
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 288 (2005) 1177–1196
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Concept and model of eddy current damper for vibration
suppression of a beam

Henry A. Sodanoa,�, Jae-Sung Baeb, Daniel J. Inmana, W. Keith Belvinc

aCenter for Intelligent Materials Systems and Structures, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061-0261, USA
bSchool of Aerospace and Mechanical Engineering, Hankuk Aviation University, 200-1, Hwajeon-dong,

Deogyang-gu, Goyang-city, Geonggi-do, 412-791, Korea
cStructural Dynamics Branch, NASA Langley Research Center, Hampton, VA 23681-0001, USA

Received 12 April 2004; received in revised form 12 January 2005; accepted 27 January 2005

Available online 29 March 2005
Abstract

Electromagnetic forces are generated by the movement of a conductor through a stationary magnetic
field or a time varying magnetic field through a stationary conductor and can be used to suppress the
vibrations of a flexible structure. In the present study, a new electromagnetic damping mechanism is
introduced. This mechanism is different from previously developed electromagnetic braking systems and
eddy current dampers because the system investigated in the subsequent manuscript uses the radial
magnetic flux to generate the electromagnetic damping force rather than the flux perpendicular to the
magnet’s face as done in other studies. One important advantage of the proposed mechanism is that it is
simple and easy to apply. Additionally, a single magnet can be used to damp the transverse vibrations that
are present in many structures. Furthermore, it does not require any electronic devices or external power
supplies, therefore functioning as a non-contacting passive damper. A theoretical model of the system is
derived using electromagnetic theory enabling us to estimate the electromagnetic damping force induced on
the structure. The proposed eddy current damper was constructed and experiments were performed to
verify the precision of the theoretical model. It is found that the proposed eddy current damping
mechanism could increase the damping ratio by up to 150 times and provide sufficient damping force to
quickly suppress the beam’s vibration.
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see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

b radius of the circular magnet
B magnetic flux density
Br residual magnetic flux
ce eddy current damping force
C damping matrix
Cb damping matrix of beam
d thickness of conductor
E modulus of elasticity
F damping force
J eddy current density
K stiffness matrix
L length of the magnet
lg gap length between magnet and con-

ductor
M mass matrix

M0 magnetization
m0 permeability of free space
f assumed mode shaped
r density
Qe non-conservative forces
r temporal coordinate
rc equivalent radius of the conductor
S strain
s conductivity
t time
T kinetic energy
u displacement
U potential energy
v velocity of conductor in z direction
v velocity of conductor
V volume
oi natural frequency
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1. Introduction

When a non-magnetic conductive metal is placed in a magnetic field, eddy currents are
generated. These eddy currents circulate in such a way that they induce their own magnetic field
with opposite polarity of the applied field causing a resistive force. However, due to the electrical
resistance of the metal, the induced currents will be dissipated into heat at the rate of I2R and the
force will disappear. In the case of a dynamic system the conductive metal is continuously moving
in the magnetic field and experiences a continuous change in flux that induces an electromotive
force (emf) allowing the induced currents to regenerate and in turn produce a repulsive force that
is proportional to the velocity of the conductive metal. This process causes the eddy currents to
function like a viscous damper and dissipate energy causing the vibrations to die out faster. The
use of eddy currents for damping of dynamic systems has been known for decades and its
application to magnetic braking systems [1–4] and lateral vibration control of rotating machinery
[5,6] has been thoroughly investigated.
While the theory and applications of rotary magnetic braking systems have been well

documented, there are many more applications of eddy current dampers. Karnopp [7] introduced
the idea that a linear electrodynamic motor consisting of coils of copper wire and permanent
magnets could be used as an electromechanical damper for vehicle suspension systems. It was
shown that this actuator could be much smaller and lighter than conventional dampers while still
providing effective damping in the frequency range typically encountered by road vehicle
suspension systems; however it was unable to effectively isolate the vehicle from shock excitation.
Schmid and Varga [8] studied a vibration-reducing system with eddy current dampers (ECDs) for
high resolution and nanotechnology devices such as a scanning tunneling microscope (STM).
Teshima et al. [9] investigated the effects of an eddy current damper on the vibrational
characteristics of superconducting levitation and showed that the damping of vertical vibrations
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was about 100 times improved by eddy current dampers. The concept of using a viscoelastic
material to dissipate energy from a structure was modified to incorporated magnets by Oh et al.
[10]. The study sandwiched a viscoelastic material between magnetic strips that were configured to
attract each other in one case and to repel in the other. It was determined that the passive magne-
tic composite (PMC) treatments function best when the magnets were set to attract each other.
However, this method of damping does not use eddy currents to apply damping to the structure.
Takagi et al. [11] studied the deflection of a thin copper plate subjected to magnetic fields both

analytically and experimentally. They used an electromagnet with very high current (several
hundred Amperes) to generate the magnetic field, then analyzed the response of the plate to the
applied field. Kienholtz et al. [12] with CSA Engineering Inc. investigated the use of a magnetic
tuned mass damper for vibration suppression of a spacecraft solar array and a magnetically
damped isolation mount for the payload inside of a space shuttle. The magnetic tuned mass
damper system targeted two modes of the solar array (1st torsion at 0.153Hz and 1st out of plane
bending of 0.222Hz) and increased the damping by 30 and 28 dB, respectively, while the higher
frequency untargeted modes 0.4–0.8Hz were damped in the range of 11–16 dB. Matsuzaki et al.
[13] proposed the concept of a new vibration control system in which the vibration of a beam,
periodically magnetized along the span, is suppressed by using electromagnetic forces generated
by a current passing between the magnetized sections. To confirm the vibration suppression
capabilities of their proposed system, they performed a theoretical analysis of a thin beam with
two magnetized segments subjected to an impulsive force and showed the concept to suppress the
beams first three modes of vibration. Graves et al. [14] derived the mathematical model of
electromagnetic dampers based on a motional emf and transformer emf devices and presented a
theoretical comparison between these two devices. A motional emf device generates eddy currents
due to the movement of a closed conduction circuit or a conductor through a stationary magnetic
field, while a transformer emf device generates an emf within a stationary conducting circuit, due
to a time-varying magnetic field. Both of these electromagnetic devices can be used for vibration
damping purposes.
Recently, Kwak et al. [15] investigated the effects of an eddy current damper on the vibration of

a cantilever beam and their experimental results showed that the eddy current damper can be an
effective device for vibration suppression. The authors ECD uses a fixed copper conducting plate
and flexible linkage attached to the tip of the beam in order to utilize the axial magnetic flux and
generate eddy current damping forces. Bae et al. [16] modified and developed the theoretical
model of the eddy current damper constructed by Kwak et al. [15]. Using this new model, the
authors investigated the damping characteristics of the ECD and simulated the vibration
suppression capabilities of a cantilever beam with an attached ECD numerically.
When using eddy currents the typical method of introducing an emf in the conductive metal is

to place the metal directly between two oppositely poled magnets with the metal moving
perpendicular to the magnets poling axis, a schematic of this process is shown in Fig. 1, and has
been studied in Refs. [12,14–16]. This configuration is ideal because the magnetic field is
concentrated between the two magnets causing the magnetic flux applied to the conductor to be
greater and thus the damping force to be increased. While this configuration is effective for
magnetic braking [1–4], in certain applications, such as the transverse vibration of a membrane, it
is not possible. The research presented in this study analyzes one such system in which a vibrating
cantilever beam is damped by a permanent magnet fixed to a location perpendicular to the beam’s
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Fig. 1. Schematic of conductive material passing through a magnetic field and the generation of eddy currents.

H.A. Sodano et al. / Journal of Sound and Vibration 288 (2005) 1177–11961180
motion and the magnet’s radial flux is used to generate the damping force. Since the ECD of Ref.
[15] was installed at the tip of the beam, its dynamic characteristics were changed considerably.
Different from previous eddy current braking and damping systems, the proposed eddy current
concept is to configure the ECD such that the beams motion is in line with the poling axis of the
magnet. By arranging the magnet this way, the radial magnetic flux is used to generate the emf
rather than the axial magnetic flux. Additionally, since the permanent magnet is not attached to
the beam, the uncontrolled dynamic characteristics, other than the additional damping to the
beam, are unaffected by the damper.
The following sections of this paper will use electromagnetic theory to identify the magnetic flux

generated by a cylindrical permanent magnet. Following the determination of the magnetic flux,
the eddy current distributions and the damping force due to the vibration of a cantilever beam will
be found. Using the theoretical model of the proposed eddy current damping system, the vibration
characteristics of a conductive beam subjected to a magnetic field are analytically determined.
Following the development of the mathematical model of the system, experiments are performed
to verify the accuracy of the eddy current damping model. It will be shown that the theoretical
model provides an accurate prediction of the induced eddy current damping and the overall
damping of the beam is shown to increased dramatically using this new system.
2. Eddy current damper and beam model

2.1. Eddy current damping force

Fig. 2 depicts the configuration of our eddy current damping system, which consist of a
cantilever beam with a copper conducting plate located in the magnetic field generated by a single
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Fig. 2. Cantilever beam in magnetic field generated by permanent magnet.
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Fig. 3. (a) Magnetic field and (b) the eddy currents induced in the cantilever beam.

H.A. Sodano et al. / Journal of Sound and Vibration 288 (2005) 1177–1196 1181
cylindrical permanent magnet. Due to the permanent magnet, a magnetic field is generated in the
vertical (z) and horizontal or radial (y or R) axes. Fig. 3 shows a conducting sheet of thickness d
and conductivity s moving with velocity v in the air gap lg of a circular magnet. Due to the
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permanent magnet, a magnetic field is generated in the vertical (z) and horizontal or radial (y or
R) axes. When the beam surface is deflected and set in motion in the static magnetic field, an
electric field is generated in the conducting sheet. Since the deflection of beam is in the vertical
direction, the vertical component of the magnetic field does not contribute to the generation of
eddy currents. Hence, the electric field on the conductor is dependent on the horizontal
component By of the magnetic field. As shown in Fig. 3, the eddy currents circulate on the
conducting sheet in the x–y plane, causing a magnetic field to be generated.
If the surface charges are assumed to be ignored, the current density J induced in the

conducting sheet moving in the vertical direction is given by

J ¼ sðv� BÞ, (1)

where the v� B term is an electromotive force driving the eddy currents J:
The magnetic flux density due to a circular magnetized strip, shown in Fig. 4, can be written

as [17]

dB ¼
m0M0

4p

Z 2p

0

dl� R1

R3
1

df, (2)

where m0 and M0 are the permeability and the magnetization per unit length, respectively. The
vector R1 is defined by the distance between the differential element on the circular strip and the
point on the y–z plane as shown in Fig. 4 and defined as

R1 ¼ R� r, (3)

where

R ¼ yjþ zk; r ¼ b cosfiþ b sinfj. (4,5)
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Fig. 4. Schematic of the circular magnetized strip depicting the variable used in the analysis.
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The length vector dl of the infinitesimal strip is

dl ¼ �b sinf dfiþ b cosf dfj, (6)

where b is the radius of the circular magnet.
Substituting Eqs. (3) and (6) into Eq. (2), the magnetic flux density due to the circular

magnetized strip is

By ¼
m0zM0b

4p

Z 2p

0

sinf

ðb2
þ y2 þ z2 � 2yb sinfÞ3=2

df ¼
m0zM0b

4p
I1ðb; y; zÞ, (7)

Bz ¼
m0M0b

4p

Z 2p

0

b � y sinf

ðb2 þ y2 þ z2 � 2yb sinfÞ3=2
df ¼

m0M0b

4p
I2ðb; y; zÞ, (8)

where I1 and I2 include the elliptic integrals and are shown in Appendix A. Hence, the magnetic
flux densities due to the circular magnet of length L are written as

Byðy; zÞ ¼
m0M0b

4p

Z 0

�L

ðz � z0ÞI1ðb; y; z � z0Þ dz0, (9)

Bzðy; zÞ ¼
m0M0b

4p

Z 0

�L

I2ðb; y; z � z0Þ dz0, (10)

where z0 and L are the distance in the z direction from the center of a magnetized infinitesimal
strip and the length of the circular magnet, respectively. As shown in Fig. 2, the magnetic field
distributions in Eqs. (9) and (10) are symmetric about the z-axis.
Since the velocity of the conducting sheet is in the z direction, the magnetic flux density Bz does

not contribute to the damping force. Using Eqs. (1), (9), and (10), the damping force due to the
eddy current is defined by

F ¼

Z
V

J� B dV ¼ �ksdv

Z 2p

0

Z rc

0

yB2
yðy; lgÞ dy df ¼ �k2psdv

Z rc

0

yB2
yðy; lgÞ dy, (11)

where d and v are the thickness and the vertical velocity of the conducting sheet, respectively, rc is
the equivalent radius of the conductor that preserves its surface area and lg is the distance between
the conducting sheet and the bottom on the magnet as shown in Fig. 3. Since the magnetic flux
densities in Eqs. (9) and (10) are symmetric about the z-axis, the x and y component of the
damping force are zero. Because Eqs. (7)–(11) cannot be analytically integrated, a numerical
integration method will be used to obtain the damping force in Eq. (11).
2.2. Modeling of cantilever beam

In order to model the dynamics of the cantilever beam, energy methods were used. To begin the
derivation the kinetic energy, potential energy and external work are written as

T ¼
1

2

Z
V

r _uðx; tÞT _uðx; tÞ dV ; U ¼
1

2

Z
V

STE S dV ; (12,13)
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Fdx ¼ Qed _uðxeÞ þ
Xnf

i¼1

d uðxiÞ � f iðxiÞ; (14)

where u(x,t) is the displacement of the beam, r is the density, V is the volume of the beam, fi is the
ith concentrated force acting on the beam, E is the modulus of elasticity and S is the strain of the
beam. The term Qe describes the non-conservative forces due to the induced eddy currents and is
written as

Qed _uðxeÞ ¼ �

Z L

0

d _uðx; tÞTcb _uðx; tÞ dx � ced _uðxe; tÞ, (15)

where cb is the internal damping of the beam, L is the length of the beam and ce and ue are the
damping force from the eddy currents and the location of the eddy current damping force,
respectively. By Hamilton’s Principle the variation of the energy in the system must balance to
zero as follows: Z t2

t1

½dU þ dT � Fdx
 dt ¼ 0: (16)

Taking the variation of the kinetic and potential energy from Eq. (16) yields

dU ¼

Z
V

dSTE S dV ; dT ¼

Z
V

rd _uT _u dV . (17,18)

The variations found in Eqs. (14), (17) and (18) can be substituted into Eq. (16) to obtain the
variational equation

Z t2

t1

Z
V

rd _uT _u dV �

Z
V

dSTE S dV þ
Xnf

i¼1

d uðxiÞ � f iðxiÞ �

Z L

0

d _uTcb _u dx � ced _uðxe; tÞ

" #
¼ 0.

(19)

In order to solve Eq. (19) for the cantilever beam some assumptions must be made. The first
assumption follows the Rayleigh–Ritz procedure (see for instance Ref. [18]), which says that the
displacement of the beam can be written as the summation of modes in the beam and a temporal
coordinate

uðx; tÞ ¼
XN

i¼1

fiðxÞriðtÞ ¼ fðxÞ rðtÞ; (20)

where fiðxÞ are the assumed mode shapes of the structure which can be set to satisfy any
combination of boundary conditions, r(t) is the temporal coordinate of the displacement and N is
the number of modes to be included in the analysis. The second assumption made is to apply the
Euler–Bernoulli beam theory. This allows the strain in the beam to be written as the product of
the distance from the neutral axis and the second derivative of displacement with respect to the
position along the beam. Once the strain is defined in this way Eq. (20) can be used to define the
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strain as

S ¼ �y
q2uðu; tÞ
qx2

¼ �yfðxÞ00 rðtÞ, (21)

where y is the distance from the neutral axis of the beam. Using the previous two assumptions, Eq.
(19) can be simplified to contain terms that represent physical parameters. By doing this, the
equations representing the beam become more recognizable when compared to those of a typical
system and help give physical meaning to the parameters in the equation of motion. The mass and
stiffness matrix of the system can be written as

M ¼

Z
V

rfT
ðxÞfðxÞ dV ;

Z
V

y2fT
ðxÞ00E fðxÞ00 dV : (22,23)

The non-conservative forces that include the internal damping of the beam and the eddy current
damping force can be written as the damping matrix defined by

C ¼

Z
V

fT
ðxÞcb fðxÞ dV þ diag½ce fðxeÞ
; (24)

where fðxeÞ is the modes shape with xe defining the location of the eddy current damping force
and ce is the damping force found in Eq. (11). The parameters defined in Eqs. (22)–(24) can be
substituted into Eq. (19). This substitution allows the variation to be written asZ t2

1

½d_rTðtÞM _rðtÞ � drTðtÞK rðtÞ � d_rTðtÞC _rðtÞ þ d rðtÞfðxiÞ
T f ðtÞ
 dt ¼ 0, (25)

where dðÞ indicates the variation of the corresponding variable. Taking the integral of Eq. (25)
leaves the equation of motion. The following equation defines the motion of the beam with the
eddy current damper:

M €rðtÞ þ C _rðtÞ þ K rðtÞ ¼ fðxiÞ
Tf

i
ðtÞ. (26)

The above equations now describe the dynamics of the beam and its interaction with the eddy
current damper. One point that must be mentioned is that the eddy current damping force is
highly nonlinear with respect to the gap between the magnet and the beam. However, in the
derivation of the beam’s dynamics with the eddy current damper, the damping force was assumed
to be a constant value corresponding to the mean distance between the magnet and beam. In the
following sections both the accuracy of the modeling techniques used and this assumption will be
demonstrated.
3. Experimental set-up

In order to validate the accuracy of the model, experiments were performed on an aluminum
beam with dimensions shown in Fig. 5. For all tests performed a neodymium–iron–boron
permanent magnet with radius and length of 6.35 and 12.7mm, respectively, was used. The other
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Fig. 5. Schematic showing the dimensions of the beam.

Table 1

Physical properties of the beam, conductor and magnet

Property Value

Young’s modulus of beam 75GPa

Density of beam 2700 kg/m3

Conductivity of beam 3.82� 107

Thickness of copper conductor 0.62mm

Conductivity of copper conductor 5.80� 107

Permanent magnet composition NdFeB 35

Residual magnetic flux of magnet 1.21 kG

H.A. Sodano et al. / Journal of Sound and Vibration 288 (2005) 1177–11961186
physical properties of the beam, conductor and magnet are listed in Table 1. When performing the
validation of the model, it was necessary to include the eddy currents generated from the
aluminum beam in the simulation as well, because of its high conductivity.
The goal of these experiments was to measure the damping of the beam as a function of the gap

lg between the copper conducting plate and the surface of the permanent magnet. To do this both
the response to an initial displacement and the frequency response were measured. From these
two tests the damping of the beam can be calculated by determining the logarithmic decrement of
the initial condition response and the unified matrix polynomial approach (UMPA) can be
applied to the frequency response. It was necessary to find the damping using both of these
methods because the eddy currents add significant damping when the magnet is placed in close
proximity to the beam, making the damping measurement difficult.
In order to accurately measure the damping of the aluminum beam using an initial

displacement and the log decrement method, the initial condition must be consistent throughout
all tests. This is necessitated further due to the need to measure the damping for numerous
different gap distances lg for the magnet and conducting plate. Therefore to ensure that the initial
displacement was consistent throughout every test a very thin steel plate was attached to the beam
and an electromagnet was positioned at a fixed distance from the beam and steel plate. A small
switch was constructed to allow the magnet to be activated and thus pull the steel plate into
contact with the surface of the electromagnet and provide a fixed initial displacement. When the
switch was turned off the electromagnet releases the beam allowing its vibration to damp out, this
system can be seen in Fig. 6. Once the beam is set into motion, a Polytec laser vibrometer was used
to measure the displacement of the tip of the beam.
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Fig. 6. Experimental set-up of the aluminum beam and eddy current damper.
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To measure the frequency response of the aluminum beam, a piezoelectric patch was attached
to the root of the beam while the beam’s response was measured using a Polytec laser vibrometer.
With the two excitation systems developed, the next step was to construct an accurate method of
positioning the permanent magnet a fixed distance from the conducting plate. To do this, the
permanent magnet was bonded to a wooden block that was fixed to a fine threaded lead screw, as
shown in Fig. 6, this lead screw allowed the position of the magnet to be accurately varied. A
wooden block was used so that the magnetic field was not distorted due to high permeability
materials in close proximity to the magnet. The combination of a lead screw for positioning, fixed
electromagnet for consistent initial displacement, permanently bonded piezoelectric patch and a
non-contact sensing system (laser vibrometer) allowed every test to be precisely repeated.
4. Comparison of model and experiments

4.1. Numerical calculation of the magnetic flux

Following the construction of the experimental set-up the accuracy of the model could be
shown. However, before the damping force generated by the eddy currents and the beam response
could be found the magnetic field of the permanent magnet had to be calculated. Because Eqs. (9)
and (10) cannot be solved analytically they were numerically integrated. The resulting magnetic
flux B of this integration is shown in Fig. 7, for the case of a cylindrical permanent magnet with
length L and whose surface is located at z ¼ 0: The contours in Fig. 7 indicate the radial
component By of the magnetic flux. Since the conductor moves in the z direction, the z component
Bz of the magnetic flux does not contribute to the generation of eddy currents in the conductive
material, indicating that only the radial component By affects the strength of the eddy current
flowing through the conducting sheet. Fig. 8 shows the radial magnetic flux density distribution
when the conducting sheet is at various distances from the magnetic surface. It is apparent that as
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Fig. 7. Magnetic flux and contour of By for case of single pole.

Fig. 8. Magnetic density distributions in y direction. Key: - -�- -, lg=b ¼ 0:05; –&–, lg=b ¼ 0:1; –J–, lg=b ¼ 0:2; - -’- -,

lg=b ¼ 0:3; - -J- -, lg=b ¼ 1:0:
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the distance lg between the magnet and the conducting sheet decreases, the magnetic flux density
increases. Additionally, Fig. 8 shows that the maximum value of the radial magnetic flux density
By occurs at the boundary of the circular magnet.

4.2. Validation of model of eddy current damping

Following the determination of the magnetic flux, the dynamics of the beam and eddy current
damper could be combined and compared to those obtained through experiments. Using the
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initial displacement experiments, the log decrement was calculated to provide the damping of the
aluminum beam when subjected to the magnetic field of a permanent magnetic positioned at
numerous distances lg from the conducting plate. Fig. 9 shows the beam response to an initial
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condition for the case that the surface of the permanent magnet is located at a distance of 2mm
from the conducting plate and Fig. 10 shows the response of the beam when the magnet is located
at a distance of 4mm. From these figures it is apparent that the damping of the beam is
significantly increased due to the interaction between the eddy currents and the magnet, in the
case that the magnet was not present, the settling time of the beam would be on the order to 1min
rather than a fraction of a second. Additionally, these figures demonstrate the accuracy of the
model. When the initial displacement tests were performed, the smallest distance from the beam
that the magnet could be placed at was 1.0mm in order to avoid the beam coming in contact with
the magnet during its response. By adjusting the gap between the magnet and beam the damping
ratio as a function of the distance was measured.
Furthermore, to demonstrate the effectiveness of this non-contacting magnetic damper for the

suppression of the transverse vibrations of a beam, experiments were performed to determine the
frequency response before and after placement of the magnet; the results of this test are shown in
Fig. 11. Fig. 11 shows that the first mode of vibration is significantly reduced by approximately
42.4 dB and the second and third mode are suppressed by 21.9 and 14.3 dB, respectively. The
frequency response of the beam was determined for various gaps between the magnet and beam
ranging from 1 to 10mm so that the model’s accuracy could be demonstrated. Fig. 12 shows the
experimental and predicted frequency response of the beam with the magnet located 2mm from
the beam. Fig. 12 shows that the dynamics of the beam are well characterized by the model. Using
the experimental results, the damping of the beam as the distance between the magnet and beam
was increased was calculated using the UMPA method. With the measured damping ratio from
both the initial displacement and frequency response experiments we were able to use the damping
force calculated in Eq. (11) to determine the predicted values of damping; the results of the
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Fig. 13. Experimental and predicted damping ratio of the first mode as a function of the gap between the magnet and

beam. Key: -�-, infinite conductor; -’-, finite conductor; -}-, experimental.
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experiments and model for the first mode of vibration are shown in Fig. 13. Fig. 13 shows two
curves for the estimated damping ratio. The infinite conductor curve represents the damping that
would be expected if the conducting plate was of infinite dimensions and corresponds to setting rc
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in Eq. (11) equal to infinity, and the second curve defines the damping ratio resulting in the case
where the conductor is of the finite size used in the experiments. It can be seen that the model
provides an accurate estimate of the damping ratio and as the distance increases, the model
converges to the measured damping of the beam. The average predicted damping over the entire
range of gaps tested is approximately 17%, however the accuracy of the model in the range
greater than 5mm is less than 10%. The experimental and predicted damping ratios for the second
through the fourth mode are shown in Appendix B.
While this model does provide an accurate estimate of the damping due to the eddy currents

generated in the beam there are a few sources of error that can be improved. First the conductor
applied to the beam is not of circular geometry as assumed in the analysis and second the edge
effects of the conducting plate are not represented due to the eddy current density at the
conductor’s edge not being zero. If the geometry of the conducting plate in our analysis was
modified to be rectangular, it is expected that the model would provide a more accurate prediction
of the damping for the case that the magnet is only a small distance from the magnet. Additional
sources of error arise due to the relatively small size of the conducting plate compared to the
surface of the magnet.
5. Conclusions

This study has introduced the concept of an eddy current damper to suppress the transverse
vibrations of a cantilever beam. Unlike constrained layer damping or other damping
techniques which significantly affect the structures response after their application; this
damping scheme is easy to install and functions in a non-contact fashion thus allowing mass
loading and added stiffness that are common to most damping techniques to be avoided by its
addition to the system. This point is a crucial one for systems that have been designed with a
specific dynamic response, yet require additional damping subsequent to their design. Other
methods of damping would alter the desired performance (e.g. the systems natural frequencies
and mode shapes) of the system, while the eddy current damper developed in the present study
would not.
A theoretical model of the system was derived using electromagnetic theory, enabling the

electromagnetic damping force induced on the structure to be estimated. The proposed eddy
current damper was constructed and experiments were performed to verify the precision of the
theoretical model. The model was shown to provide an accurate estimate of the induced damping.
It has been found that the proposed eddy current damping mechanism could increase the damping
ratio by up to 150 times and provide sufficient damping force to quickly suppress the beam’s
vibration.
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Appendix A. Integrals defining the magnetic flux

The integration I1 in Eq. (7) is

I1 ¼
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where

m2 ¼ b2 þ y2 þ z2; n2 ¼ ðb � yÞ2 þ z2; p ¼ ðb þ yÞ2 þ z2. (A.22A.4)

The elliptic integrals of Eq. (A.1) are
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The integration I2 in Eq. (8) is
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where

m2 ¼ b2 þ y2 þ z2; n2 ¼ ðb � yÞ2 þ z2, (A.8,A.9)

p ¼ ðb þ yÞ2 þ z2; s ¼ b2
� y2 � z2. (A.10,A.11)

The elliptic integrals of Eq. (A.7) are

E1 ¼ ðf;mÞ ¼

Z f

0

ð1� m sin2yÞ1=2 dy, (A.12)

E2 ¼ ðf;mÞ ¼

Z f

0

ð1� m sin2yÞ�1=2 dy. (A.13)
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Appendix B

Predicted and measured damping ratios of higher modes are shown in Figs. B.1–B.3.
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Fig. B.2. Experimental and predicted damping ratio of the third mode as a function of the gap between the magnet and

beam. Key: -�-, infinite conductor; -’-, finite conductor; -}-, experimental.
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