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Abstract

Two efficient methods for determining the approximate eigenvalues and eigenvectors for arbitrarily
damped nearly proportional systems are developed. Both approaches are formulated by means of a first-
order perturbation technique, whereby the real modes of vibration of the undamped system are used to
derive approximate expressions for the complex eigenvalues and eigenvectors of a nearly proportionally
damped system. Using either approach, the unperturbed configuration corresponds to a damped one whose
damping matrix can be diagonalized by the same transformation that uncouples the undamped system, and
the perturbation consists of the deviation of this diagonalizable damping matrix from the actual damping
matrix. The proposed approaches are easy to code, implement and solve, and do not require forming state
equations. Numerical examples are presented to validate the effectiveness of the current methods.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic analysis of a discrete vibratory system typically begins with an evaluation of their
eigensolutions. To meet new performance specifications, one is often required to make design
modifications after an initial analysis has been completed, and to determine the resulting changes
in the eigensolutions. Clearly, if these modifications are large, then a new analysis and
computational cycle are necessary in order to compute the new eigendata. However, if the changes
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made are small, then the perturbation theory can be applied whereby the initial modal
characteristics are used as a basis to extract the new eigensolution of the modified system without
performing a new and possibly costly analysis. Over the years the perturbation theory has been
used in the solution of many different problems [1-0].

The perturbation approach can also be used to study the effects of light damping. For an
undamped system, the eigensolutions are real. These eigensolutions, also known as the modes of
vibration, are characterized by the natural frequencies and the mode shapes of the system. For a
damped system, the eigensolutions are typically complex. To obtain the eigensolutions exactly,
state equations are used, resulting in a generalized eigenvalue problem with complex eigenvalues
and eigenvectors that require extensive computations. Many efficient methods have been
proposed over the years to determine the complex eigenvalues and eigenvectors of lightly damped
systems by means of a perturbation technique [7-11]. If the amount of damping in the system is
very small, then the eigensolutions of the lightly damped system differ only slightly from those of
the undamped configuration. Hence, the eigensolutions of the lightly damped system can be
approximated in terms of a power series expanded from the eigensolutions of the undamped
system. Knowing the eigensolutions of the undamped system, the higher order terms of this
expansion which reflect the effects of damping can be easily obtained.

In this paper, two approaches are introduced that can be used to determine the first-order
eigenvalues and eigenvectors of an arbitrarily damped but nearly proportional or weakly non-
proportional system. Both approaches are developed by means of the perturbation theory. Using
the proposed methods, the eigensolutions of the unperturbed or proportionally damped system
will be used to extract the eigensolutions of the arbitrarily damped, weakly non-proportional
system. The unperturbed configuration corresponds to one whose damping matrix can be
diagonalized by the modal matrix of the undamped system. Thus, the eigensolutions of the
unperturbed system depend only on the undamped natural frequencies and mode shapes, which
are strictly real quantities. Both approaches rely on the perturbation technique, but they are
completely different in the ways in which their diagonalizable damping matrices are formulated.
The benefits of the current methods will be discussed and highlighted, and numerical experiments
will be presented to show the effectiveness of the proposed approaches.

2. Theory

In the following sections, the eigensolutions of an undamped, generally damped and
proportionally damped systems are first introduced. These results are well known and they are
presented for completeness, and more importantly, for notational purposes.

2.1. Undamped systems

Consider an undamped N-degree of freedom (dof) system whose equations of motion are
given by

[M]j, + [Klg, = 0. (1)

0
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where [M] and [K] are the symmetric mass and stiffness matrices of the system. The modes of
vibration of the undamped system correspond to the eigensolution of the following generalized
eigenvalue problem:

[KJuy = o[ M]uy, (2)
where @ denotes the natural frequency of the system and u, is its mode shape. Assume the N
natural frequencies are all distinct and the mode shapes are properly normalized, then they satisfy
the following orthogonality conditions:

ug[Mug; = 8 and  ul[Kluy = w7},

fori,j=1,...,N, 3)

where 5’l is the Kronecker delta. Eq. (3) can also be expressed compactly in matrix form as
[Uo]'[M][Ug] =[] and [Uo]'[K][Uo] = [4], “4)

where [I] is the identity matrix, [4] is a diagonal matrix whose ith element is simply »?, and [U]

is the modal matrix of the system whose columns are the normalized mode shapes, i.e., [Uy] =
[uor Upy -+ Uon]-

2.2. Generally damped systems

The governing equations for a generally damped N-dof system can be expressed as
M]g+[Clq+[K]qg=0, (5)

where [M], [C] and [K] are the symmetric mass, damping and stiffness matrices, respectively, of
the system. The vector of generalized displacements, g, has a solution given by the following
exponential form:

q(1) = ue”, (6)

where A is a constant scalar and u is a constant vector, and they are known as the eigenvalue and
eigenvector, respectively. Collectively, they form the eigensolution of the system. Inserting Eq. (6)
into Eq. (5) and noting that an exponential can never be zero, one obtains

{PIM]+Cl+[Kl}u=0. (7)

To have a non-trivial solution for u, the determinant of the coefficient matrix of ¥ must vanish.
Expanding the resulting determinant leads to a 2/N-order polynomial in A, the solution of which
can be readily solved using any prepackaged code such as rpzero in CMLIB [12] or roots in
MATLAB. Once the eigenvalues are known, the corresponding eigenvectors are obtained by
solving Eq. (7) using Gaussian elimination.

Alternatively, the eigensolutions, /4 and u, of Eq. (6) can also be determined by using a state
matrix approach, which effectively replaces the N coupled second-order differential equations of
Eq. (5) by 2N coupled first-order ordinary differential equations as follows [13]. A state vector of

length 2N is introduced,
q iu
— |7 = T | oAt A
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such that Eq. (5) can be rewritten in a form that consists of 2N simultaneous first-order ordinary
differential equations

[4]y —[Bly =0, 9)
where matrices [4] and [B] are both symmetric and are given by
[0] [M] [M]  [0]
Al = Bl = . 10
Yy [C]] BI= 1 oy —[K]] 1o
Substituting Eq. (8) into Eq. (9) yields the following 2N x 2N generalized eigenvalue problem:
[Blz = /[A]z. (11)

Assume the 2N eigenvalues are distinct and all the eigenvectors are properly normalized. Then the
orthogonality properties of the eigenvalues and eigenvectors can be expressed as [13]

[Z]'[AZ] = 1] and [Z]'[B]Z] =[], (12)

where the modal matrix [Z]=[z; z, --- Zzyn], [{] is the identity matrix, and [A] here is a
2N x 2N diagonal matrix whose ith elements is 4;. Using a state vector formulation, the A;’s and
the corresponding z;’s (and hence the u,’s), can be readily solved by using any existing
prepackaged code such as rsg in EISPACK [14] or eig in MATLAB. When N is large, the
eigensolution of the generalized eigenvalue problem of Eq. (11) may be computationally intensive.

2.3. Proportionally damped systems

Consider now the special case of a proportionally damped system, whose eigensolutions can be
determined exactly using only the modes of vibration of the undamped configuration. For a
proportionally damped system, its equations of motion are given by

[M]g, +1Cplg, +[Klg, =0, (13)

where q, is the vector of generalized coordinates for the proportionally damped system, whose
dampmg matrix [C,] can be expressed as a linear combination of the mass and stiffness
matrices as

[Cp] = o[M] + BIK]. (14)

The parameters « and f are real constants, and [C,] can be diagonalized by the same
transformation that was used earlier to decouple the equations of motion for the undamped
configuration, namely

4, = [Uoln . (15)
where n, represents the vector of normal coordinates for the proportionally damped system.
Substltutlng Eq. (15) into Eq. (13), premultiplying by [Uo]' and utilizing the orthogonality
properties of the undamped mode shapes, the equations of motion become decoupled in the
normal coordinates

iy + 20wji, + i, =0 forj=1,...,N, (16)
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where the jth damping factor is given by

o+ ﬁa)/z
C] 2wj ( )
The solution of Eq. (16) is given by
npj = ﬁpjezpjta (18)

where /,;, the eigenvalues, are found to be

2= <_gjiﬂ/g;_1>wj forj=1.....N. (19)

where {; and w; are the jth damping factor and the jth undamped natural frequency, respectively.
For a given {; and w;, two eigenvalues /1;;- and 4, are possible, one corresponding to the positive
square root and the other to the negative square root of Eq. (19). If 0<{; <1, the eigenvalues s
and A;j are complex conjugates. For {; = 1, the eigenvalues are real, negative and identical. For
{;> 1, the eigenvalues are real, negative and distinct. Regardless, Rayleigh [15] showed that if the
damping matrix is a linear combination of the mass and stiffness matrices, then the damped
system will have the same normal modes as the undamped system. Thus, the eigenvectors
associated with both eigenvalues are given by u,.

2.4. Nearly proportionally damped systems

In this paper, two alternative means to determine the eigenvalues 4; and the eigenvectors u; are
proposed for the special case of nearly proportionally damped systems. In particular, the
eigensolutions or the modes of vibration of the undamped configuration will be used as basis to
find the approximate eigensolutions for an arbitrarily damped but weakly non-proportional
system without resorting to state form.

2.4.1. Least squares approach
For a damped weakly non-proportional system, its damping matrix can be expressed as

[C]1=[C,]+[0C], (20)

where [0C] is the deviation from a proportionally damped matrix. Because the system is weakly
non-proportionally damped, [0 C] represents a first-order damping matrix. The constants « and f8
of [C,] can be obtained by using a least squares formulation such that the norm of [|[[C] — [C,]II,
defined as

[Cyj — (@M + BKy)T, ey
1

fn=)

N
i=1 j=

is minimized, where C;, M and K;; are the (i,/)th element of the damping, mass and stiffness
matrices, respectively. Setting the partial derivatives of f, with respect to o and f equal to zero
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yields the matrix equation
= ' , (22)

which can be readily solved for the parameters o« and f that minimize Eq. (21).

A first-order perturbation approach will be used to obtain the approximate eigensolutions of an
arbitrarily damped but weakly non-proportional system. The proportionally damped system will
be considered as the unperturbed configuration, and the first-order damping matrix [0C] will be
considered as the perturbation. The eigensolutions of the proportionally damped or the
unperturbed system depend only on the eigensolutions of the undamped configuration.

Because the damping matrix [C] is slightly perturbed from the proportionally damped matrix
[C,], the jth eigensolution of the system will be a perturbation of the jth eigensolution of the
proportionally damped system

where Ag; is the jth eigenvalue of the unperturbed or the proportionally damped system, thus
Aoj = Jpj» and u; represents the jth eigenvector of the undamped system; d4; and dou; denote the
first-order eigenvalue and eigenvector perturbations, respectively. Substituting Egs. (20) and (23)

into Eq. (7), expanding, keeping only the first-order terms, and noting that the unperturbed
eigensolution satisfies

(o[M1+ 2 Cp] + [KDuoy =0, (24)
one gets
200j0 5T M M + 71 Clug; + 871 Clugy + G IM] + /[ Cpl + [KD)ou; = 0. 25)
Premultiplying Eq. (25) by ug;, one obtains
2076 Ajugy [ M ug; + Aojuag;[6 Clu; + 0 4:ug [ Cylug; = 0. (26)

Recalling Eq. (14) and the orthogonality conditions of Eq. (3), one finds an expression for the
first-order eigenvalue perturbation

inﬂgj[é C]Zoj

o= ———""——.
/ 2/10j+oc+ﬂwf

27)

The first-order eigenvector perturbation dou; of Eq. (23) can be obtained by premultiplying
Eq. (25) by u,., where i#j, to yield
22070 2t Mug; + Aojtag;[0 Clug; 4 025145,[Cplutg; + /lﬁjugi[M]égj + Aojug [ Cplou; + ug[K]ou; = 0.
(28)

Recall that the natural frequencies of the undamped system are assumed to be distinct, and that
the eigenvectors u,, are normalized according to Eq. (3). Thus, the uy’s form a complete
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orthonormal set (with respect to [M]) in the N-dimensional space, and any vector in that
N-dimensional space may be expressed as a linear combination of the u’s. Hence, the jth first-
order eigenvector perturbation can be written as

N
Sy = eyt (29)
r=1

where the ¢,’s are small coefficients to be determined. Substituting Eq. (29) into Eq. (28) and
applying the orthogonality properties of Eq. (3), one obtains

B Aojttg [0 Clu;
Aoj(Poj + o) + i (Bloj + 1)

To determine the coefficients ¢;, the perturbed eigenvectors u;’s are assumed to satisfy the
following orthogonality condition:

WMy = 1. (31)

Inserting Eq. (23) into Eq. (31), expanding and keeping only the first-order terms, one reduces
Eq. (31) to
gL M Tug, + ug [ M1Su; + Suf [Muy; = 1. (32)

Upon substituting Eq. (29) into Eq. (32) and noting the orthogonality properties, one finds ¢; = 0.
Thus, the jth first-order eigenvector perturbation is
P Aoyt [0 Cluy,

u l'.
N 7% Ao + @) + 0F (BAo + 1) -

(33)

In summary, the jth perturbed eigenvalue for an arbitrarily damped nearly proportional system

can be approximated as
T
;[0 Cluy
Ji=lgi| 1 ————"L |, 34
] 0]( 2}u0/+a+ﬂwjz ( )

and the corresponding perturbed eigenvector is given by
> Aojug, [0 Cluy,

Uy,
iZTie )»()j(}v()j + o)+ a)%(ﬂloj +1) =00

U = Up; —

(35)
where g, is the jth eigenvalue of the proportionally damped system, and w; and u; are the jth
natural frequency and mode shape of the undamped configuration. The parameters o and f are
found using a least squares approach by minimizing Eq. (21).

2.4.2. Transformation approach
For a proportionally damped system, the modal matrix of the undamped system [Ug] can be
used to diagonalize the damping matrix [C,], yielding

[Uo]"[C,][Uo] = diagl2w;] forj=1,...,N. (36)
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For a generally damped system, however, diagonalization is seldom possible. Nevertheless, it is
always possible to express

[Uo]"[CI[Uo] = [D] + [ND], (37

as the sum of a diagonal matrix [D] and a non-diagonal matrix [ND]. Using Eq. (4), one can
manipulate Eq. (37) and find an expression for the damping matrix

[C] = [M][U][DI[Uo]" [M] + [MIIUGJIND][Uo]" [M] = [C4] + [5C]], (38)
where
[Cal = [MIIUGIDNUol' [M] and [6C'T= [MI[Uo][ND][Uo]'[M]. (39)

Here, [C,] is an arbitrary damping matrix that can be diagonalized by the same transformation
that uncouples the undamped system. It does not have to be a linear combination of the mass and
stiffness matrices. Thus in general, [C4]#[C,] and [0C']#[0C].

If the system is nearly proportionally damped, [6C’] will be of first-order relative to [C,], and
the perturbation approach can again be applied to find the approximate eigensolutions of the
system. Thus, the perturbation results obtained in Section 2.4.1 can be easily extended to this case.
Using this particular approach, the unperturbed system is the damped system with [C,], and the
perturbation is simply [0C’].

Because [C,4] can be diagonalized by the same transformation that uncouples the undamped
system, 1.e.,

[Uo]"[CallUo] = [D], (40)

the unperturbed system considered here possesses the same normal modes as the undamped
configuration [16]. Thus, the damped system with [C;] can be easily uncoupled in the normal
coordinates. After some algebraic manipulation, one obtains the following equations of motion in
the normal coordinates:

g + 20wy + wing =0 forj=1,...,N, (41)

where the jth damping factor is related to the jth diagonal element of [D]
D

" 2 42
{ 20;° (42)

and o, denotes the jth undamped natural frequency of the system. Thus, the unperturbed
eigenvalues using this approach are given by

j“Cb:(_Cj/:l:\/gjlz_l)w] fOI‘]:l,,N, (43)

and the unperturbed eigenvectors are u;. Like before, two eigenvalues /1;; and 4, are possible for
a given {; and w;.
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Following the same procedure that was outlined in Section 2.4.1, one obtains the following
approximation for the jth eigenvalue:

T 7
ug [0C Juy, ND;
=g\ 1 ——Z | =dg( 1 ——L—) = Ay 44
J dj( 204+ Djj MJ( 2}~dj+Djj> @ @

because ND;; = 0, implying that the perturbed and unperturbed eigenvalues are exactly the same.
Similarly, the corresponding jth eigenvector is found to be

N "
v (2 Up;» (45)
Y i:%;j Gy + D) + 07

where 4, is given by Eq. (43), and w; and u; are the jth natural frequency and mode shape of the
undamped system. While no term of [ND] appears in the expression for the perturbed eigenvalues,
elements of [ND] do affect the perturbed eigenvectors.

Using this approach, the perturbed and unperturbed eigenvalues are shown to be identical.
They can also be obtained by simply approximating [Uo]'[C][Uo] ~ [D], thus justifying the
common practice of neglecting the off-diagonal terms of [Uy]'[C][Uy] when they are small
compared to the diagonal [13]. While this approximation is well known, to the best knowledge of
this author, it has not previously been validated using this approach. Thus, it may appear that
nothing is gained by introducing the transformation approach. However, the proposed scheme
allows one to find a first-order approximation for the eigenvectors. This, in turn, enables one to
compute [Zpert]T[B][Zpert], whose diagonal elements offer yet another approximation to the exact
eigenvalues. Finally, note that if [C;] = [C,] and [0C'] = [0C], then A4 = Aoj, ND; = QOTI-[5C]EOJ-,
D;i = o+ Bw?, and Eqs. (44) and (45) become Egs. (34) and (35), respectively.

3. Results

Various examples will be considered to validate the effectiveness of the proposed methods. The
system of Fig. 1 will be analyzed, which consists of a discrete system with five dof. When ¢; =
ki = 0, the system possesses proportional damping with o = 0 and f = ¢(/k¢. By simply changing
¢ and kj, the extent of the non-proportionality of the damping matrix can be varied. Multiplying
the damping matrix [C] by a parameter ¢ allows the system damping factors to be modified.

M'\N\/\/
ko Ko ko ko ko
Co LY Co G S
43—
G + C | c
1
S
}

Fig. 1. Discrete model with five degrees of freedom.
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The amount of damping in the system can be arbitrary, but the damping matrix is restricted to
nearly proportional or weakly non-proportional. To determine quantitatively the degree of non-
proportional damping present in the system, a non-proportionality index is introduced, defined as
the quotient of the sum of the absolute value of all the terms in the transformed first-order
damping matrix and the sum of the absolute value of all the terms in the transformed damping
matrix,

N N
> im12=1 VD

N N J
>inl j:1|C;'/|
where the transformed damping matrix is [C'] = [Uo]'[C][Uo], and the transformed first-order
damping matrix corresponds to [ND'] = [Uo]'[6C][Uo] for the least squares method, and to
[ND'] = [ND] for the transformation approach. Using the latter approach, the non-proportion-
ality index of Eq. (46) coincides with the summation based index that Prater and Singh introduced
in Ref. [17] to characterize the extent of non-proportional damping present within a discrete
vibratory system. Using either approach, as long as 0<1, the system is nearly proportional
damped, and for ¢ = 0 the system is exactly proportionally damped.

To demonstrate the effectiveness of the current methods, the perturbed eigensolutions are
compared with the exact results. The error norm of the eigenvalues, defined as

&) = ”(Aexact)i - (Apert)i”
! H (;“exact)i ”

will be used to quantify the accuracy of the perturbed eigenvalues. The exact eigenvalues, Aexact,
are obtained by solving the generalized eigenvalue problem of Eq. (11). The perturbed
eigenvalues, (Zpert);, correspond to either Eq. (34) or Eq. (44), depending on the approach used.
To check for the accuracy of the perturbed eigenvectors, the orthogonality conditions of Eq. (12)
will be utilized. A modal matrix [Z] is constructed, whose ith column is given by

(Apert); U;
(Zpert)i = [ ’ u ]>

o=

(46)

fori=1,...,2N, 47)

(43)
where u; is the ith perturbed eigenvector of the system, and it corresponds to either Eq. (35) or
Eq. (45). If the modal matrix is normalized such that the diagonal elements of

[1'] = [Zper] '[ANZpen] (49)
are identically one, then the average of the magnitudes of the off-diagonal terms, defined as

2 2N(2N Z Z 17}, (50)

ll] 1j#i

can be used as an error parameter to quantify the correctness of the perturbed eigenvectors. The
smaller this error parameter is relative to one, the closer the perturbed modal matrix is to the
exact. Interestingly, numerical experiments show that the triple product [Zpert]T[B][Zpert] (where
[Zpert] 1s properly normalized) returns a matrix whose diagonal elements are consistently closer to
the exact eigenvalues than the perturbed eigenvalues obtained using either Eq. (34) or Eq. (44).
The diagonal elements of [Zpert]T[B][Zpert] will be referred to as the approximate eigenvalues, and
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are denoted by ) to distinguish them from the perturbed eigenvalues. Thus, after the perturbed
modal matrix is obtaln and normalized, [Z pert]T[B][ pert] 18 evaluated and its diagonal elements
can also be used as approximations to the exact eigenvalues.

For definiteness, let my = 2kg, ¢o = I00Ns/m and ko = 5000 N/m. When k; = ¢; =0, the
system is proportionally damped regardless of the parameter ¢ (recall that ¢ is the parameter by
which the damping matrix is multiplied), and as expected, both the least squares approach and the
transformation approach return eigenvalues and eigenvectors that are exact. Consider now a
slightly different system by letting k; = 700 N/m, ¢; = 0 and ¢ = 1. The presence of k| renders the
damping matrix weakly non-proportional. Using the least squares (Is) approach, « = 5.7235 x
107!, p=1.9464 x 1072, and the summation based non-proportionality index of Eq. (46) gives
O = 8.6340 x 1072, For the transformation (tf) method, oy = 4.7289 x 1072, Table 1(a) shows
the exact eigenvalues, the perturbed eigenvalues of Eqs. (34) and (44), and their error norms.

Table 1

(a) The exact and the perturbed eigenvalues (rad/s) for the system of Fig. 1*

i

() exacl):

()“ls)z

(/ltf )i

1

—2.0286e + 00 + 1.4629¢ 4 01i

—2.0285¢ + 00 + 1.4628e + 01i
(4.0711e — 05)

—2.0285¢ + 00 + 1.4623¢ + 01i
(3.8145¢ — 04)

2 —1.8939% + 01 + 3.9197¢ + 01i —1.8939% + 01 + 3.9196¢ + 01i —1.8939% + 01 + 3.9195¢ + 01i
(2.6524e — 05) (4.2326¢ — 05)

3 —3.4152¢ 4 01 + 4.7975¢ + 01i —3.4114e + 01 + 4.7818e + 01i —3.4114e + 01 4+ 4.7817¢ + 01i
(2.7402¢ — 03) (2.7564¢ — 03)

4 —5.3073¢ + 01 + 5.5673¢ + 0li —5.3145¢ + 01 + 5.6396¢ + 0li —5.3145¢ + 01 + 5.5877¢ + Oli
(9.4545¢ — 03) (2.8165¢ — 03)

5 —7.0974¢ 4 01 + 4.5429¢ + 01i —7.0941¢ 4 01 + 4.5621¢ + 01i —7.0941¢ + 01 + 4.5545¢ + 0li

(b) The exact and the approximate eigenvalues for the system parameters of (a)®

(2.3167e — 03)

(1.4387¢ — 03)

i

()vexact)i

(Z1);

(/’L;f )i

1

—2.0286e + 00 + 1.4629¢ + 01i

—2.0286¢ + 00 + 1.4629 + 01i
(7.0131e — 09)

—2.0286¢ + 00 + 1.4629% + 01i
(1.2802¢ — 07)

2 —1.8939% + 01 4 3.9197¢ + 0li —1.8939% + 01 + 3.9197¢ + 01i —1.8939% + 01 +3.9197¢ + 01i
(7.5815¢ — 07) (7.6413¢ — 08)

3 —3.4152¢ + 01 + 4.7975¢ + 01i —3.4143¢ + 01 + 4.7980¢ + 01i —3.4152¢ + 01 4+ 4.7975¢ + 01i
(1.6798¢ — 04) (4.5872¢ — 06)

4 —5.3073¢ + 01 4 5.5673¢ + 0li —5.3034e + 01 + 5.5621e + 01i —5.3073¢ 4 01 + 5.5673¢ + 0li
(8.3975¢ — 04) (4.9420e — 06)

5 —7.0974¢ + 01 + 4.5429¢ + 01i —7.1067¢ + 01 + 4.5491¢ + 01i —7.0975¢ + 01 + 4.5430¢ + 01i

(1.3285¢ — 03)

(1.7092¢ — 05)

*The perturbed eigenvalues of the third and fourth columns, obtained by the least squares and the transformation
approaches, are given by Egs. (34) and (44), respectively. The system parameters are my = 2kg, ko = 5000 N/m,
¢o=100Ns/m, ¢; =0, k; =700N/m and ¢ = 1. The term in the parentheses represents the error norm of the
eigenvalue.

®The approximate eigenvalues correspond to the diagonal elements of [Zpen]T[B][Zpert].



824 P.D. Cha |/ Journal of Sound and Vibration 288 (2005) 813-827

When an eigenvalue is complex, its conjugate is also an eigenvalue. The eigenvectors
corresponding to complex conjugate eigenvalues are also complex conjugates. For the chosen
set of system parameters, all of the eigenvalues are complex. Thus, only 5 eigenvalues are
presented in Table 1(a). Note how well the perturbed eigenvalues track the exact results. Using the
least squares approach, the maximum error norm of the eigenvalues is less than 0.95%, and using
the transformation method, it is less than 0.29%. The accuracy of the perturbed modal matrix is
given by the error parameter ¢, . Using the least squares approach, (e, ) = 3.4691 x 1073,
Using the transformation approach, (e, )y = 1.4192 x 103, Because both error parameters are
small relative to one, they indicate that the perturbed eigenvectors are close to the exact. The
accuracy of the perturbed eigenvectors can also be inferred from the diagonal elements of
[Zper[]T[B][Zpert]. Table 1(b) shows the exact eigenvalues and the approximate eigenvalues
obtained by expanding the triple product [Zpert]T[B][Zpert]. Note that the diagonal elements of
[Zpert] ' [Bl[Zpert] return approximate eigenvalues that are very accurate, as clearly indicated by
their error norms, implying that the perturbed modal matrices are nearly exact. Incidentally, the
error norms are never zero even though some of the exact and approximate eigenvalues appear to
be identical. The eigenvalues are presented with a format of 5 digits plus 2-digit exponent to
make the results more readable. In calculating the error norms, all 16 digits plus 2-digit exponent
are used.

Consider a new system where k| = 0, ¢; = 20 Ns/m and ¢ = 1. Now the non-proportionality is
attributed to ¢;. The parameters my, ¢y and ky remain unchanged. For this set of parameters,
o = 4.3455 x 10° and f = 2.0482 x 10~ for the least squares approach. The non-proportionality
indices for the least squares approach and the transformation method are d; = 1.6837 x 10! and
S = 1.3774 x 107!, respectively. Compared to the system of Table 1(a), note that the degree of
non-proportionality has increased. Table 2(a) depicts the exact eigenvalues and the perturbed
eigenvalues obtained by using the current methods. For the least squares approach, the maximum
error norm of the eigenvalues is less than 3.2%, and for the transformation approach, it is less
than 3.0%. The error parameter ¢, is used to quantify the accuracy of the perturbed modal

“pert

matrix. Using the current methods, (e, ) = 1.5317 x 102 and (Ezpee e = 1.4931 x 1072, both of
which are much less than one. Thus, the perturbed modal matrices obtained by using the least
squares approach and the transformation method agree well with the exact modal matrix. Table
2(b) shows the exact eigenvalues and the approximate eigenvalues corresponding to the diagonal
elements of [Zpen]T[B][Zpem]. Note the improvement in accuracy compared to the perturbed
eigenvalues, as evidenced by the decrease in all of the error norms. The results of Table 2(b) also
reflect the accuracy of the perturbed eigenvectors.

Consider a system with the same m, ¢y and ko, but now with k&1 = 550 N/m, ¢; = 15N s/m and
o = 1.45. The non-proportionality in the system is caused by k| and ¢;, and ¢ affects the damping
factors of the system. This set of parameters yields o = 5.3599 x 10° and f = 2.8911 x 1072 for
the least squares approach. The non-proportionality indices for the damping matrix are J;3 =
1.5320 x 107" and 5y = 1.1866 x 10~!. Table 3(a) shows the exact and the perturbed eigenvalues.
For the chosen set of system parameters, there are 4 real, negative and distinct eigenvalues in
addition to 3 pairs of complex conjugate eigenvalues. Thus, a total of 7 eigenvalues are shown.
Using the least squares approach, the error norms are all less than 6.5% and (e, )i =
2.8450 x 1072, while using the transformation method, the error norms are less than 7.0% and
(Ezper ir = 2.9392 x 1072, Table 3(b) illustrates the exact and approximate eigenvalues. Note again
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(a) The exact and the perturbed eigenvalues (rad/s) for the system of Fig. 1*

1

()~exac1 )i

()“ls)i

(;“tf)i

1

—3.5390e + 00 + 1.3830e + 011

—3.5256e + 00 4 1.3741e 4 01i
(6.3142¢ — 03)

—3.5256e + 00 + 1.3721e + 01i
(7.6839% — 03)

2 —2.5165¢ + 01 4 3.5421e 4 0li —2.5087¢ + 01 + 3.5787¢ + 0li —2.5087¢ + 01 + 3.5557¢ + 01i
(8.6301e — 03) (3.6147¢ — 03)

3 —3.6455¢ + 01 + 4.6273¢ + 01i —3.6534e + 01 + 4.5435¢ + 01i —3.6534¢ + 01 + 4.5431e + 01i
(1.4292¢ — 02) (1.4354¢ — 02)

4 —5.7849% + 01 + 4.4732¢ + 01i —5.7405¢ + 01 + 4.5064¢ + 01i —5.7405¢ + 01 + 4.5051e + 01i
(7.5948¢ — 03) (7.4835¢ — 03)

5 —7.2825¢ + 01 4 3.9185¢ + 01i —7.3282¢ + 01 + 4.1719% + 01i —7.3282¢ + 01 4+ 4.1575¢ + 0li

(b) The exact and the approximate eigenvalues for the system parameters of (a)°

(3.113% — 02)

(2.9429¢ — 02)

i

(Zexact)i

(Z1)i

()i

1

—3.5390e + 00 + 1.3830e 4 01i

—3.5392¢ + 00 + 1.3833¢ + 01i
(1.6840e — 04)

—3.5392¢ + 00 + 1.3831e + 01i
(3.9172¢ — 05)

2 —2.5165¢ + 01 + 3.5421¢ + 0li —2.5158¢ + 01 + 3.5415¢ + 0li —2.5165¢ 4+ 01 + 3.5422¢ + 01i
(2.0334e — 04) (3.7441¢ — 05)

3 —3.6455¢ 4 01 + 4.6273¢ + 01i —3.6439¢ 4 01 + 4.6289%¢ + 01i —3.6455¢ 4 01 + 4.6282¢ + 01i
(3.7814e — 04) (1.5917¢ — 04)

4 —5.7849¢ + 01 + 4.4732¢ + 01i —5.7762¢ + 01 + 4.4688¢ + 01i —5.7848¢ + 01 + 4.4706¢ + 01i
(1.3401e — 03) (3.4702e — 04)

5 —7.2825¢ + 01 + 3.9185¢ + 0li —7.3073¢ 4 01 + 3.9397¢ + 01i —7.2977¢ + 01 + 3.9329¢ + 0li

(3.9421e — 03)

(2.5279 — 03)

4The perturbed eigenvalues of the third and fourth columns are given by Eqs. (34) and (44), respectively. The system
parameters are ny = 2kg, ko = 5000 N/m, ¢) = 100Ns/m, ¢; =20Ns/m, k; =0 and ¢ = 1.
®The approximate eigenvalues correspond to the diagonal elements of [Zpen]T[B][me].

the improvement in accuracy for all of the approximate eigenvalues compared to the perturbed
eigenvalues. The results of Table 3(b) imply that the perturbed modal matrices obtained by using
the current methods track the exact modal matrix fairly accurately.

A least squares approach and a transformation method are developed that can be used to
obtain the eigenvalues and eigenvectors of an arbitrarily damped nearly proportional or weakly
non-proportional system. The proposed schemes require only the eigensolutions of the undamped
configuration, and are computationally efficient because they only involve simple algebraic
operations. Numerical experiments showed that both methods return perturbed eigensolutions
that agree well with the exact even for non-proportionality indices as large as 15%, and that
approximations to the exact eigenvalues can be consistently improved by using the diagonal
elements of [Zper] "[BI[Z pert]-

The proposed approaches can be exploited in other applications. Specifically, the effects of
small changes made to a weakly non-proportionally damped system can be easily analyzed. Using
the methods developed in this paper, one can first determine the approximate eigensolutions for
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(a) The exact and the perturbed eigenvalues (rad/s) for the system of Fig. 1*

1

()~exac1 )i

()“ls)i

(;“tf)i

1

—4.5441e + 00 + 1.4050e + 011

—4.5332e + 00 4 1.3997¢ 4 01i
(3.6372¢ — 03)

—4.5332¢ + 00 + 1.3931e 4 01i
(8.0780e — 03)

2 —4.0170e + 01 —4.2231e+01 —4.2231e + 01
(5.1299¢ — 02) (5.1306¢ — 02)

3 —3.4252¢ 4 01 + 2.6805¢ + 01i —3.4133¢ + 01 + 2.7590¢ + 01i —3.4133¢ + 01 +2.7012¢ + 01i
(1.8263¢ — 02) (5.4785¢ — 03)

4 —4.9372e + 01 —5.1207¢ + 01 —5.2813¢ + 01
(3.7180e — 02) (6.9697¢ — 02)

5 —5.2737¢ + 01 + 2.9870¢ + 0li —5.2594¢ + 01 + 2.5989¢ + 0li —5.2594¢ + 01 + 2.5986¢ + 0li
(6.4082¢ — 02) (6.4126¢ — 02)

6 —1.1286¢ + 02 —1.1164e + 02 —1.1004e + 02
(1.0808¢ — 02) (2.5033¢ — 02)

7 —1.7036¢ + 02 —1.6823¢ + 02 —1.6823¢ + 02

(b) The exact and the approximate eigenvalues for the system parameters of (a)°

(1.2512e — 02)

(1.2514e — 02)

i

(exact)i

(Z1)i

(ag);

1

—4.5441e 4+ 00 + 1.4050e 4 01i

—4.5430¢ + 00 + 1.4055¢ + 01i
(3.4345¢ — 04)

—4.5442¢ + 00 + 1.4051e + 01i
(4.6416e — 05)

2 —4.0170e + 01 —4.1828¢ + 01 —4.0595¢ + 01
(4.1271e — 02) (1.0575¢ — 02)

3 —3.4252¢ 4 01 + 2.6805¢ + 01i —3.4235¢ 4 01 + 2.6787¢ + 01i —3.4251e 4 01 +2.6816¢ + 01i
(5.6199¢ — 04) (2.4876e — 04)

4 —4.9372e + 01 —4.9175¢ + 01 —4.8655¢ + 01
(3.9901e — 03) (1.4522¢ — 02)

5 —5.2737¢ + 01 + 2.9870¢ + 0li —5.2643¢ + 01 + 3.0044¢ + 01i —5.2554¢ + 01 + 3.0057¢ + 0li
(3.2708¢ — 03) (4.3086¢ — 03)

6 —1.1286¢ + 02 —1.1274e + 02 —1.1300e + 02
(1.1061e — 03) (1.2056¢ — 03)

7 —1.7036e + 02 —1.7019€ + 02 —1.7033¢ + 02

(1.0392¢ — 03)

(1.6371e — 04)

4The perturbed eigenvalues of the third and fourth columns are given by Egs. (34) and (44), respectively. The system
parameters are nmy = 2kg, ko = 5000 N/m, ¢p = 100Ns/m, ¢; = I5Ns/m, k; = 550N/m and ¢ = 1.45.
®The approximate eigenvalues correspond to the diagonal elements of [Zpen]T[B][Zpert].

the arbitrarily damped but nearly proportional system. Then applying the classical first-order
eigensolution perturbation techniques, one can find the changes in the eigendata due to small
modifications that are subsequently introduced. The unperturbed system corresponds to the
weakly non-proportionally damped structure, and the perturbation consists of the small changes
that are introduced. In addition, because closed-form expressions for the perturbed eigenvalues
and eigenvectors are derived, the current methods can be applied to study the sensitivities of the
eigensolutions on the various system parameters.
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4. Conclusions

In this paper, two distinct approaches are proposed that can be used to obtain the approximate
eigensolutions for arbitrarily damped nearly proportional systems without resorting to state form. The
approximate eigensolutions are obtained by means of a first-order perturbation analysis, where the
unperturbed system consists of a damped configuration whose damping matrix can be diagonalized by
the same transformation that uncouples the mass and stiffness matrices of the undamped system, and
the perturbation consists of a first-order damping matrix given by the deviation of this diagonalizable
damping matrix from the actual damping matrix. Both schemes require only the eigensolutions of the
undamped system and are easy to implement. Interestingly, if the first-order perturbed modal matrix,
[Zpert], is properly normalized such that the diagonal elements of [Zer] [A][Zper] are identically one,
then the diagonal elements of [me]T[B][me] can also be used to approximate the exact eigenvalues,
and numerical case studies show that the resulting diagonal elements are consistently more accurate than
the first-order perturbed eigenvalues. Various numerical experiments were performed, and excellent
agreement with the exact eigensolutions was demonstrated.
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