 þ v

2
2h2v

2
2 ¼ 1. (22b)

Solving directly results in

v21 ¼
v12h2

a
, (23a)

v22 ¼ �
v11h1

a
, (23b)
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where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv12h2Þ

2h1 þ ðv11h1Þ
2h2

q
, (24)

so that v2 is completely known entirely from the specified parameters; the data is not needed to
find v2. The use of the mapping of Eq. (15) may seem to restrict the method only to systems that
admit substructuring. However, the substructuring is exploited to reduce the number of fit
parameters in the nonlinear fit algorithm that is used and to map directly onto SEA. This
apparent need for substructuring could be relaxed simply by fitting all of the gains, or,
equivalently, fitting all of the elements of the eigenvectors V.
The remaining quantities must be fit by minimizing a w2 quantity. The formula for w2 can take a

few different forms, e.g.:

w2a ¼

P
t

PR
r¼1

PS
s¼1½½Grs tð Þ �CrsðtÞ�

2=½sGrs tð Þ�2�

NtRS � dof
, (25a)

w2 ¼
P

t

PR
r¼1

PS
s¼1 ½log Grs tð Þ � log CrsðtÞ�

2

s2ðNtRS � dofÞ
, (25b)

where dof is the number of fitting parameters and s2 (defined by Eq. (30)) is the fractional
variance of the signal about the local underlying mean and is identical for every value of Crs(t).
The above two forms are nominally equivalent, such that a good fit should have w2
unity.
Eq. (25b) is particularly convenient because of the relatively simple form of the expression.
The remainder of the fitting process consists of letting a nonlinear least square fitting algorithm

search the degrees of freedom to minimize w2. The algorithm used is a MATLAB implementation
of a ‘‘large scale: trust-region reflexive Newton’’ method [22]. For this problem the logarithm of
the data (i.e. in Eq. (25b)) is fit to the log of the functional form of Eq. (21) with the adjusted
parameters being the eigenvalue l2 and the 18 elements in the rows of g not associated with
sources.
The above procedure may be contrasted with that of Gregory and Keltie [14]. They use an

eigensystem realization algorithm (ERA) [23], a linearized fit algorithm, to obtain estimates for
the eigenvalues. However, ERA does not perform well in our experience with our time-limited
data. ERA seems to weight all data equally without normalizing by the mean value, i.e. using a
non-weighted w2 like

w2nw ¼

P
t

PR
r¼1

PS
s¼1 ½GrsðtÞ �CrsðtÞ�

2

NtRS � dof
. (26)

If G has large dynamic range and fluctuates with a fixed fractional standard deviations s, Eq. (26)
is inappropriate.

3.3. Results

We evaluate the performance of our algorithm by scrutinizing the best fits to the eigenvalues
and the value of w2 associated with the best fit. The best fits to the eigenvalues are plotted in Fig. 3
for different number of receivers in each room considered and different noise levels. The fit
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Fig. 3. The best fit to l2 for the two room system for various numbers of receivers in each room and noise levels.

————, correct value(s); , s ¼ 0%; , s ¼ 15%; � �, s ¼ 30%; þ þ, s ¼ 50%. The fit is good even with a

small number of receivers and large noise amplitude.

N.L. Wolff, R.L. Weaver / Journal of Sound and Vibration 288 (2005) 729–749740
algorithm is seen to find the best fit to the decay time regardless of the number of receivers in the
experiment or the noise amplitude.
As shown in Fig. 4, the best fit value of chi-square was evaluated. It fluctuates about unity as it

should. The best fit to data from a receiver in each of the substructures is plotted along with the
data in Fig. 5. The overall fit was to all 10 receivers in both substructures.
The fitting algorithm in this two room case is successful and robust.
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Fig. 5. An example of the actual fit to the data with noise fluctuations s ¼ 50%. , data from a site in room 1;

————, fit to data from room 1; � �, data from a site in room 2; – – – – –, fit to data from room 2. The source in room

1. The overall fit was to data from 10 receivers in each room.
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4. Case study 2: three room system with partial coupling

Finally, we extend the class of problems we are considering slightly to a three room system with
no coupling between rooms one and three (i.e., three rooms ‘‘in a row’’).
4.1. Description of the data

We consider a structure pictured in Fig. 6 of size 400� 300, this time with two partitions
dividing it into three rooms. The partitions have windows of lengths l12 ¼ 0:20� 300 ¼ 60 and
l23 ¼ 0:25� 300 ¼ 75 allowing energy to flow between the rooms. Therefore, the parameters of
Eq. (11) with mode counts (with l13 ¼ 0) approximated by

hn ¼
2pf 2

c2
ðareaiÞDf ,

d ¼
c

p

l12 þ l13 �l12 �l13

�l12 l12 þ l23 �l23

�l13 �l23 l13 þ l23

2
64

3
75�

number of modes

area
,

where c is the velocity of the waves, f is the center frequency of the frequency band, and Df is the
band width. The velocity and frequency are taken here to be unity and the bandwidth is taken to
be 1=2p for the purposes of the artificial simulations. fcg’s thus represent modal energy density,
plotted in Fig. 7. These parameters result in a first non-trivial eigenvalue of about 4:7� 10�4 and
second non-trivial eigenvalue of about 22:5� 10�4. The gains in the g matrix were taken from a
set of uniformly distributed numbers ½12; 2�.
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Fig. 6. Geometry of the system described in Section 4. The window coupling rooms 1 and 2 is l12 ¼ 60 units wide and

the window coupling rooms 2 and 3 is l23 ¼ 75 units wide.
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We consider three data sets each with a total of 30 receivers, 10 in each room, and took data
from three ‘‘experiments’’ corresponding to sources in each of the three rooms. Data was
examined out to one-half of the longer decay time, i.e. tmax ¼ 1060, and 20 data points were
constructed for each receiver at evenly spaced times. Fractional fluctuations from the mean energy
density were different in each data set and taken to be s ¼ 0, 15, and 30%.

4.2. Fitting procedure

We seek to fit the form of Eq. (21) with N ¼ 3 to the data. Since v1 is completely known and V1

is taken to be known for the three source locations considered, those associated elements of g can
be calculated completely by Eq. (20). One element of one of the higher eigenvectors in the energy
description must be adjusted in the fitting procedure. All that remains is to calculate the remaining
elements of v2 and v3 using the five remaining orthogonality conditions. The solution can be found
in Appendix B.
The eigenvalues, l2 and l3; one element in the eigenvectors, v21; and the 27 elements of g not

already taken to be known are the adjusted parameters.

4.3. Results

We evaluate the performance of our algorithm by scrutinizing the best fits to the eigenvalues
and the value of w2 associated with the best fit. The best fits to the eigenvalues are plotted in Fig. 8
for different number of receivers in each room and different noise levels. The fit algorithm does
find the best fit to the decay times if enough receivers are considered.
If more receivers are considered in the data set (not shown), the fit fails because of the higher

number of parameters (gains) that need to be adjusted in the fit procedure. The correct global
minimum w2 was not found; instead some other local minimum was found. This may be surprising
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Fig. 7. The evolution of energy density in each of the three rooms for the period analyzed in Section 4. ————,

response in room 1; – – – – – –, response in room 2; – � – � –, response in room 3. The eigenvalues are l1 ¼ 0,

l2 ¼ 4:7� 10�4, and l3 ¼ 22:5� 10�4. The eigenvectors are v1 ¼ f2:9; 2:9; 2:9g � 10�3, v2 ¼ f4:0; 0:47;�2:7g � 10�3,

and v3 ¼ f1:8;�5:8; 1:2g � 10�3. Total time considered was 1
2
ð1=l3Þ: (a) a single source in room 1; (b) a single source in

room 2; (c) a single source in room 3.
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given that adding an extra receiver adds extra data to fit the parameters to. It must be noted,
however, that the fit in the three room case is much more difficult overall than the fit in the two
room case because the space that the fit algorithm must explore is much larger. Also, if higher
noise amplitudes and/or less time is scrutinized, the fit fails to find the correct eigenvalues.
It is seen (Fig. 9) that the chi-square value is about unity for a sufficient number of receivers and

sufficiently low noise. The value of chi-square is large (data points not plotted) when only a few
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Fig. 9. The w2 value after the fit for various numbers of receivers and noise amplitudes. , s ¼ 15%; ,

s ¼ 30%. This value should fluctuate about unity. The large values of w2 for few receivers and low noise amplitude

(omitted) reflect the lack of good fit. Other values close to unity show that the fit is good in the presence of a sufficient

number of receivers.
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receivers in each room are considered for the lower noise level. This indicates that the fit failed in
those cases; a local, and wrong, minimum was found. The best fit to some of the data is plotted
along with the data in Fig. 10.
The fitting algorithm in this three room case is successful, but not as robust as for the two room

case. In particular, the large amount of time needed for a successful fit in the three room case is
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Fig. 10. An example of the actual fit to the data with noise fluctuations s ¼ 30%. , data from a site in room 1;

————, fit to data from room 1; , data from a site in room 2; – – – – –, fit to data from room 2; � �, data from a

site in room 3; – � – � –, fit to data from room 3. The source in room 1. The overall fit was to data from 10 receivers in

each room.
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disturbing. There is evidence, however, that the lack of robustness is due to the numerical fit
algorithm, not the w2 formulation. The Newton algorithm finds a minimum of Eq. (25b), but does
not necessarily find the global minimum. When better ‘‘first guesses’’ are used in the Newton
algorithm for the eigenvalues and eigenvector element, the fit is successful even when data was
examined only out to tmax ¼ 210. This suggests that another numerical minimization algorithm,
such as a simplex method or simulated annealing [24] might be preferable.
It is noteworthy that accurate fits (and correct eigenvalues and eigenvectors) can be obtained

when only short times are analyzed. This is promising for the ultimate application to DNS data
for which long time calculations are expensive.
5. Conclusions and future work

The goal of this paper was to fit diffusion parameters to data which was unambiguously known
to have underlying diffusive behavior. We have developed a procedure that is successful in fitting
diffusion parameters in systems that admit to substructuring—long time behavior is predicted
from analysis of only short time data—although the procedure does not inherently require the
substructuring. The substructuring was exploited to simplify the nonlinear fit method used.
At least two immediate extensions are obvious: the extension to more substructures and the

extension to no substructuring, i.e. fitting directly to the form of Eq. (9). Each of these
generalizations would be straightforward, though they may well require a better, and more global,
nonlinear fitting algorithm because of the large number of parameters that would need to be
adjusted.
It is also necessary to apply these ideas to real DNS data, data for which the diffusion ansatz

itself may be incorrect.
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Appendix A. Generation of noise

In this section the procedure used to construct noise artificially is explained.
We begin by constructing centered Gaussian distributed noise with unity standard deviation

using the Box–Muller method [24]. Consider a pair of uniformly distributed numbers
x1; x2 2 ½0; 1�. By performing the transformation

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
cos 2px2, (27a)

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
sin 2px2, (27b)

one obtains a pair of quantities Z1; Z2 with the normal (Gaussian) distribution

f ðZÞ ¼
1ffiffiffiffiffiffi
2p

p e�Z2=2. (28)

That is, Z1; Z2 are two independent Gaussian distributed numbers with a mean of zero and
standard deviation of unity.
Then, for each r and t, construct

wrt ¼

PnZ
i¼1 Z

2
i

nZ
, (29)

a chi-square distribution of positive random numbers with mean unity and standard deviation

s ¼

ffiffiffiffiffiffiffiffiffiffi
2=nZ

q
. (30)

Therefore, the number of smoothing points nZ to be used in the construction of w should be 2=s2,
and Eq. (30) defines s. Finally, noisy data G is constructed by multiplying the original underlying
smooth mean square response C by this w and a gain g, i.e. GrðtÞ ¼ grncnwrt.
Appendix B. Solution for the three room problem

The problem is, given v1, h, and v21, solve for the remaining elements of v2 and v3 in

v11h1v
2
1 þ v

1
2h2v

2
2 þ v

1
3h3v

2
3 ¼ 0, (31a)

v11h1v
3
1 þ v

1
2h2v

3
2 þ v

1
3h3v

3
3 ¼ 0, (31b)

v21h1v
3
1 þ v

2
2h2v

3
2 þ v

2
3h3v

3
3 ¼ 0, (31c)

v21h1v
2
1 þ v

2
2h2v

2
2 þ v

2
3h3v

2
3 ¼ 1, (31d)
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v31h1v
3
1 þ v

3
2h2v

3
2 þ v

3
3h3v

3
3 ¼ 1. (31e)

Physically, we know the subspace that v2 and v3 span and mutual orthogonality, so there is only
one free parameter (say, an angle) to completely specify the two higher eigenvectors.
Mathematically, there are five remaining orthogonality conditions after v1 has been normalized
and six elements of the other two higher eigenvectors, so one element must be specified in order to
be able to solve for everything.
If we make the following definitions:

a ¼ v12h2, (32a)

b ¼ v13h3, (32b)

c ¼ �v11h1v
2
1, (32c)

d ¼ h2, (32d)

e ¼ h3, (32e)

f ¼ 1� h1ðv
2
1Þ

2, (32f)

then

v22 ¼
ace=b2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2c2e2=b4

Þ � ðd þ ða2e=b2ÞÞððc2e=b2Þ � f Þ

q
ðd þ ða2e=b2

ÞÞ
, (33a)

v23 ¼ �
a

b
v22 þ

c

b
. (33b)

The � ambiguity in Eq. (33a) is a labeling issue. It is impossible to know a priori which of the
higher eigenvectors is v2 and which is v3. In our implementation, the + sign is taken.
Furthermore, if we define

b ¼
�v22h2ðv

2
1v

1
3h3 � v

1
1v

2
3h3Þ þ v

2
3h3ðv

2
1v

1
2h2 � v

1
1v

2
2h2Þ

v21h1
, (34a)

g ¼ v21v
1
3h3 � v

1
1v

2
3h3, (34b)

d ¼ �ðv21v
1
2h2 � v

1
1v

2
2h2Þ, (34c)

a2 ¼ b2h1 þ g2h2 þ d2h3, (34d)

then

v31 ¼
b
a
, (35a)

v32 ¼
g
a
, (35b)
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v33 ¼
d
a
. (35c)

Existence of a solution is governed by the discriminant in Eq. (33a). Depending on the values of
h and v1, there may be a well defined upper bound on the magnitude of v21 in order for there to be
a solution. Otherwise, v21 can be any non-zero number. In our implementation v21 is taken to be
positive to enforce uniqueness of the solution.
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