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Abstract

A discrete method is developed for analyzing the free vibration problem of orthotropic rectangular plates
with variable thickness. The Green function, which is obtained by transforming the differential equations
into integral equations and using numerical integration, is used to establish the characteristic equation of
the free vibration. The effects of the aspect ratios, boundary conditions, the variation of the thickness on
the frequencies are considered. By comparing the numerical results obtained by the present method with the
those previously published, the efficiency and accuracy of the present method are investigated. The
frequency parameters are obtained for the orthotropic plates with general boundary conditions and
variable thickness in one or two directions. The model shapes are given for some of the square plates with
three kinds of thickness variations.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Structural components, such as plates with variable thickness, are widely used in aeronautical,
mechanical and ocean structures. The variable thickness is used to alter resonant frequency and to
see front matter r 2005 Elsevier Ltd. All rights reserved.
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reduce the size and weight of the structure. Therefore, the vibration analysis of the plates
with variable thickness is an important topic for the researchers. Bhat et al. [1] used four
kinds of methods to obtain natural frequencies of isotropic rectangular plates with
linearly variable thickness in one direction. A comparison of the results of the four
methods was given. Roy and Ganesan [2] investigated the dynamic response of an
isotropic square plate with linear or parabolic thickness variation in one direction. The effects
of thickness variation on natural frequencies, dynamic displacements and stresses were
considered. The Rayleigh–Ritz method was used to study the free vibration of isotropic
rectangular plates with variable thickness in two directions by Singh and Saxena [3]. Liew
and Lim [4] analyzed the free vibration of isotropic trapezoidal plates with variable thickness.
They also analyzed the free vibration of isotropic doubly-tapered rectangular plates [5].
The Rayleigh–Ritz method was employed. The first eight frequencies were presented
for plates with six kinds of boundary conditions and various aspect ratios. Liew et al. [6]
presented a semi-analytical method to analyze the free vibration of isotropic rectangular
plates with abrupt thickness variation in the central part. The frequency parameters and
mode shapes were given for three boundary conditions. A lots of papers have been republished
on the subject of the free vibration of isotropic plates with variable thickness and some
of them were well compiled in Ref. [7]. The situation pertaining to orthotropic plates with
variable thickness is quite different. Although orthotropic plates have received more and
more attention due to their unique advantages such as high strength-to-weigh ratio, high stiffness-
to-weigh ratio and low density, only a few papers have been reported about the free vibration of
those plates. Sakata [8] utilized the double trigonometric series to obtain the characteristic
equation of a clamped orthotropic rectangular plate with linearly varying thickness in one
direction. The effects of aspect ratios and flexural rigidity on fundamental frequency were
evaluated. Malhotra et al. [9] investigated the vibrations of orthotropic square plates with
parabolic thickness variation in one direction. Rayleigh–Ritz method was used to obtain
fundamental frequencies for four boundary conditions. Bambill et al. [10] used the Rayleigh–Ritz
method and the finite element method to analyze the transverse vibration of an orthotropic
rectangular plate with linearly varying thickness in one direction. Fundamental frequencies were
presented for plates with a free edge.Bert and Malik [11] adopted a semi-analytical approach in
the differential quadrature method to investigate free vibration of isotropic and orthotropic
rectangular plates with linearly varying thickness in one direction. They realized the information
published on tapered orthotropic plates was very scant and they presented a number of numerical
results for plates with two opposite edges simply supported. Ashour [12] studied the flexural
vibration of orthotropic plates with variable thickness in one direction by employing the finite
strip transition matrix technique. The frequencies were obtained for plates with two opposite
edges having the same boundary conditions and the same thickness. But the boundary conditions
of the two opposite edges were no longer restricted to simply supported conditions. Although the
results obtained by Ashour were accurate enough for some boundary conditions, for the other
boundary conditions, some of the frequency parameters, even the fundamental frequency
parameter, seemed to be lost. The scantiness of the information about the free vibration problem
of the orthotropic plates with variable thickness, especially for the orthotropic plates with general
boundary conditions and variable thickness in two directions, motivates the authors to do the
present work.
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In this paper, a discrete method is used to analyze the free vibration of orthotropic rectangular
plates with variable thickness. The method was proposed by some of the authors. It has been used
to solve the free vibration problems of tapered isotropic plates with three kinds of
boundary conditions [13] and simply supported orthotropic square plate with a hole [14].
No prior assumption of shape of deflection, such as shape function used in Rayleigh–Ritz
method, is needed in the proposed method. The fundamental differential equations involving
Dirac’s delta functions are established and satisfied exactly throughout the whole plate.
By transforming these equations into integral equations and using numerical integration,
the solutions are obtained at the discrete points. The Green function, which is the solution
for deflection, is used to obtain the characteristic equation of the free vibration. The
convergent results are obtained by using Richardson’s extrapolation formula for two cases of
suitably smaller divisional numbers. The purpose of the paper is to (1) investigate the efficiency
and accuracy of the present method for the free vibration problem of tapered orthotropic
rectangular plates with general boundary conditions, (2) discuss the effects of the boundary
conditions, the aspect ratio and variable thickness on the frequency parameter, and (3) give some
new data and mode shapes for the plates with general boundary condition and variable thickness
in one or two directions.
2. Fundamental differential equations

An xyz coordinate system is used in the present study with its x–y plane contained in middle
plane of an orthotropic rectangular plate and the z-axis perpendicular to the middle plane of the
plate. The thickness, the length and the width of the orthotropic rectangular plate are h, a and b,
respectively. The principle material axes of the plate in the longitudinal, transverse and normal
directions are designated as 1, 2 and 3.

The displacements u, v and w in the x, y and z directions are assumed to be

u ¼ zyxðx; yÞ; v ¼ zyyðx; yÞ; w ¼ wðx; yÞ, (1)

where yxðx; yÞ and yyðx; yÞ are the rotations in the x–z and y–z planes.
For small displacements, the strain–displacement relations of elasticity yield
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For orthotropic plates, the stress–strain relations can be expressed as

sx

sy

txy

tyz

txz

2
6666664

3
7777775
¼

Q̄11 Q̄12 0 0 0

Q̄12 Q̄22 0 0 0

0 0 Q̄66 0 0

0 0 0 Q̄44 0

0 0 0 0 Q̄55

2
6666664

3
7777775

�x

�y

gxy

gyz

gxz

2
6666664

3
7777775
, (3)

where Q̄11 ¼ E1=ð1� n12n21Þ; Q̄12 ¼ n12E2=ð1� n12n21Þ; Q̄22 ¼ E2=ð1� n12n21Þ; Q̄66 ¼ G12; Q̄44 ¼

G23; Q̄55 ¼ G13: E1 is the axial modulus in the 1-direction, E2 is the axial modulus in the
2-direction, n12 is the Poisson’s ratio associated with loading in the 1-direction and strain in
the 2-direction, n21 is the Poisson’s ratio associated with loading in the 2-direction and strain
in the 1-direction, G23;G13 and G12 are the shear moduli in 2–3, 1–3 and 1–2 planes.

The moments and the shear forces can be given by

Mx ¼

Z h=2

�h=2
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Z h=2

�h=2
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Z h=2

�h=2
sxyzdz,
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Z h=2

�h=2
txz dz. ð4Þ

By using Eqs. (2)–(4), the relations of the moment–displacement and the shear force–displace-
ment can be obtained as
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, (5)

where the extensional stiffness Aij ¼ Q̄ijh ði; j ¼ 4; 5Þ and the bending stiffness Dij ¼ Q̄ijh
3=12

ði; j ¼ 1; 2; 6Þ.
By using the non-dimensional expressions,
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the differential equations of the plate with a concentrated load P̄ at point ðxq; yrÞ are established as
follows:

m
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where P ¼ P̄a=ðD0ð1� n12n21ÞÞ, D̄ij ¼ Q̄ij=E2, D̄ ¼ ðh0=hÞ3, Āij ¼ 12ða=h0Þ
2
ðQ̄ij=E2Þ, DT ¼ h0=h,

D0 ¼ E2h3
0=ð12ð1� n12n21ÞÞ is the standard bending rigidity, h0 is the standard thickness of the

plate, k ¼ 5
6
is the shear correction factor, dðZ� ZqÞ and dðz� zrÞ are Dirac’s delta functions.

In the above equation, the variable quantity h0=h has been separated and expressed only in the
quantities D̄ and DT so that the equation can be used for the orthotropic plate with variable
thickness. Eq. (6) can also be expressed as the following simple form.

X8

s¼1

F1ts

qX s

qz
þ F2ts

qX s

qZ
þ F3tsX s


 �
þ PdðZ� ZqÞdðz� zrÞd1t ¼ 0 ðt ¼ 128Þ, (7)

where d1t is Kronecker’s delta, F111 ¼ F123 ¼ F134 ¼ 1, F146 ¼ D̄12, F156 ¼ D̄22, F167 ¼ D̄66,
F178 ¼ kĀ44, F212 ¼ F223 ¼ F235 ¼ m, F247 ¼ mD̄11, F257 ¼ mD̄12, F266 ¼ mD̄66, F288 ¼ mkĀ55,
F321¼F332¼�m, F345¼F354¼F363 ¼ �mD̄, F371 ¼ F382 ¼ �mDT , F376 ¼ mkĀ44, F387 ¼ mkĀ55;
other Fkts ¼ 0.
3. Discrete Green function

By dividing a rectangular plate vertically into m equal-length parts and horizontally into n
equal-length parts as shown in Fig. 1, the plate can be considered as a group of discrete points
which are the intersections of the (m+1)-vertical and (n+1)-horizontal dividing lines. To describe
the present method conveniently, the rectangular area, 0pZpZi, 0pzpzj, corresponding to the
arbitrary intersection ði; jÞ as shown in Fig. 1 is denoted as the area ½i; j�, the intersection ði; jÞ
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Fig. 1. Discrete points on a rectangular plate.
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denoted by � is called the main point of the area ½i; j�, the intersections denoted by 	 are called the
inner-dependent points of the area, and the intersections denoted by 
 are called the boundary-
dependent points of the area.

By integrating Eq. (7) over the area ½i; j�, the following integral equation is obtained:
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�
þ PuðZ� ZqÞuðz� zrÞd1t ¼ 0, ð8Þ

where uðZ� ZqÞ and uðz� zrÞ are the unit step functions.
Next, by applying the numerical integration method, the simultaneous equation for the

unknown quantities X sij ¼ X sðZi; zjÞ at the main point ði; jÞ of the area ½i; j� is obtained as
follows:
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þ Puiqujrd1t ¼ 0, ð9Þ

where bik ¼ aik=m; bjl ¼ ajl=n, aik ¼ 1� ðd0k þ dikÞ=2, ajl ¼ 1� ðd0l þ djlÞ=2, t ¼ 1–8, i ¼ 1–m,
j ¼ 1–n, uiq ¼ uðZi � ZqÞ, ujr ¼ uðzj � zrÞ.

By retaining the quantities at main point ði; jÞ on the left-hand side of the equation and putting
other quantities on the right-hand side, and using the matrix transition, the solution X pij of the
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above Eq. (9) is obtained as follows:

X pij ¼
X8

t¼1

Xi

k¼0

bikApt½X tk0 � X tkjð1� dikÞ� þ
Xj

l¼0

bjlBpt½X t0l � X tilð1� djlÞ�

(

þ
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k¼0
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)
� Ap1Puiqujr, ð10Þ

where p ¼ 1–8, Apt, Bpt and Cptkl are given in Appendix A.
In Eq. (10), the quantity X pij is not only related to the quantities X tk0 and X t0l at the boundary-

dependent points but also the quantities X tkj, X til and X tkl at the inner-dependent points. The
maximal number of the unknown quantities is 6ðm � 1Þðn � 1Þ þ 3ðm þ n þ 1Þ. In order to reduce
the unknown quantities, the area ½i; j� is spread according to the regular order as ½1; 1�, ½1; 2�, . . .,
½1; n�, ½2; 1�, ½2; 2�, . . ., ½2; n�, . . ., ½m; 1�, ½m; 2�, . . ., ½m; n�. With the spread of the area according to
the above-mentioned order, the quantities X tkj, X til and X tkl at the inner-dependent points can be
eliminated by substituting the obtained results into the corresponding terms of the right-hand side
of Eq. (10). By repeating this process, the quantity X pij at the main point is only related to the
quantities X rk0 (r ¼ 1,3,4,6,7,8) and X s0l (s ¼ 2,3,5,6,7,8) at the boundary-dependent points. The
maximal number of the unknown quantities is reduced to 3ðm þ n þ 1Þ. It can be noted
the number of the unknown quantities of the present method are fewer than that of the finite
element method for the same divisional number mðX3Þ and nðX3Þ. Based on the above
consideration, Eq. (10) is rewritten as follows:

X pij ¼
X6

d¼1

Xi

f¼0

apijfdX rf 0 þ
Xj

g¼0

bpijgdX s0g

( )
þ q̄pijP, (11)

where apijfd , bpijgd and q̄pij are given in Appendix B.
Eq. (11) gives the discrete solution of the fundamental differential equation (7) of the bending

problem of a plate under a concentrated load, and the discrete Green function is chosen as
X 8ij=½P̄a=D0ð1� n12n21Þ�.
4. Boundary conditions of a rectangular plate

The integral constants X rf 0 and X s0g involved in the discrete solution (11) are all quantities at
the discrete points along the edges z ¼ 0 (y ¼ 0) and Z ¼ 0 (x ¼ 0) of the rectangular plate. There
are six integral constants at each discrete point. Half of them are self-evident according to the
boundary conditions along the edges z ¼ 0 and Z ¼ 0 and half of them are needed to determine by
the boundary conditions along the edges z ¼ 1 and Z ¼ 1.

The boundary conditions along the edges z ¼ 0 and 1 are as follows:

yy ¼ yx ¼ w ¼ 0 for a clamped edge;

My ¼ yx ¼ w ¼ 0 for a simply supported edge;

Qy ¼ Mxy ¼ My for a free edge:
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The boundary conditions along the edges Z ¼ 0 and 1 are as follows:

yy ¼ yx ¼ w ¼ 0 for a clamped edge;

Mx ¼ yy ¼ w ¼ 0 for a simply supported edge;

Qx ¼ Mxy ¼ Mx for a free edge:

5. Characteristic equation

By applying the Green function wðx0; y0;x; yÞ=P̄ which is the displacement at a point
ðx0; y0Þ of a plate with a concentrated load P̄ at a point ðx; yÞ, the displacement amplitude
ŵðx0; y0Þ at a point ðx0; y0Þ of the rectangular plate during the free vibration is given as
follows:

ŵðx0; y0Þ ¼

Z a

0

Z a

0

rho2ŵðx; yÞ½wðx0; y0; x; yÞ=P̄�dxdy, (12)

where r is the mass density of the plate material.
By using the numerical integration method and the following non-dimensional expressions:
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r0h0o2a4
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; k ¼ 1=ðml4Þ; HðZ; zÞ ¼

rðx; yÞ
r0

hðx; yÞ
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,

W ðZ; zÞ ¼
ŵðx; yÞ

a
; GðZ0; z0; Z; zÞ ¼

wðx0; y0;x; yÞ

a

D0ð1� n12n21Þ
P̄a

,

where r0 is the standard mass density, the characteristic equation is obtained from Eq. (12) as
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6. Numerical results

The described method is used to obtain the frequency parameters and mode shapes for
orthotropic plate with variable thickness and various boundary conditions. E-glass/epoxy
material (E1 ¼ 60:7GPa, E2 ¼ 24:8GPa, G12 ¼ 12:0GPa; n12 ¼ 0:23) is used when no properties
of material are appointed specially. The thickness functions are chosen as h ¼ h0ð1þ ax=aÞ and
h ¼ h0ð1þ ax=aÞð1þ by=bÞ for variable thickness in one and two directions, respectively. The
ratio of the length and thickness a=h0 ¼ 100 is adopted. In all tables and figures, the symbols F, S,
and C denote free, simply supported and clamped edges. Four symbols such as SCFC delegate the
boundary conditions of the plate, the first indicating the conditions at x ¼ 0, the second at y ¼ 0,
the third at x ¼ a and the fourth at y ¼ b.
6.1. Variable thickness in one direction

In order to examine the convergency, numerical calculation is carried out by varying the
number of divisions m and n. The lowest six natural frequency parameters of a CSCS orthotropic
square plate with variable thickness in one direction (a ¼ 0:4) are shown in Fig. 2. It shows a good
convergency of the numerical results by the present method. It can be also noticed that convergent
results of frequency parameter can be obtained by using Richardson’s extrapolation formula for
two cases of divisional numbers mð¼ nÞ of 12 and 16. By the same method, the suitable number of
divisions mð¼ nÞ can be determined for the other plates. In this paper, all the convergent values
of frequency parameter are obtained by using Richardson’s extrapolation formula for two cases
of divisional numbers 12 and 16.

To show the accuracy of the present method and to investigate the effects of the boundary
conditions, aspect ratios and variable thickness on the frequency parameters, the lowest six
4
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20
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m

Fig. 2. The natural frequency parameter l versus the divisional number mð¼ nÞ for the CSCS orthotropic square plate

with variable thickness in one direction (a ¼ 0:4).
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Table 1

Natural frequency parameter l for CSCS and CSSS orthotropic plates with variable thickness in one direction

Mode sequence number

B.C. b=a a References 1st 2nd 3rd 4th 5th 6th

CSCS 0.5 0.0 Ex.� 7.943 11.124 13.268 14.797 14.956 17.666

Ref. [11] 7.948 11.149 13.287 14.766 15.107 17.754

0.4 Ex. 8.672 12.141 14.437 16.011 16.472 19.282

Ref. [11] 8.680 12.172 14.464 16.122 16.519 19.400

0.8 Ex. 9.307 13.026 15.397 17.346 17.527 20.700

1.0 0.0 Ex. 6.361 7.941 10.149 10.408 11.125 12.814

Ref. [11] 6.366 7.948 10.172 10.433 11.149 12.852

0.4 Ex. 6.945 8.670 11.074 11.350 12.141 13.993

Ref. [11] 6.952 8.680 11.106 11.382 12.176 14.042

0.8 Ex. 7.454 9.305 11.874 12.155 13.026 15.026

2.0 0.0 Ex. 6.036 6.361 6.992 7.905 8.972 9.925

Ref. [11] 6.041 6.366 7.003 7.948 9.119 9.948

0.4 Ex. 6.589 6.945 7.635 8.631 9.793 10.830

Ref. [11] 6.596 6.952 7.649 8.680 9.955 10.861

0.8 Ex. 7.070 7.454 8.196 9.263 10.504 11.611

CSSS 0.5 0.0 Ex. 7.550 10.429 13.167 13.875 14.762 17.170

Ref. [11] 7.553 10.444 13.183 13.935 14.788 17.236

0.4 Ex. 8.276 11.378 14.387 15.127 16.193 18.773

Ref. [11] 8.281 11.400 14.413 15.199 16.230 18.866

0.8 Ex. 8.912 12.214 15.370 16.212 17.466 20.198

1.0 0.0 Ex. 5.572 7.548 9.249 10.221 10.430 12.337

Ref. [11] 5.574 7.553 9.263 10.246 10.444 12.369

0.4 Ex. 6.030 8.273 10.050 11.206 11.377 13.507

Ref. [11] 6.034 8.281 10.068 11.236 11.400 13.548

0.8 Ex. 6.439 8.905 10.745 12.043 12.223 14.530

2.0 0.0 Ex. 5.084 5.572 6.415 7.510 8.704 8.968

Ref. [11] 5.086 5.574 6.425 7.553 8.851 8.981

0.4 Ex. 5.445 6.030 7.003 8.232 9.634 9.730

Ref. [11] 5.448 6.034 7.015 8.281 9.713 9.747

0.8 Ex. 5.761 6.436 7.524 8.865 10.393 10.426

Ex.�: The values obtained by using Richardson’s extrapolation formula.

M. Huang et al. / Journal of Sound and Vibration 288 (2005) 931–955940
frequency parameters are calculated for 14 kinds of boundary conditions with taper ratios a ¼

0:0; 0:4; 0:8 and aspect ratios b=a ¼ 0:5; 1:0; 2:0.
Numerical values for the lowest six natural frequency parameter l of CSCS, CSSS, SSSS, SSFS,

SCSC and SSCS plates are given in Tables 1–3. It can be seen that the frequency parameters
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Table 2

Natural frequency parameter l for SSSS and SSFS orthotropic plates with variable thickness in one direction

Mode sequence number

B.C. b=a a References 1st 2nd 3rd 4th 5th 6th

SSSS 0.5 0.0 Ex. 7.255 9.796 13.087 13.096 14.491 16.716

Ref. [11] 7.257 9.805 13.103 13.135 14.515 16.764

0.4 Ex. 7.927 10.709 14.206 14.297 15.860 18.272

Ref. [11] 7.932 10.719 14.229 14.350 15.896 18.334

0.8 Ex. 8.524 11.516 15.088 15.351 17.096 19.653

1.0 0.0 Ex. 4.902 7.253 8.374 9.795 10.079 11.924

Ref. [11] 4.902 7.256 8.382 9.805 10.103 11.951

0.4 Ex. 5.360 7.928 9.150 10.703 10.982 13.043

Ref. [11] 5.362 7.932 9.159 10.719 11.010 13.076

0.8 Ex. 5.770 8.525 9.831 11.510 11.740 14.048

2.0 0.0 Ex. 4.190 4.901 5.966 7.214 8.014 8.374

Ref. [11] 4.191 4.902 5.975 7.257 8.021 8.650

0.4 Ex. 4.575 5.360 6.526 7.884 8.754 9.148

Ref. [11] 4.575 5.362 6.637 7.932 8.763 9.159

0.8 Ex. 4.909 5.771 7.029 8.478 9.402 9.829

SSFS 0.5 0.0 Ex. 6.515 8.126 10.853 12.719 13.608 14.148

Ref. [11] 6.520 8.133 10.877 12.734 13.628 14.211

0.4 Ex. 7.292 8.959 11.853 14.137 15.033 15.459

Ref. [11] 7.316 8.935 11.905 14.147 15.096 15.527

0.8 Ex. 7.935 9.753 12.714 15.086 16.433 16.611

1.0 0.0 Ex. 3.533 5.945 6.509 8.129 9.410 9.571

Ref. [11] 3.528 5.956 6.520 8.133 9.428 9.610

0.4 Ex. 3.916 6.485 7.310 8.917 10.243 10.712

Ref. [11] 3.921 6.492 7.316 8.935 10.207 10.761

0.8 Ex. 4.280 6.967 7.994 9.647 10.982 11.590

2.0 0.0 Ex. 2.126 3.523 4.994 5.219 5.952 6.474

Ref. [11] 2.125 3.528 5.002 5.222 5.956 6.520

0.4 Ex. 2.323 3.918 5.620 5.587 6.482 7.267

Ref. [11] 2.325 3.921 5.600 5.625 6.492 7.316

0.8 Ex. 2.519 4.281 5.982 6.120 6.965 7.950
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increase with increase of the taper ratio a for the plate with specific boundary condition and aspect
ratio b=a, and decrease with the increase of aspect ratio b=a for the plate with the same boundary
condition and taper ratio a. The effect of boundary condition on the frequency parameters can be
observed by comparing the corresponding results presented in Tables 1 and 2. In these two tables,
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Table 3

Natural frequency parameter l for SCSC and SSCS orthotropic plates with variable thickness in one direction

Mode sequence number

B.C. b=a a References 1st 2nd 3rd 4th 5th 6th

SCSC 0.5 0.0 Ex. 9.885 11.351 13.933 16.025 16.942 17.104

Ref. [11] 9.897 11.368 13.978 16.077 16.999 17.250

0.4 Ex. 10.761 12.423 15.220 17.281 18.570 18.666

Ref. [11] 10.808 12.416 15.262 17.553 18.563 18.814

0.8 Ex. 11.489 13.397 16.357 18.196 20.004 20.028

1.0 0.0 Ex. 5.682 8.487 8.617 10.471 11.454 12.238

Ref. [11] 5.684 8.500 8.625 10.486 11.506 12.276

0.4 Ex. 6.214 9.262 9.415 11.447 12.451 13.360

Ref. [11] 6.208 9.281 9.407 11.459 12.562 13.337

0.8 Ex. 6.692 9.931 10.119 12.324 13.259 14.339

2.0 0.0 Ex. 4.312 5.239 6.458 7.892 8.043 8.466

Ref. [11] 4.312 5.243 6.479 7.858 8.052 8.487

0.4 Ex. 4.709 5.731 7.062 8.505 8.785 9.253

Ref. [11] 4.704 5.729 7.076 8.580 8.696 9.297

0.8 Ex. 5.057 6.172 7.601 9.133 9.436 9.945

SSCS 0.5 0.0 Ex. 7.550 10.429 13.167 13.875 14.761 17.171

Ref. [11] 7.553 10.444 13.183 13.935 14.788 17.236

0.4 Ex. 8.221 11.401 14.238 15.160 16.097 18.728

Ref. [11] 8.226 11.424 14.261 15.238 16.135 18.817

0.8 Ex. 8.813 12.255 15.103 16.276 17.290 20.105

1.0 0.0 Ex. 5.572 7.548 9.249 10.221 10.428 12.339

Ref. [11] 5.574 7.553 9.263 10.246 10.444 12.369

0.4 Ex. 6.147 8.219 10.146 11.082 11.401 13.460

Ref. [11] 6.151 8.226 10.166 11.111 11.424 13.500

0.8 Ex. 6.653 8.811 10.927 11.816 12.254 14.455

2.0 0.0 Ex. 5.084 5.572 6.415 7.510 8.704 8.968

Ref. [11] 5.086 5.574 6.425 7.553 8.851 8.981

0.4 Ex. 5.656 6.147 7.021 8.178 9.558 9.849

Ref. [11] 5.659 6.151 7.033 8.266 9.614 9.869

0.8 Ex. 6.152 6.653 7.557 8.768 10.436 10.616
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the highest frequency parameters can be obtained for CSCS plates, then successively for CSSS,
SSSS and SSFS. It shows that with decrease of boundary constraints, which results in decrease of
stiffness, frequency parameters decrease significantly. From Tables 1 and 3, it can be found that
even for the plates with the same aspect ratio, taper ratio and the same boundary condition, which
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are two opposite edges clamped and two opposite edges simply supported, the results of CSCS
and SCSC orthotropic plates are quite different. For CSCS plate, the longitudinal direction of the
orthotropic material is coincident with the simply supported edges, but for SCSC plate, it is
coincident with the clamped edges. It shows that the direction of principle material axes also
influences the frequency parameters greatly. For the square plates with specific taper ratio, the
fundamental frequency of CSCS plate is higher than that of SCSC plate. By comparing the results
1st 2nd 3rd 4th 5th 6th
α=0.0

1st 2nd 3rd 4th 5th 6th

α=0.4

1st 2nd 3rd 4th 5th 6th

α=0.8

Fig. 3. Nodal patterns for CSCS orthotropic square plates with variable thickness in one direction.

1st 2nd 3rd 4th 5th 6th
α=0.0

1st 2nd 3rd 4th 5th 6th
α=0.4

1st 2nd 3rd 4th 5th 6th
α=0.8

Fig. 4. Nodal patterns for CSSS orthotropic square plates with variable thickness in one direction.
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1st 2nd 3rd 4th 5th 6th

α=0.0

1st 2nd 3rd 4th 5th 6th

α=0.4

1st 2nd 3rd 4th 5th 6th

α=0.8

Fig. 5. Nodal patterns for SSSS orthotropic square plates with variable thickness in one direction.

1st 2nd 3rd 4th 5th 6th
α=0.0

1st 2nd 3rd 4th 5th 6th
α=0.4

1st 2nd 3rd 4th 5th 6th
α=0.8

Fig. 6. Nodal patterns for SSFS orthotropic square plates with variable thickness in one direction.

M. Huang et al. / Journal of Sound and Vibration 288 (2005) 931–955944
shown in Tables 1 and 3, it can be also noticed that the frequency parameters of CSSS and SSCS
plate are the same for the case of uniform thickness (a ¼ 0:0), but different for the cases of
variable thickness a ¼ 0:4; 0:8. The fundamental frequencies of SSCS plates with a ¼ 0:4; 0:8 are
higher than those of CSSS plates for b=a ¼ 1; 2, but lower for b=a ¼ 0:5. The results obtained by
Bert and Malik [11] are also shown in the above tables. It can be seen that the numerical results of
the present method have satisfactory accuracy. The results presented in Tables 1–3 are limited to
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1st 2nd 3rd 4th 5th 6th
α=0.0

1st 2nd 3rd 4th 5th 6th

α=0.4

1st 2nd 3rd 4th 5th 6th

α=0.8

Fig. 7. Nodal patterns for SCSC orthotropic square plates with variable thickness in one direction.

1st 2nd 3rd 4th 5th 6th
α=0.0

1st 2nd 3rd 4th 5th 6th
α=0.4

1st 2nd 3rd 4th 5th 6th
α=0.8

Fig. 8. Nodal patterns for SSCS orthotropic square plates with variable thickness in one direction.
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plates with two opposite edges having the same thickness and simply supported boundary
conditions.

The nodal patterns of the lowest six modes of the above plates with b=a ¼ 1 are shown in
Figs. 3–8. With change of the boundary conditions, the orders of some mode shapes change.
From Figs. 4 and 8, it is noticed that the vertical nodal lines tend to be close to simply supported
edges. In Fig. 6, the vertical nodal lines are close to the free edges. These show the vertical nodal
lines have the trend to be close to the edge with less boundary constraint. The trend can be found
in the third, fifth and sixth modes in Figs. 4 and 8, and in the second, fourth and fifth modes in
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Table 4

Natural frequency parameter l for CCCC and CCSC orthotropic plates with variable thickness in one direction

Mode sequence number

B.C. b=a a References 1st 2nd 3rd 4th 5th 6th

CCCC 0.5 0.0 Ex. 10.194 12.289 15.301 16.131 17.329 18.632

Ref. [12] 10.206 12.318 15.393 16.182 17.391 —

0.4 Ex. 11.113 13.422 16.695 17.476 18.954 20.316

Ref. [12] 11.132 13.463 16.813 17.546 19.044 —

0.8 Ex. 11.894 14.419 17.908 18.511 20.397 21.800

1.0 0.0 Ex. 6.780 8.953 10.293 11.615 11.686 13.636

Ref. [12] 6.785 8.967 10.317 11.643 11.741 —

0.4 Ex. 7.402 9.770 11.232 12.679 12.730 14.896

Ref. [12] 7.410 9.787 11.265 12.719 12.794 —

0.8 Ex. 7.945 10.475 12.046 13.610 13.602 16.008

2.0 0.0 Ex. 6.080 6.532 7.320 8.347 9.698 9.941

Ref. [12] 6.085 6.538 7.342 8.428 9.698 —

0.4 Ex. 6.638 7.132 7.993 9.112 10.564 10.847

Ref. [12] 6.644 7.140 8.018 9.202 10.659 —

0.8 Ex. 7.122 7.654 8.579 9.776 11.630 11.283

CCSC 0.5 0.0 Ex. 10.013 11.783 14.597 16.074 17.121 17.878

Ref. [12] 11.805 14.662 16.124 17.179 18.067 —

Ref. [15] 10.035 11.830 14.710 — — —

0.4 Ex. 10.982 12.896 15.928 17.465 18.809 19.474

Ref. [12] 12.928 16.012 17.535 18.876 19.718 —

0.8 Ex. 11.796 13.892 17.096 18.509 20.305 20.872

1.0 0.0 Ex. 6.156 8.683 9.435 11.007 11.555 13.135

Ref. [12] 6.159 8.695 9.450 11.028 11.608 —

0.4 Ex. 6.707 9.528 10.260 12.027 12.650 14.298

Ref. [12] 6.711 9.544 10.280 12.055 12.713 —

0.8 Ex. 7.196 10.256 10.982 12.929 13.552 15.307

2.0 0.0 Ex. 5.156 5.816 6.826 8.018 8.988 9.330

Ref. [12] 5.158 5.821 6.849 8.099 9.003 —

0.4 Ex. 5.533 6.316 7.468 8.796 9.753 10.141

Ref. [12] 5.536 6.321 7.493 8.886 9.773 —

0.8 Ex. 5.863 6.759 8.035 9.474 10.419 10.849
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Fig. 6. From Figs. 3–8, it can be noted that with increase of taper ratio, the vertical nodal lines
move to the thinner part of the plates. Obvious change can be seen in the third, fifth and sixth
modes in Fig. 3, and corresponding modes in other figures.
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Table 5

Natural frequency parameter l for SCFC and FCCC orthotropic plates with variable thickness in one direction

Mode sequence number

B.C. b=a a References 1st 2nd 3rd 4th 5th 6th

SCFC 0.5 0.0 Ex. 9.577 10.335 12.144 14.872 15.790 16.344

Ref. [12] 9.580 10.332 12.149 14.925 16.399 —

0.4 Ex. 10.679 11.472 13.320 16.257 17.275 18.246

Ref. [12] 10.698 11.474 13.336 16.324 17.343 —

0.8 Ex. 11.466 12.584 14.386 17.465 18.196 19.902

1.0 0.0 Ex. 4.901 6.486 8.030 9.183 9.615 11.287

Ref. [12] 4.897 6.483 8.009 9.124 9.617 —

0.4 Ex. 5.529 7.128 8.976 9.999 10.470 12.480

Ref. [12] 5.526 7.101 8.999 10.064 10.484 —

0.8 Ex. 6.065 7.676 9.772 10.971 11.225 13.498

2.0 0.0 Ex. 2.648 4.171 5.302 5.695 6.180 7.315

Ref. [12] 2.635 4.172 5.298 5.706 7.252 —

0.4 Ex. 2.959 4.678 5.720 6.398 6.747 8.031

Ref. [12] 2.949 4.686 5.715 6.420 8.036 —

0.8 Ex. 3.249 5.137 6.098 7.096 7.180 8.683

FCCC 0.5 0.0 Ex. 9.601 10.557 12.642 15.635 15.730 16.449

Ref. [12] 15.632 17.828 22.150 25.098 28.759 —

0.4 Ex. 10.025 11.454 13.788 16.395 16.986 17.840

Ref. [12] 16.429 17.088 22.831 24.829 28.933 —

0.8 Ex. 10.379 12.264 14.815 16.824 18.243 18.978

1.0 0.0 Ex. 5.017 7.082 8.050 9.443 10.444 11.118

Ref. [12] 7.068 9.436 10.457 12.186 14.293 —

0.4 Ex. 5.330 7.793 8.458 10.263 11.477 11.622

Ref. [12] 7.782 10.258 11.495 13.124 14.861 —

0.8 Ex. 5.636 8.434 8.820 11.002 12.203 12.209

2.0 0.0 Ex. 3.058 4.354 5.792 6.154 6.844 7.371

Ref. [12] 3.042 4.341 5.796 6.154 7.308 —

0.4 Ex. 3.434 4.687 6.143 6.887 7.553 7.635

Ref. [12] 3.414 4.663 6.140 6.887 7.538 —

0.8 Ex. 3.800 5.012 6.479 7.532 8.185 8.002
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Tables 4 and 5 present the numerical results for the lowest six natural frequency parameter l
of the CCCC, CCSC, SCFC and FCCC plates with taper ratios a ¼ 0:0; 0:4; 0:8 and aspect
ratios b=a ¼ 0:5; 1:0; 2:0. The results obtained by the present method are compared with those of
Ashour [12]. It can be noticed that the present results agree well with Ashour’s results for CCCC
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Table 6

Natural frequency parameter l for CCCS, SSSC, SSCC and FFCF orthotropic plates with variable thickness in one

direction

Mode sequence number

B.C. b=a a 1st 2nd 3rd 4th 5th 6th

CCCS 0.5 0.0 8.958 11.616 14.681 14.943 16.153 18.428

0.4 9.776 12.681 15.944 16.302 17.660 20.120

0.8 10.482 13.612 16.950 17.478 19.000 21.613

1.0 0.0 6.533 8.417 10.211 11.035 11.349 13.207

0.4 7.133 9.189 11.143 12.029 12.387 14.425

0.8 7.656 9.857 11.949 12.869 13.293 15.495

2.0 0.0 6.055 6.438 7.147 8.121 9.803 9.616

0.4 6.610 7.030 7.804 8.865 10.692 10.491

0.8 7.092 7.545 8.377 9.513 11.448 11.246

SSSC 0.5 0.0 8.493 10.475 13.454 14.547 15.679 17.019

0.4 9.269 11.454 14.693 15.742 17.175 18.514

0.8 9.938 12.330 15.780 16.645 18.514 19.757

1.0 0.0 5.238 7.855 8.483 10.100 10.756 12.178

0.4 5.824 8.463 9.195 11.214 11.801 13.360

0.8 6.164 9.219 9.966 11.865 12.488 14.264

2.0 0.0 4.243 5.058 6.204 7.533 7.986 8.423

0.4 4.633 5.532 6.785 8.227 8.727 9.202

0.8 4.973 5.958 7.306 8.832 9.383 9.887

SSCC 0.5 0.0 8.689 11.009 14.183 14.605 15.897 17.625

0.4 9.432 12.027 15.658 15.589 17.339 19.241

0.8 10.079 12.925 16.650 16.633 18.632 20.642

1.0 0.0 5.818 8.090 9.330 10.695 10.879 12.772

0.4 6.399 8.795 10.232 11.686 11.785 13.932

0.8 6.912 9.414 11.017 12.554 12.552 14.961

2.0 0.0 5.115 5.684 6.612 7.759 8.977 9.287

0.4 5.687 6.261 7.226 8.442 9.860 10.185

0.8 6.184 6.770 7.771 9.044 10.626 10.726

FFCF 0.5 0.0 2.344 4.258 5.878 7.862 9.736 9.922

0.4 2.824 4.905 6.630 8.576 10.394 10.885

0.8 3.290 5.408 7.271 9.248 10.945 11.771
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Table 6 (continued )

Mode sequence number

B.C. b=a a 1st 2nd 3rd 4th 5th 6th

1.0 0.0 2.238 3.436 5.348 5.942 6.518 8.178

0.4 2.850 3.747 5.887 6.644 7.278 8.739

0.8 3.263 4.248 6.263 7.306 7.883 9.214

2.0 0.0 2.357 2.709 3.507 4.617 5.884 5.952

0.4 2.844 3.157 3.934 5.038 6.442 6.570

0.8 3.275 3.565 4.329 5.432 6.774 7.293
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plates. For CCSC plates with b=a ¼ 1; 2, they still agree each other, but for plates with b=a ¼ 0:5,
difference can be found. The difference can also be found in the results for SCFC plates,
especially in those for FCCC plates. Due to the lack of the published information on ortho-
tropic plates with variable thickness, no other suitable references can be used for comparison.
But comparing the results of CCCC and FCCC shown in Tables 4 and 5, respectively, it is
inferred Ashour may have lost some of the lower frequency parameters for FCCC
plates. According to the conclusions obtained earlier, the frequencies of FCCC plates should
be lower than those corresponding results of CCCC plates. So the fundamental frequency of
FCCC plate with a ¼ 0:4 and b=a ¼ 0:5 is expected to be lower than 11.132 and his results is
16.429. In order to confirm the accuracy of the present method further, the lower three frequency
parameters are calculated by using the solution obtained by Hearmon [15] for uniform E-glass/
epoxy plates with b=a ¼ 0:5. These results are also shown in Table 4. Although the results
presented in Tables 4 and 5 are not limited to plates with two opposite edges simply supported,
they are still limited to plates with two opposite edges having the same boundary conditions and
the same thickness.

As an application of the present method, the numerical results are presented for the plates
with general boundary conditions. The number of the combination of the boundary condi-
tions is too large to be considered completely, so the numerical results of the lowest six
natural frequency parameter l are given only for CCCS, SSSC, SSCC and FFCF plates with
taper ratios a ¼ 0:0; 0:4; 0:8 and aspect ratios b=a ¼ 0:5; 1:0; 2:0. These results are shown in
Table 6.

6.2. Variable thickness in two directions

As another application of the present method, the numerical results are given for the plates with
linearly variable thickness in two directions. Table 7 presents the results for the plates with six
kinds of boundary conditions and four kinds of thickness variation. The lowest two frequency
parameters versus the aspect ratio are shown in Fig. 9.

At last, the numerical results are given for plates made of isotropic material ðn ¼ 0:3Þ,
graphite–epoxy material ðE1=E2 ¼ 40:0;G12=E2 ¼ 0:5; n12 ¼ 0:25Þ and glass–epoxy ðE1=E2 ¼
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Table 7

Natural frequency parameter l for orthotropic plates with variable thickness in two directions

Mode sequence number

B.C. a b 1st 2nd 3rd 4th 5th 6th

CCCC �0.5 �0.5 4.955 6.548 7.440 8.502 8.533 9.989

�0.5 0.5 6.453 8.510 9.748 11.070 11.056 13.031

0.5 �0.5 6.447 8.525 9.671 11.103 11.108 12.993

0.5 0.5 8.390 11.076 12.666 14.389 14.418 16.887

SSSC �0.5 �0.5 3.872 5.716 6.252 7.483 7.778 8.786

�0.5 0.5 5.038 7.499 8.015 9.678 10.148 11.433

0.5 �0.5 5.016 7.442 8.115 9.717 10.169 11.423

0.5 0.5 6.536 9.729 10.398 12.580 13.311 14.855

SSSS �0.5 �0.5 3.635 5.335 6.086 7.221 7.358 8.616

�0.5 0.5 4.704 6.937 7.966 9.372 9.536 11.425

0.5 �0.5 4.708 6.933 7.904 9.397 9.590 11.207

0.5 0.5 6.086 9.022 10.350 12.136 12.439 14.858

SCFC �0.5 �0.5 3.431 4.815 5.475 6.730 7.064 7.410

�0.5 0.5 4.467 6.303 6.989 8.628 9.206 9.717

0.5 �0.5 4.831 6.231 7.879 8.771 9.060 10.936

0.5 0.5 6.301 8.084 10.235 11.429 11.849 14.200

CCCS �0.5 �0.5 4.734 6.184 7.258 8.047 8.336 9.706

�0.5 0.5 6.259 8.009 9.720 10.421 10.891 12.629

0.5 �0.5 6.158 8.052 9.444 10.522 10.832 12.613

0.5 0.5 8.137 10.417 12.630 13.605 14.132 16.382

SSCC �0.5 �0.5 4.248 5.959 6.779 7.875 8.015 9.329

�0.5 0.5 5.481 7.795 8.715 10.187 10.412 12.198

0.5 �0.5 5.637 7.653 8.922 10.270 10.274 12.191

0.5 0.5 7.248 9.991 11.475 13.252 13.359 15.785
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4:67; G12=E2 ¼ 0:5; n ¼ 0:26Þ. CFFF and SSSS plates with variable thickness are considered. In
Table 8, the results of plates with uniform thickness or variable thickness in one direction are also
given and compared with those obtained by Liew et al. [4,16,17] and Lam et al. [18]. These results
are in good agreement.
7. Conclusions

A discrete method is extended for analyzing the free vibration problem of
orthotropic rectangular plates with variable thickness. The characteristic equation of the
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Fig. 9. The natural frequency parameter l versus the aspect ratio for the orthotropic rectangular plates with variable

thickness in two directions. (a) CCCC, (b) SSSC, (c) SSSS, (d) SCFC, (e) CCCS and (f) SSCC.
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free vibration is got by using the Green function. The effects of the boundary condi-
tions, aspect ratios and variable thickness in one and two directions on the frequencies
are considered. The results by the present method have been compared with those
previously reported. It shows that the present results have a good convergence and satisfactory
accuracy.
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Table 8

Natural frequency parameter l for isotropic or orthotropic plates with variable thickness

Mode sequence number

B.C. Material b=a a b References 1st 2nd 3rd 4th 5th 6th

CFFF Isotropic 0.5 0 0 Present 1.898 3.926 4.738 7.083 7.927 9.869

Ref. [4] 1.899 3.939 4.740 7.107 7.941 9.849

�0.4 0 Present 1.955 3.762 4.414 6.299 7.160 8.366

Ref. [4] 1.955 3.772 4.416 6.315 7.170 8.376

�0.8 0 Present 2.093 3.524 4.009 5.256 6.100 6.329

Ref. [4] 2.093 3.530 4.011 5.265 6.093 6.350

�0.5 �0.5 Present 1.753 3.278 3.802 5.277 5.957 6.841

�0.5 0.5 Present 2.229 4.176 4.858 6.791 7.727 8.841

0.5 �0.5 Present 1.650 3.608 4.488 6.795 7.601 9.409

0.5 0.5 Present 2.098 4.594 5.714 8.782 9.760 12.181

1.0 0 0 Present 1.908 2.981 4.721 5.335 5.685 7.521

Ref. [16] 1.91 2.99 4.73 5.34 — —

�0.5 �0.5 Present 1.751 2.430 3.633 3.886 4.353 5.477

�0.5 0.5 Present 2.236 3.124 4.743 5.048 5.567 7.136

0.5 �0.5 Present 1.654 2.747 4.378 5.210 5.438 7.095

0.5 0.5 Present 2.105 3.522 5.659 6.730 7.026 9.319

Graphite–epoxy 0.5 �0.5 �0.5 Present 4.118 4.860 7.092 8.428 9.931 10.722

�0.5 0.5 Present 5.408 6.120 9.153 11.380 12.611 13.744

0.5 �0.5 Present 4.007 5.001 9.926 10.197 11.906 13.563

0.5 0.5 Present 5.160 6.386 12.870 13.486 14.914 17.283

1.0 0 0 Present 4.716 4.938 6.218 8.463 11.320 11.704

Ref. [17] 4.717 4.948 6.132 8.486 11.343 11.810

�0.5 �0.5 Present 3.874 4.548 5.001 6.107 7.808 8.035

�0.5 0.5 Present 5.235 5.798 6.355 7.900 10.076 11.121

0.5 �0.5 Present 3.822 4.489 5.828 8.368 9.617 10.945

0.5 0.5 Present 5.044 5.686 7.506 10.848 13.107 14.261

SSSS Glass–epoxy 0.5 �0.5 �0.5 Present 5.436 7.883 9.493 10.619 11.017 13.206

�0.5 0.5 Present 7.100 10.350 12.492 14.361 14.422 17.420

0.5 �0.5 Present 7.162 10.137 12.401 13.987 14.305 16.862

0.5 0.5 Present 9.218 13.212 16.147 18.250 18.317 21.871

1.0 0 0 Present 5.338 7.401 9.573 10.151 10.663 12.431

Ref. [18] 5.329 — — — — —

�0.5 �0.5 Present 3.933 5.476 6.892 7.403 7.913 9.192

�0.5 0.5 Present 5.095 7.114 9.075 9.626 10.213 11.949

0.5 �0.5 Present 5.111 7.090 8.949 9.659 10.279 11.923

0.5 0.5 Present 6.613 9.218 11.778 12.546 13.245 15.463
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Appendix A

Ap1 ¼ gp1; Ap2 ¼ 0; Ap3 ¼ gp2; Ap4 ¼ gp3; Ap5 ¼ 0,

Ap6 ¼ D̄12gp4 þ D̄22gp5 þ D̄26gp6; Ap7 ¼ D̄16gp06 þ D̄26gp07 þ D̄66gp08,

Ap8 ¼ kðĀ44gp7 þ Ā45gp8Þ; Bp1 ¼ 0; Bp2 ¼ mgp1; Bp3 ¼ mgp3,

Bp4 ¼ 0; Bp5 ¼ mgp2; Bp6 ¼ mðD̄16gp4 þ D̄26gp5 þ D̄66gp6Þ,

Bp7 ¼ mðD̄11gp4 þ D̄12gp5 þ D̄16gp6Þ; Bp8 ¼ mkðĀ45gp7 þ Ā55gp8Þ,

Cp1kl ¼ mgp3 þ mDTklgp7; Cp2kl ¼ mgp2 þ mDTklgp8,

Cp3kl ¼ mD̄klgp6; Cp4kl ¼ mD̄klgp7; Cp5kl ¼ mD̄klgp4,

Cp6kl ¼ �mkðĀ44gp7 þ Ā45gp8Þ; Cp7kl ¼ �mkðĀ45gp7 þ Ā55gp8Þ,

Cp8kl ¼ 0; ½gpt� ¼ ½rtp�
�1; r11 ¼ bii; r12 ¼ mbjj; r22 ¼ �mbij,

r23 ¼ bii; r25 ¼ mbjj ; r31 ¼ �mbij ; r33 ¼ mbjj; r34 ¼ bii; r45 ¼ �mbijD̄ij,

r46 ¼ D̄12bii þ mD̄16bjj ; r47 ¼ D̄16bii þ mD̄11bjj,

r54 ¼ �mbijD̄ij; r56 ¼ D̄22bii þ mD̄26bjj,

r57 ¼ D̄26bii þ mD̄12bjj ; r63 ¼ �mbijD̄ij,

r66 ¼ D̄26bii þ mD̄66bjj ; r67 ¼ D̄66bii þ mD̄16bjj,

r71 ¼ �mbijD̄ij; r76 ¼ mkĀ44bij,

r77 ¼ mkĀ45bij; r78 ¼ kðĀ44bii þ mĀ45bjjÞ,

r82 ¼ �mbijD̄ij; r86 ¼ mkĀ45bij,

r87 ¼ mkĀ55bij; r88 ¼ kðĀ45bii þ mĀ55bjjÞ,

otherrtp ¼ 0.

Appendix B

a1i0i1 ¼ a3i0i2 ¼ a4i0i3 ¼ 1; a6i0i4 ¼ a7i0i5 ¼ a8i0i6 ¼ 1,

b20jj1 ¼ b30jj2 ¼ b50jj3 ¼ 1; b60jj4 ¼ b70jj5 ¼ b80jj6 ¼ 1; b30002 ¼ 0,

apijfd ¼
X8

t¼1

Xi

k¼0

bikApt½atk0fd � atkjfdð1� dkiÞ� þ
Xj

l¼0

bjlBpt½at0lfd � atilfdð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklatklfdð1� dkidljÞ

)
,
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bpijfd ¼
X8

t¼1

Xi

k¼0

bikApt½btk0gd � btkjgdð1� dkiÞ� þ
Xj

l¼0

bjlBpt½bt0lgd � btilgdð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklbtklgdð1� dkidljÞ

)
,

q̄pij ¼
X8

t¼1

Xi

k¼0

bikApt½q̄tk0 � q̄tkjð1� dkiÞ� þ
Xj

l¼0

bjlBpt½q̄t0l � q̄tilð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptkl � Ap1uiqujr

)
.
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