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Abstract

Free vibration analysis of rectangular Mindlin plates is carried out via the superposition method and is
shown to produce accurate results. The analytical method proposed by the authors in this paper solves the
problem for the case where the plate has simultaneous elastic edge and internal supports. The conditions of
edge supports are uniform lateral, rotational and torsional elastic supports, whereas, the internal supports
are column supports with finite area. Compatibility between the plate and column is achieved by requiring
that the column and plate rotations be equal. The results presented herein are verified through comparison
with results presented by others. Numerical examples presented in this study confirm that the analytical
method is able to model the property of the elastic edge supports while simultaneously considering the
effect of column restraint, an effect which increases with column number and area.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The modeling of rectangular plates with inner and edge supports is important in many branches
of engineering. The applications include the modeling of slabs supported by columns, printed
circuit boards and panels in ships and aircrafts. With its potential applications, the vibration of
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

2a; 2b lengths of rectangular plate edge in the
x and y directions

a0; b0 span lengths in the x and y directions
c0; d 0 cantilever lengths in the x and y

directions
l column length
2u; 2v widths of the column section in the x

and y directions
h plate thickness
f plate aspect ratio
w plate lateral displacement
cx;cy plate cross-section rotations associated

with x and y directions
o radian natural frequency
l ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; frequency parameter

D flexural rigidity of the plate
G shear modulus
E Young’s modulus
I second moment of area in the column
A column area
r density

n Poisson ratio
k shear correction factor
KL lateral stiffness of elastic edge support
KR rotational stiffness of elastic edge sup-

port
KT torsional stiffness of elastic edge sup-

port
mm;mn ¼ mp;¼ np (for the SS Mode only. See

Eq. (7) for other mode.)
N total number of columns

cCx; cCy rotations of the column associated
with x and y directions

sCx; sCy rotations of the plate associated with
x and y directions

iMx; iMy bending moments of the ith column
associated with x and y directions

tP total vertical force over all columns

iP partial vertical force on the ith column

tMx; tMy total bending moments over all
columns associated with x and y direc-
tions

iMx; iMy bending moments at the ith column
associated with x and y directions
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plates with inner supports and elastically restrained edges has received considerable attention
from researchers.
It is well known that the edge boundary conditions greatly influence the free vibration character-

istics of rectangular plates. The classical edge conditions (clamped, free or simply supported) are
relatively easy to formulate, however, difficult to apply in practice. Therefore, considerable
research has been devoted to the free vibration analysis of plates resting on elastic edge supports.
Gorman [1,2] studied the free vibration of rectangular plates with elastic edge supports based on
the thin plate theory and the Mindlin plate theory using the superposition method. Xiang et al. [3]
used polynomials and basic functions as the admissible functions to analyze the vibration of
rectangular Mindlin plates with elastic edge supports by the Ritz method. Saha et al. [4] used the
vibrating Timoshenko beam functions, and Zhou [5] applied the static Timoshenko beam
functions, as the admissible function to investigate the same problem by the Rayleigh–Ritz
method. Free vibration analysis of rectangular plates with inner supports has also been considered
by many researchers. Gorman [6,7] presented the solutions for rectangular plates with point
supports, based on the thin plate theory and the Mindlin plate theory by the superposition
method. Liew et al. [8] investigated Mindlin plates of arbitrary shapes with internal point supports
by the Rayleigh–Ritz method. Huang and Thambiratnam [9] studied rectangular plates on elastic
intermediate supports using the finite strip element method combined with a spring system.
The above publications have focused on the case of either elastic edge supports or inner

supports alone, and there is little or no reported research for the free vibration analysis of Mindlin
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Fig. 1. Schematic of rectangular Mindlin plate with internal columns; the uniform elastic edge supports are represented

by lateral (KL), rotational (KR) and torsional (KT ) springs.
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plates with simultaneous elastic edge and internal supports. Therefore, the purpose of this paper is
to propose an analytical method for dealing with these simultaneous support conditions. This
analytical method makes possible the free vibration analysis of rectangular plates with elastic edge
supports and with internal column supports by the superposition method based on Mindlin plate
theory. The classical thin plate theory results in errors which increase as the ratio of the plate
thickness to span ratio increases, so in this study, the Mindlin plate theory is employed which
considers the effect of transverse shear deformation and rotary inertia. The boundary conditions
of elastic edge supports are uniform lateral, rotational and torsional elastic supports. The internal
supports are column supports with finite area. Compatibility between the plate and column is
achieved by requiring that the column and plate rotations be equal.
This paper describes the modeling procedures for the plate with internal and elastic edge

supports as shown in Fig. 1 along with the derivation of the boundary and compatibility
conditions. Subsequently, general solutions of the governing differential equations are derived
and the eigenvalue equations are presented and solved. In order to verify the accuracy of the
present analysis, the solutions are compared with previous research and it is shown that there is
good agreement with previous results. Finally, a numerical example is presented along with a
discussion of the eigenvalues and corresponding mode shapes obtained from the analyses.
2. Governing differential equation and modeling procedure

2.1. Governing differential equation

The displacements of the plate u; v and w along the x; y and z direction, respectively, are
expressed by the three quantities cx; cy and w which describe the transverse displacement of the
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plate median surface and the rotations of the cross-section. These fundamental quantities w; cx

and cy for the free vibration of the plate can be written as the product of the displacement
functions W ðx; yÞ; Cxðx; yÞ and Cyðx; yÞ and the time-varying function ðA cosot þ B sinotÞ: In
this form, the displacements of the plate are

uðx; y; z; tÞ ¼ zCxðx; yÞðA cosot þ B sinotÞ,

vðx; y; z; tÞ ¼ zCyðx; yÞðA cosot þ B sinotÞ,

wðx; y; z; tÞ ¼ W ðx; yÞðA cosot þ B sinotÞ, (1)

where A and B are unknown constants, and o is the radian natural frequency of the plate.
Substituting Eq. (1) into the kinetic equations, derived from equations of equilibrium, gives the

governing differential equations of the Mindlin plate theory which considers the effects of
transverse shear deformation and rotary inertia. For the case where the distributed load qzðx; y; tÞ
is acting in the vertical direction, the three governing differential equations as presented by
Mindlin [10] can be written as

D

2
ð1�nÞ

q2

qx2
þ

q2

qy2

� �
Cx þ ð1þnÞ

q
qx

qCx

qx
þ
qCy

qy

� �� �
� kGh

qW

qx
þCx

� �
þ

o2rh3

12
Cx ¼ 0,

D

2
ð1�nÞ

q2

qx2
þ

q2

qy2

� �
Cy þ ð1þnÞ

q
qy

qCx

qx
þ
qCy

qy

� �� �
� kGh

qW

qy
þCy

� �
þ

o2rh3

12
Cy ¼ 0,

kGh
q2

qx2
þ

q2

qy2

� �
W þ

qCx

qx
þ
qCy

qy

� �
þ o2rhWþqz ¼ 0 (2)

in which D is the flexural rigidity of plate, G is the shear modulus, r is the density, n is the
Poisson ratio, h is the plate thickness, k is the shear correction factor, and qz is the uniform
load. These equations do not have the time-varying function as they cancel from both sides
of the expressions.
The associated shear forces, bending moments and torsional moments can be written as [10],

Qx ¼ kGh
qW

qx
þCx

� �
; Qy ¼ kGh

qW

qy
þCy

� �
,

Mx ¼ D
qCx

qx
þn

qCy

qy

� �
; My ¼ D

qCy

qy
þn

qCx

qx

� �
,

Mxy ¼
1�n
2

D
qCx

qy
þ
qCy

qx

� �
. (3)

2.2. Boundary conditions

The coordinate system of the rectangular plate is set up as shown in Fig. 2(a). For convenience,
a plate size of 2a in length by 2b in width is converted to dimensionless form, shown in Fig. 2(b),



ARTICLE IN PRESS

F. Ohya et al. / Journal of Sound and Vibration 289 (2006) 1–24 5
via the transformations x ¼ x=a and Z ¼ y=b: In the dimensionless coordinate system, the
boundary conditions of the lateral, rotational and torsional elastic edge supports can be written as
Eq. (4) by introducing lateral stiffness KL1–KL4; the rotational stiffness KR1–KR4 and the
torsional stiffness KT1–KT4: The subscripts 1–4 are utilized to indicate the various plate edges as
shown in Fig. 1.

Qxð�1; ZÞ þ KL1;2W ð�1; ZÞ ¼ 0; Qyðx;�1Þ þ KL3;4W ðx;�1Þ ¼ 0,

Mxð�1; ZÞ þ KR1;2Cxð�1; ZÞ ¼ 0; Myðx;�1Þ þ KR3;4Cyðx;�1Þ ¼ 0,

Mxyð�1; ZÞ þ KT1;2Cyð�1; ZÞ ¼ 0; Mxyðx;�1Þ þ KT3;4Cxðx;�1Þ ¼ 0, (4)

where

KL1�4¼
akL1�4

kGh
; KR1�4¼

akR1�4

D
; KT1�4¼

2akT1�4

ð1�nÞD

in which kL1–kL4 are basic lateral spring stiffness along the plate edges, kR1–kR4 are basic
rotational spring stiffness and kT1–kT4 are basic torsional spring stiffness. The stiffnesses along
opposite edges should be equal for symmetry, that is, KL1 ¼ KL2; KL3 ¼ KL4; KR1 ¼ KR2; KR3 ¼

KR4 and KT1 ¼ KT2; KT3 ¼ KT4:
a

a′

b′

c′

b

Oi

(xi, yi)

x

y

a

a′ c′

b
b′

h

g

f

d′

d′

Oi

1

2u

2v

(�i, �i)
�

�

1

1

1

(a) dimensional dimensionless(b)

Fig. 2. Coordinate system.
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2.3. Compatibility condition of the plate and column

The support condition of the column is taken as either pinned or fixed as shown in Fig. 3. The
moment–rotation relationship of the column, at the point of connection between the column and
plate, is derived using the Timoshenko beam theory to account for the effect of shear
deformation. The relationship between the rotation of column, cCxðyÞ; and the bending moment in
the column, iMxðyÞ; (where the subscript i indicates column number) for each support condition
are expressed, respectively, as

(i) Pin support: cCxðyÞ ¼
l

EI

1þ j1
4þj1

� �
iMxðyÞ,

(ii) Fixed support: cCxðyÞ ¼
l

EI

4þj1
12

� �
iMxðyÞ, ð5Þ

where

j1 ¼
12EI

kGAl2

in which E is the modulus of elasticity, I is the second moment of area, A is the area of column,
and l is the length of column.
The compatibility condition between the column and plate is provided by the assumption that

the columns are inextensible and the rotation of the column, cCxðyÞ; with respect to the xðyÞ
direction is equal to the rotation of the plate, sCxðyÞ; at the connection point. These conditions are
expressed as follows. It should be noted that the analysis presented here is for the case where the
columns are symmetrically distributed.

sCxðxi; ZiÞ¼ cCxðxi; ZiÞ; sCyðxi; ZiÞ¼ cCyðxi; ZiÞ; W ðxi; ZiÞ ¼ 0. (6)

2.4. Assumption of mode type

For the coordinate system shown in Fig. 2, the four mode shapes shown in Fig. 4 can be
assumed. The first mode is a symmetric–symmetric mode with respect to the x- and y-axis
(denoted SS Mode), the second mode is a symmetric–antisymmetric mode (SA Mode), the third
an antisymmetric–symmetric mode (AS Mode), and the fourth an antisymmetric–antisymmetric
mode (AA Mode). Corresponding to the mode type, the function is an odd or even function and
l l

(i) Pin support (ii) Fixed support

Fig. 3. Schematic showing the different column fixities.
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Fig. 4. The four mode shapes considered.
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for this reason, it is necessary for the mode type to be assumed prior to deriving the interactive
column forces and the general solutions of the governing differential equations. The Lévy-type
solution for each mode types is

SS Mode:W ðx; ZÞ ¼
X1
m¼1

Y mðZÞ cosmpxþ
X1
n¼1

X nðxÞ cos npZ,

SA Mode:W ðx; ZÞ ¼
X1
m¼1

Y mðZÞ sin
ð2m�1Þp

2
xþ

X1
n¼1

X nðxÞ cos npZ,

AS Mode:W ðx; ZÞ ¼
X1
m¼1

Y mðZÞ cosmpxþ
X1
n¼1

X nðxÞ sin
ð2n�1Þp
2

Z,

AA Mode:W ðx; ZÞ ¼
X1
m¼1

Y mðZÞ sin
ð2m�1Þp

2
xþ

X1
n¼1

X nðxÞ sin
ð2n�1Þp
2

Z. ð7Þ

2.5. Interactive forces between column and plate

The interactive forces between the column and plate can be represented by the partial vertical
force (acting on the whole cross-section of the column), and a distributed force-couple that results
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(a) (b)partial vertical force     distributed force-couple
 (results in bending moment)

Fig. 5. The interactive forces at the connection between the column and plate.
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in an equivalent bending moment, as shown in Fig. 5. The forces are varied in the same phase as
the plate vibration and therefore they are expressed in the same manner as the fundamental
quantities (w; cx and cy), namely

tPðx; Z; tÞ ¼
XN

i¼1

iPðx; ZÞðA cosot þ B sinotÞ,

tMxðx; Z; tÞ ¼
XN

i¼1

iMxðx; ZÞðA cosot þ B sinotÞ,

tMyðx; Z; tÞ ¼
XN

i¼1

iMyðx; ZÞðA cosot þ B sinotÞ, (8)

where N is the total number of columns, tPðx; Z; tÞ is the total vertical force over all columns, and
iPðx; ZÞ is the partial vertical force on the ith column; tMxðx; Z; tÞ and tMyðx; Z; tÞ are the total
bending moments over all columns in the x and y directions, respectively, and iMxðx; ZÞ and
iMyðx; ZÞ are the bending moments at the ith column. Substituting these expressions as the
distributed load qzðx; y; tÞ in the kinetic equations, one obtains the governing differential
equations. The partial vertical force and distributed force-couple given by Dirac’s function are
expressed by a Fourier series expansion. The loading is dependent on the particular mode as
indicated in Section 2.4. For the case of the SS Mode, these forces are

iPðx; ZÞ ¼
4	 iPmn

a2f

X1
m¼1

X1
n¼1

iCp cos mmx cos mnZ, (9)

iMxðx; ZÞ ¼
2	 iMxmn

a3f

X1
m¼1

X1
n¼1

iCMx cosmmx cosmnZ, (10)
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iMyðx; ZÞ ¼
2	 iMymn

a3f2
X1
m¼1

X1
n¼1

iCMy cos mmx cos mnZ, (11)

where

f¼
b

a
; mm¼mp; mn¼np; m; n¼1; 2; 3; . . .

iCp ¼
cos mmxi sinmmu

mmu

� �
cosmnZi sin mnv

mnv

� �
,

iCMx ¼
mm sinmmxi sinmmu

mmu

� �
cosmnZi sin mnv

mnv

� �
,

iCMy ¼
cos mmxi sin mmu

mmu

� �
mn sin mnZi sinmnv

mnv

� �

in which f is the plate aspect ratio; iPmn; iMxmn and iMymn are unknown constants; and u and v
are the half-width of the column section in the x and y directions, respectively. It should be noted
that these forces are halved when the column position is on the x- and y-axis of coordinates
system. The loading for the other modes (the SA, AS, or AA Mode) is obtained in a similar
fashion by replacing the trigonometric function as indicated in Section 2.4.
3. General solution and eigenvalue equation

In this paper, the procedures for the derivation of the general solution and eigenvalue equation
are introduced for the SS Mode only. The same procedure can be applied to the other modes by
replacing the trigonometric functions appropriately.

3.1. Inhomogeneous solution

In case of the SS Mode, the inhomogeneous solutions of the transverse displacement, nW ðx; ZÞ;
and the rotation, nCxðx; ZÞ and nCyðx; ZÞ; can be assumed to be of the following form:

nW ðx; ZÞ ¼
X1
m¼1

X1
n¼1

W mn cos mmx cos mnZ,

nCxðx; ZÞ ¼
X1
m¼1

X1
n¼1

Cxmn sin mmx cos mnZ,

nCyðx; ZÞ ¼
X1
m¼1

X1
n¼1

Cymn cos mmx sin mnZ, (12)

where W mn; Cxmn and Cymn are unknown constants.
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By substituting the above displacements and the interactive partial vertical force given by
Eq. (9) into governing differential equations, the unknown constants are determined and each
inhomogeneous solution for the case of the partial vertical force are obtained and given by

npW ðx; ZÞ ¼
4a2 	 iPmn

fD

X1
m¼1

X1
n¼1

iCp
nCw

nCdeno
cos mmx cos mnZ,

npCxðx; ZÞ ¼
4a	 iPmn

fD

X1
m¼1

X1
n¼1

iCp
mm

nCdeno
sinmmx cos mnZ,

npCyðx; ZÞ ¼
4a	 iPmn

f2D

X1
m¼1

X1
n¼1

iCp
mn

nCdeno
cos mmx sin mnZ, (13)

where

nCw ¼ 1þ
1

6ð1�nÞk
m2mþ

m2n
f2

� �
h

a

� �2
�

l2

72ð1�nÞk
h

a

� �4
,

nCdeno ¼ m2mþ
m2n
f2

�O1

� �
m2mþ

m2n
f2

�O2

� �
,

O1;2 ¼
l2f2þ ð1�nÞkg
24ð1�nÞk

h

a

� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4f2� ð1�nÞkg2

242ð1�nÞ2k2
h

a

� �4
þl2

s
ðO14O2Þ,

l ¼ oa2

ffiffiffiffiffiffi
rh

D

r
.

For the case of the interactive bending moment, iMxðx; ZÞ; the inhomogeneous solutions are
obtained in the same manner and are given by

nxW ðx; ZÞ ¼
2a	 iMxmn

fD

X1
m¼1

X1
n¼1

iCx
nCw

nCdeno
cos mmx cos mnZ,

nxCxðx; ZÞ ¼
2	 iMxmn

fD

X1
m¼1

X1
n¼1

iCx

mm

nCdeno
sinmmx cosmnZ,

nxCyðx; ZÞ ¼
2	 iMxmn

f2D

X1
m¼1

X1
n¼1

iCx

mn

nCdeno
cos mmx sin mnZ. (14)

Similarly, the inhomogeneous solutions for the bending moment, iMyðx; ZÞ; are

nyW ðx; ZÞ ¼
2a	 iMymn

f2D

X1
m¼1

X1
n¼1

iCy
nCw

nCdeno
cos mmx cosmnZ,
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nyCxðx; ZÞ ¼
2	 iMymn

f2D

X1
m¼1

X1
n¼1

iCy

mm

nCdeno
sin mmx cos mnZ,

nyCyðx; ZÞ ¼
2	 iMymn

f3D

X1
m¼1

X1
n¼1

iCy

mn

nCdeno
cosmmx sinmnZ. (15)

The inhomogeneous solutions for the shear forces, the bending moments and the torsional
moments can be derived by substituting the above displacements into Eq. (3).
3.2. Homogeneous solution

In the absence of distributed load, the governing differential equations are transfor-
med to a simplified form through the use of Helmholtz theorem as presented by Mindlin [10],
and given by

q2

qx2
þ

q2

qy2
þd21

� �
W 1 ¼ 0,

q2

qx2
þ

q2

qy2
þ d22

� �
W 2 ¼ 0,

q2

qx2
þ

q2

qy2
þ d23

� �
H ¼ 0 (16)

and expressed in dimensionless form,

q2W 1

qx2
þ
1

f2
q2W 1

qZ2
þ O1W 1 ¼ 0,

q2W 2

qx2
þ
1

f2
q2W 2

qZ2
þ O2W 2 ¼ 0,

q2H

qx2
þ
1

f2
q2H
qZ2

þ O3H ¼ 0, (17)

where

W ¼ W 1 þ W 2,

Cx ¼ ðs1 � 1Þ
1

a

qW 1

qx
þ ðs2 � 1Þ

1

a

qW 2

qx
þ
1

af
qH

qZ
,

Cy ¼ ðs1�1Þ
1

af
qW 1

qZ
þ ðs2�1Þ

1

af
qW 2

qZ
�
1

a

qH

qx
, (18)
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in which

d21 ¼
O1
a2

; d22 ¼
O2
a2

; d23 ¼
O3
a2
,

O3 ¼
l2

6ð1�nÞ
h

a

� �2
�12k

a

h


 �2
,

s1 ¼
2O2

ð1�nÞO3
� 1; s2 ¼

2O1
ð1� nÞO3

� 1, (19)

where H is the potential. In case of the SS Mode, the homogeneous solutions of the transverse
displacement function, W 1;2ðx; ZÞ; and the potential, Hðx; ZÞ; can be expressed by the following
equations with the unknown functions hX n1;2ðxÞ; hY m1;2ðZÞ and hHnðxÞ; hHmðZÞ:

W 1;2ðx; ZÞ ¼
X1
m¼1

hY m1;2ðZÞ cosmmxþ
X1
n¼1

hX n1;2ðxÞ cos mnZ,

Hðx; ZÞ ¼
X1
m¼1

hHmðZÞ sinmmxþ
X1
n¼1

hHnðxÞ sinmnZ. (20)

Substituting Eq. (20) into the differential equations, given by Eq. (17), one obtains homogeneous,
second-order, ordinary differential equations. The ordinary differential equations are solved by
assuming appropriate functions consistent with the assumption of the mode type, that is, the
symmetric mode type is applied to even functions, while the antisymmetric mode is applied to the
odd functions. The homogeneous solutions are obtained by substituting solutions of the ordinary
differential equations into Eq. (18). The homogeneous solutions have the following six possible
cases with respect to both m [Case(M-1)–Case(M-6)] and n [Case(N-1)–Case(N-6)].

CaseðM-1Þ: amobmo0 and gmo0,
CaseðM-2Þ: amobmo0 and gm40,

CaseðM-3Þ: amo0obm and gmo0,
CaseðM-4Þ: amo0obm and gm40,

CaseðM-5Þ: 0oamobm and gmo0,
CaseðM-6Þ: 0oamobm and gm40,

CaseðN-1Þ: anobno0 and gno0,
CaseðN-2Þ: anobno0 and gn40,

CaseðN-3Þ: ano0obn and gno0,
CaseðN-4Þ: ano0obn and gn40,

CaseðN-5Þ: 0oanobn and gno0,
CaseðN-6Þ: 0oanobn and gn40,



ARTICLE IN PRESS

F. Ohya et al. / Journal of Sound and Vibration 289 (2006) 1–24 13
where

a2m ¼ jðm2m � O1Þf
2
j; b2m ¼ jðm2m � O2Þf

2
j; g2m ¼ jðm2m � O3Þf

2
j,

a2n ¼ jm2n=f
2
� O1j; b2n ¼ jm2n=f

2
� O2j; g2n ¼ jm2n=f

2
� O3j.

In the CaseðM-1Þ and CaseðN-6Þ of the SS Mode, for example, the homogeneous solutions of the
transverse displacement, hW ðx; ZÞ; and the rotation, hCxðx; ZÞ and hCyðx; ZÞ; are

hW ðx; ZÞ ¼
a2

D

X1
m¼1

Y m1
cos amZ
sin am

þ Y m2
cosbmZ
sin bm

� �
cos mmx

þ
a2

D

X1
n¼1

X n1
cosh anx
sinh an

þ X n2
coshbnx
sinh bn

� �
cosmnZ, ð21Þ

hCxðx; ZÞ ¼
a

D

X1
m¼1

Y m1mmðs1�1Þ
� cos amZ
sin am

�

þY m2mmðs2�1Þ
� cos bmZ
sin bm

þ Y m3
gm

f
cos gmZ
sin gm

�
sin mmx

þ
a

D

X1
n¼1

X n1anðs1�1Þ
sinh anx
sinh an

�

þX n2bnðs2�1Þ
sinhbnx
sinhbn

þ X n3
mn

f
sinh gnx
sinh gn

�
cosmnZ, ð22Þ

hCyðx; ZÞ ¼
a

fD

X1
m¼1

Y m1amðs1�1Þ
� sin amZ
sin am

�

þY m2bmðs2�1Þ
� sinbmZ
sinbm

þ Y m3mmf
� sin gmZ
sin gm

�
cos mmx

þ
a

fD

X1
n¼1

X n1mnðs1�1Þ
� cosh anx
sinh an

�

þX n2mnðs2�1Þ
� coshbnx
sinhbn

þ X n3gnf
� cosh gnx
sinh gn

�
sin mnZ ð23Þ

in which Y m1;Y m2;Y m3 and X n1;X n2;X n3 are unknown constants.
In the other case, CaseðM-1Þ2CaseðM-6Þ and CaseðN-1Þ2CaseðN-6Þ; the homogeneous

solutions are obtained by replacing the trigonometric functions as follows; if am; an; bm; bn and
gm; gn are smaller than zero, the normal trigonometric functions are applied to each term
containing am; an; bm; bn and gm; gn; whereas, if these values are larger than zero, the hyperbolic
trigonometric functions are applied to each term with respect to m and n:
The homogeneous solutions for the shear forces, bending moments and torsional moments can

be derived by substituting the above solutions for the displacement and rotation into Eq. (3).
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3.3. Generation of the eigenvalue equation

The general solutions are obtained by adding the inhomogeneous solutions and the
homogeneous solutions. The general solutions for displacement W ; Cx and Cy are then

W ðx; ZÞ¼hW ðx; ZÞþnpW ðx; ZÞþnxW ðx; ZÞþnyW ðx; ZÞ,

Cxðx; ZÞ¼hCxðx; ZÞþnpCxðx; ZÞþnxCxðx; ZÞþnyCxðx; ZÞ,

Cyðx; ZÞ¼hCyðx; ZÞþnpCyðx; ZÞþnxCyðx; ZÞþnyCyðx; ZÞ. (24)

The general solutions for the shear forces, the bending moments and the torsional moments are
obtained in an analogous fashion.
With the general solutions obtained above, nine relational equations including the unknown

constants can be derived by substituting the general solutions into the boundary conditions given
in Eq. (4) and the compatibility conditions given in Eq. (6). The resulting eigenvalue equation in
Table 1

Comparison study of first four frequency parameters, l; for square plates with lateral elastic edge supports (KR ¼ 0;
KT ¼ 0; n ¼ 0:333; k ¼ 0:8601; h=a ¼ 0:1)

Lateral stiffness References Mode

1 2 3 4

KL ¼ 0:005 Present 0.9062 1.2979 1.2979 3.4649

Gorman [1] 0.9063 1.2978 1.2978 3.4650

Zhou [5] 0.9063 1.2979 1.2979 3.5301

KL ¼ 0:05 Present 2.3983 3.9034 3.9034 5.6374

Gorman [1] 2.3983 3.9025 3.9025 5.6375

Zhou [5] 2.4052 3.9131 3.9131 5.6612

Table 2

Comparison study of the fundamental frequency parameter, l; for square plates with lateral and rotational elastic edge
supports (KL ¼ 1500; KT ¼ 0; n ¼ 0:3; k ¼ 0:85; h=a ¼ 0:01)

References KR

5:0
 10�8 5 12.5 25 50 250 1350 5:0
 106

Present 4.9115 7.1156 7.9408 8.3821 8.6581 8.9153 8.9725 8.9857

Gorman [1] 4.9000 7.1150 7.9400 8.3825 8.6575 8.9150 8.9725 8.9850

Saha et al. [4] 4.8575 6.8775 7.6125 8.0000 8.2400 8.4600 8.5100 8.5200
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matrix form is then

K11 K12 K13 K14 K15 K16 K17 K18 K19

K21 K22 K23 K24 K25 K26 K27 K28 K29

K31 K32 K33 K34 K35 K36 K37 K38 K39

K41 K42 K43 K44 K45 K46 K47 K48 K49

K51 K52 K53 K54 K55 K56 K57 K58 K59

K61 K62 K63 K64 K65 K66 K67 K68 K69

K71 K72 K73 K74 K75 K76 K77 K78 K79

K81 K82 K83 K84 K85 K86 K87 K88 K89

K91 K92 K93 K94 K95 K96 K97 K98 K99

2
66666666666666664

3
77777777777777775

Y m1

Y m2

Y m3

X n1

X n2

X n3

iP

iMx

iMy

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼ 0 (25)
Table 3

Comparison study of first six frequency parameters, l; for square plates with one central internal point support (Liew et
al. [8]: n ¼ 0:3; others: n ¼ 0:333; k ¼ 5

6
; h=a ¼ 0:001); simply supported—KL ¼ 107; KR ¼ 0; KT ¼ 0; clamped—KL ¼

107; KR ¼ 107; KT ¼ 107; free—KL ¼ 0; KR ¼ 0; KT ¼ 0

Boundary condition Thickness ratio References Mode

1 2 3 4 5 6

Simply supported SS SA(AS) AA SS SS SA(AS)

h=a ¼ 0:200 Present

Liew et al: ½8�

(
6:413

8:512

9:180

9:538

13:112

13:790

15:853

16:290

17:686

F

18:898

19:670

SA(AS) SS AA SS SA(AS) SS

h=a ¼ 0:001 Present

Liew et al: ½8�

(
12:334

12:340

13:153

13:530

19:730

19:740

24:670

24:670

32:064

32:080

36:656

37:710

Huang and Thambiratnam [9] 12.338 13.188 19.740 — — —

Kim and Dickinson [12] 12.337 13.293 19.739 24.674 32.076 37.050

Clamped SS SA(AS) AA SS SS SA(AS)

h=a ¼ 0:200 Present

Liew et al: ½8�

(
8:758

10:930

11:333

11:570

15:107

15:540

17:293

17:710

19:253

F

20:430

21:010

SA(AS) SS AA SS SA(AS) SS

h=a ¼ 0:001 Present

Liew et al: ½8�

(
18:348

18:350

19:644

20:220

27:053

27:050

32:894

32:890

42:248

41:250

46:554

47:800

Kim and Dickinson [12] 18.349 20.075 27.055 32.895 41.250 47.493

Free SS AA SS SA(AS) SS SA(AS)

h=a ¼ 0:200 Present

Liew et al: ½8�

(
1:957

2:731

2:857

2:825

4:263

4:350

6:765

6:893

6:800

8:140

11:202

11:310

SS AA SS SA(AS) SS SA(AS)

h=a ¼ 0:001 Present

Liew et al: ½8�

(
2:823

2:831

3:291

3:367

4:806

4:899

8:555

8:700

11:410

11:700

15:232

15:270

Raju and Amba-Rao [11] 2.824 3.291 4.805 8.557 11.417 15.233
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or in abbreviated form

½K �fXg ¼ 0 (26)

where ½K � is the eigenvalue matrix and fXg is the eigenvector of unknown constants. With the
eigenvalues obtained numerically, using an appropriate method such as the regula falsi method,
the corresponding eigenvectors are obtained along with the unknown constants. By applying these
constants to the general solution, the mode shapes are obtained.

4. Comparison and convergency studies

4.1. Comparison with other researchers

In order to verify the accuracy of the method, the present solutions are compared to the results
of other researchers. As there is no research for the case of simultaneous edge and inner column
supports, comparisons are made with previous research reported for the case of elastic edge
supports and column supports alone. In the following numerical computations, convergence is
achieved by considering 61 terms (as shown in the next section), and the eigenvalue is evaluated by
using a value of frequency parameter l; instead of frequency o; given by

l ¼ oa2

ffiffiffiffiffiffi
rh

D

r
. (27)

Tables 1 and 2 show the frequency parameters, l; for square plates with uniform elastic edge
supports. Table 1 shows a comparison for the case of lateral elastic supports alone
(KR ¼ 0;KT ¼ 0). To be consistent with the values reported in the literature, the Poisson ratio,
n ¼ 0:333; the shear correction factor, k ¼ 0:8601 and the thickness ratio, h=a ¼ 0:1: As shown in
Table 1, the values presented here agree closely with those reported by Gorman [1] and Zhou [5].
Table 4

Comparison study of first eight frequency parameters, l; for square plates resting all edges free with four point supports
on diagonals (present, Liew et al. [8]: n ¼ 0:3; Gorman [7], Raju and Amba-Rao [11]: n ¼ 0:333; k ¼ 5

6; h=a ¼ 0:001)

Cantilever ratio References Mode

1 2 3 4 5 6 7 8

c0=a0 ¼ 2:0 SS SA AS AA SS SA AS SS

Present 3.319 3.382 3.382 4.040 4.899 9.367 9.367 13.312

Liew et al. [8] 3.327 3.478 3.480 4.217 4.899 9.407 9.408 13.370

Gorman [7] 3.343 3.384 3.384 — 4.806 9.203 9.203 13.140

Raju and Amba-Rao [11] 3.343 3.388 3.388 3.975 4.805 9.203 9.203 13.138

c0=a0 ¼ 0:333 SS SS SA AS SA AS AA SS

Present 4.899 5.747 8.067 8.067 11.826 11.826 12.803 13.611

Liew et al. [8] 4.899 5.756 8.095 8.096 11.960 11.960 13.000 14.010

Gorman [7] 4.806 5.780 7.943 7.943 11.840 11.840 — 13.620

Raju and Amba-Rao [11] 4.805 5.780 7.943 7.943 11.845 11.845 12.772 13.642
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Table 2 shows the fundamental frequency parameter for the case of both lateral and rotational
elastic supports. The value of lateral stiffness KL is fixed as 1500, whereas, the rotational stiffness
KR is varied in the range of 5:0
 10

�8 to 5:0
 106: For this case, the value of the Poisson ratio,
n ¼ 0:3; the shear correction factor, k ¼ 0:85 and the thickness ratio h=a ¼ 0:01 are used. Table 2
shows that there is good agreement between the method presented here and that reported by
Gorman [1] and Saha et al. [4].
Tables 3 and 4 show the frequency parameters for square plates with inner point supports and

various classical boundary conditions. In the present analysis, the boundary condition for a
simply supported plate is realized by setting the lateral stiffness, KL ¼ 107; and the rotational and
torsional stiffness KR ¼ 0;KT ¼ 0: In the same manner, the clamped boundary condition is
realized by setting KL ¼ 107;KR ¼ 107;KT ¼ 107; whereas, for the free boundary KL ¼ 0;KR ¼

0;KT ¼ 0: The shape parameters of plate with columns are set to a cantilever ratio c0=a0 and a
span a0 as shown in Fig. 2, and the column length l is set up to 0:6a0: Table 3 shows the first six
frequency parameters with one central internal point support for the three different boundary
conditions considered. For all analyses, the value of the Poisson ratio, n ¼ 0:333; except for Liew
Table 5

Convergency study of frequency parameters, l; with respect to the number of terms included in the Fourier series for
three configurations (n ¼ 0:3; k ¼ 5

6
)

Condition Term number Mode

1 2 3 4 5

2
 2 column configuration 11 15.1152 33.2943 39.5387 54.5314 64.9449

Mode type SA 21 15.1159 33.2987 39.5422 54.5360 64.9627

h=a ¼ 0:05 31 15.1160 33.2988 39.5422 54.5358 64.9620

c0=a0 ¼ 0:10 41 15.1160 33.2987 39.5422 54.5358 64.9621

2u; 2v ¼ 0:10 51 15.1160 33.2990 39.5424 54.5359 64.9629

61 15.1160 33.2987 39.5422 54.5358 64.9622

71 15.1160 33.2988 39.5423 54.5358 64.9625

3
 3 column configuration 11 22.3381 42.9008 49.8601 68.8245 73.0709

Mode type AA 21 22.3091 42.8993 49.7373 68.7223 73.0712

h=a ¼ 0:10 31 22.3097 42.8993 49.7410 68.7256 73.0712

c0=a0 ¼ 0:20 41 22.3115 42.8994 49.7481 68.7312 73.0714

2u; 2v ¼ 0:10 51 22.3119 42.8994 49.7496 68.7323 73.0716

61 22.3114 42.8994 49.7477 68.7308 73.0715

71 22.3113 42.8994 49.7471 68.7302 73.0716

4
 4 column configuration 11 53.9023 59.4406 59.4440 62.6237 107.9699

Mode type SS 21 53.7146 58.1433 58.1460 61.9823 107.2492

h=a ¼ 0:01 31 53.8527 58.6431 58.6447 62.2032 107.6486

c0=a0 ¼ 0:30 41 53.8632 58.6327 58.6342 62.1979 107.6734

2u; 2v ¼ 0:20 51 53.8384 58.5526 58.5544 62.1627 107.5937

61 53.8435 58.5656 58.5673 62.1683 107.6098

71 53.8507 58.5922 58.5938 62.1801 107.6323
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Table 6

Frequency parameters, l; for rectangular plate with internal column resting on uniform elastic edge supports (n ¼ 0:3;
k ¼ 5

6
) 2
 2 column configuration, pin support, f ¼ 1:0; c0=a0 ¼ 0:2; KL ¼ 10:0; KR ¼ 10:0; KT ¼ 10:0

Mode type Column area 2u; 2v Thickness ratio

h=a ¼ 0:01 h=a ¼ 0:05 h=a ¼ 0:10

Mode Mode Mode

1 2 3 4 1 2 3 4 1 2 3 4

SS Mode 0 8.410 29.156 33.074 60.544 8.190 28.044 31.399 55.603 7.742 25.343 27.869 46.448

0.1 9.020 29.436 34.796 64.538 8.394 28.089 32.131 57.526 7.900 25.351 28.606 48.592

0.2 9.614 29.760 36.376 67.322 9.079 28.378 33.912 61.153 8.230 25.446 29.488 50.353

0.3 10.578 30.480 38.596 69.472 10.035 28.939 36.063 63.753 8.874 25.711 30.840 52.284

SA Mode 0 17.609 42.157 50.567 73.504 16.979 39.633 47.259 67.257 15.628 34.435 40.549 55.513

0.1 18.692 44.177 53.018 77.493 17.378 40.453 48.235 68.225 15.987 35.262 41.528 56.147

0.2 19.736 45.754 55.936 80.922 18.561 42.361 50.926 71.895 16.567 36.157 42.733 57.423

0.3 21.380 47.790 60.881 85.872 20.153 44.367 55.142 76.477 17.599 37.449 44.851 59.857

AA Mode 0 28.725 54.475 68.982 98.744 27.127 50.898 62.864 88.144 24.040 43.490 51.770 69.784

0.1 31.660 56.548 73.105 103.524 28.280 51.244 65.032 90.099 25.169 43.552 54.261 72.288

0.2 34.640 58.551 76.970 107.734 31.471 53.221 68.940 94.505 26.717 44.192 56.099 73.882

0.3 39.344 62.406 81.791 112.640 35.886 56.353 73.257 99.205 29.366 45.703 58.410 76.287

Table 7

Frequency parameters, l; for rectangular plate with internal column resting on uniform elastic edge supports (n ¼ 0:3;
k ¼ 5

6) 3
 3 column configuration, pin support, f ¼ 1:5; c0=a0 ¼ 0:2; KL ¼ 10:0; KR ¼ 100:0; KT ¼ 100:0

Mode type Column area 2u; 2v Thickness ratio

h=a ¼ 0:01 h=a ¼ 0:05 h=a ¼ 0:10

Mode Mode Mode

1 2 3 4 1 2 3 4 1 2 3 4

SS Mode 0 13.993 27.840 35.285 46.091 13.661 26.835 34.503 44.666 12.900 24.669 32.533 41.529

0.1 14.678 29.788 35.894 48.496 13.988 27.789 34.796 45.662 13.287 25.783 32.886 42.494

0.2 15.363 31.853 36.514 50.710 14.840 30.227 35.540 48.342 13.870 27.396 33.380 44.033

0.3 16.341 34.900 37.409 53.758 15.856 33.286 36.438 51.427 14.745 29.836 34.108 46.371

SA Mode 0 17.940 28.361 48.502 53.993 17.609 27.793 47.380 52.415 16.879 26.467 44.473 48.641

0.1 20.168 32.002 51.426 55.458 18.312 28.641 47.997 53.029 17.180 26.820 44.638 49.213

0.2 21.218 34.839 53.528 56.790 20.293 32.345 50.791 54.597 18.271 28.268 45.634 50.137

0.3 22.352 38.672 55.680 59.705 21.706 36.598 53.599 56.965 19.856 31.463 47.778 51.569

AA Mode 0 20.334 36.403 54.258 62.776 20.089 35.708 52.851 61.009 19.426 33.929 49.175 56.558

0.1 20.752 37.629 54.952 64.761 20.185 36.003 53.029 61.473 19.461 34.061 49.260 56.737

0.2 21.124 38.721 55.480 66.437 20.635 37.321 53.723 63.542 19.652 34.634 49.570 57.605

0.3 21.701 40.392 56.189 68.949 21.232 39.048 54.488 66.122 20.086 35.879 50.153 59.474
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et al. [8], where n ¼ 0:3: The shear correction factor, k ¼ 5
6
: The present solution and Liew’s

solutions consider the effect of shear deformation, and therefore the frequency parameters
decrease as the thickness ratio increases. As shown for the case of simply supported and clamped
plates, the consideration of shear deformation changes the ordering of the mode types. When the
thickness ratio is small, h=a ¼ 0:001; the solutions presented here show a good agreement with
previous research making use of the thin plate theory. Table 4 shows the frequency parameters for
plates with all edges free and four point supports on the diagonals. The value of the Poisson ratio,
n ¼ 0:3; for the analyses presented here and Liew et al. [8], whereas, n ¼ 0:333 for the analysis
presented in Gorman [7] and Raju and Amba-Rao [11]. The shear correction factor, k ¼ 5

6
and the

thickness ratio h=a ¼ 0:001 are used in order to compare with the values obtained using the thin
plate theory. It is seen that the present results agree with the values of Liew et al. [8], Gorman [7]
and Raju and Amba-Rao [11].
4.2. Convergency studies

The superposition method can obtain arbitrarily accurate solutions by selecting the number of
terms in the Fourier series. In this study, the convergence is examined under three conditions as
shown in Table 5. The values of the Poisson ratio, n ¼ 0:3; and the shear correction factor, k ¼ 5

6
are used. This table confirms that the convergence is rapid for each mode under all conditions.
For all analyses reported in this paper, the number of terms in the Fourier series is 61:
Table 8

Frequency parameters, l; for rectangular plate with internal column resting on uniform elastic edge supports (n ¼ 0:3;
k ¼ 5

6
) 4
 4 column configuration, fixed support, f ¼ 1:0; c0=a0 ¼ 0:3; KL ¼ 10:0; KR ¼ 100:0; KT ¼ 100:0

Mode type Column area 2u; 2v Thickness ratio

h=a ¼ 0:01 h=a ¼ 0:05 h=a ¼ 0:10

Mode Mode Mode

1 2 3 4 1 2 3 4 1 2 3 4

SS Mode 0 38.192 38.637 47.403 55.717 37.629 38.020 45.640 54.938 36.196 36.513 41.371 52.882

0.1 50.510 51.899 51.998 60.249 41.645 41.956 47.633 56.256 37.339 37.642 43.861 53.289

0.2 54.107 59.053 59.058 62.888 51.982 54.025 54.062 60.589 43.278 43.496 47.451 55.446

0.3 58.827 65.694 67.204 67.306 57.180 63.833 64.078 64.506 52.177 53.218 53.290 59.112

SA Mode 0 43.946 46.114 78.144 85.604 42.722 45.284 76.755 82.797 39.607 43.403 73.075 76.024

0.1 51.438 55.756 91.672 93.526 45.491 48.220 80.567 85.836 41.497 44.348 74.161 79.218

0.2 56.509 60.989 97.199 103.754 53.124 57.117 93.028 95.417 45.971 48.790 80.005 84.230

0.3 62.876 66.853 104.089 117.122 60.479 64.378 100.725 110.740 52.878 55.995 91.006 91.916

AA Mode 0 46.248 77.284 86.956 118.181 45.012 75.412 84.481 114.971 42.073 70.886 78.351 106.833

0.1 53.647 90.111 95.706 129.529 47.570 79.376 87.581 118.045 43.665 72.958 80.582 107.700

0.2 58.717 99.026 102.353 136.322 55.135 92.118 96.881 128.511 47.827 79.055 85.602 112.190

0.3 65.047 110.442 111.130 144.337 62.483 105.027 106.674 137.955 54.493 89.527 93.911 120.183
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5. Numerical results and discussion

The frequency parameters for the rectangular plate with uniform elastic edge and column
supports are tabulated in Tables 6–8. The frequency parameters are presented for each mode type
for the thickness ratios, h=a ¼ 0:01; 0:05 and 0:10: All analyses are performed with the Poisson
ratio, n ¼ 0:3; the shear correction factor, k ¼ 5

6
; and the length of column, l ¼ 0:6a0: Table 6

presents the results for a square plate supported by 4 pinned columns (in a 2
 2 configuration),
where the lateral, rotational and torsional stiffnesses are KL ¼ 10:0; KR ¼ 10:0 and KT ¼ 10:0;
respectively. In Tables 7 and 8, KL ¼ 10:0; KR ¼ 100:0 and KT ¼ 100:0: Table 7 shows the results
for a plate with aspect ratio f ¼ 1:5; supported by 9 pinned columns (3
 3 configuration), and
Table 8 presents the results for a square plate supported by 16 fixed-based columns (4
 4
configuration).
It is seen that the frequency parameters decrease with increasing thickness ratio. This result is

only realized through the use of the Mindlin plate theory as the effect of shear deformation
Fig. 6. Eigenvalue variation for increasing values of KL or KR (3
 3 column configuration, pin support, f ¼ 1:5;
c0=a0 ¼ 0:2).



ARTICLE IN PRESS

F. Ohya et al. / Journal of Sound and Vibration 289 (2006) 1–24 21
increases with increasing plate thickness. For each particular mode type and thickness ratio, the
frequency parameters increase with column area, as the restraint of column increases as the cross-
sectional area of the column increases. As expected, it is seen that the frequency parameter
increases with the number of columns providing restraint.
Figs. 6 and 7 show eigenvalue variations according to increasing lateral and rotational

stiffnesses. The conditions of Figs. 6 and 7 correspond to Tables 7 and 8, respectively. The graphs
in the left column vary the lateral stiffness while the rotational and torsional stiffness are zero.
The figures show the variation in the eigenvalue as the edge supports transition from free to
simply supported. Therefore, the lower limit for the lateral stiffness (KL ¼ 10�7) corresponds to
the eigenvalue for the free boundary condition, whereas, the upper limit (KL ¼ 107) corres-
ponds to the eigenvalue for a plate with simply supported edges. In the same manner, the
columns on right vary the rational stiffness while fixing the lateral stiffness to KL ¼ 107 and the
torsional stiffness to zero and show the variation in the eigenvalue from simply supported to
clamped edges.
Fig. 7. Eigenvalue variation for increasing values of KL or KR (4
 4 column configuration, fixed support, f ¼ 1:0;
c0=a0 ¼ 0:3).
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Fig. 8. Mode shape 1 (3
 3 column configuration, pin support, f ¼ 1:5; c0=a0 ¼ 0:2; KL ¼ 10:0; KR ¼ 100:0; KT ¼

100:0; h=a ¼ 0:10; 2u; 2v ¼ 0:2).
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Figs. 8 and 9 show the first six mode shapes corresponding to the parameters in Table 7
(h=a ¼ 0:10; 2u; 2v ¼ 0:2) and Table 8 (h=a ¼ 0:10; 2u; 2v ¼ 0:1), respectively. The modes are
shown in order of increasing frequency parameters. The figures show that the mode shapes change
considerably for small changes in the frequency parameters.
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Fig. 9. Mode shape 2 (4
 4 column configuration, fixed support, f ¼ 1:0; c0=a0 ¼ 0:3; KL ¼ 10:0; KR ¼ 100:0; KT ¼

100:0; h=a ¼ 0:10; 2u; 2v ¼ 0:1).
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6. Conclusions

This paper presents an analytical method for the free vibration analysis of rectangular Mindlin
plates with simultaneous lateral, rotational and torsional elastic edge supports and internal
column supports, using superposition method. The accuracy of the present analytical method was
verified through comparisons with the results from other researchers. The analytical method can
be applied for the case of elastic edge supports, classical boundary conditions or mixed boundary
conditions, by setting the stiffness to appropriate values. The method accounts for the effect of
internal column restraint which increases with the column number and area. Furthermore, as the
present analytical method is based on Mindlin plate theory, the effects of transverse shear
deformation and rotary inertia are considered. It was shown that the eigenvalues decrease for
increasing plate thickness due to the effect of shear deformation. Finally, numerical examples
were presented for various conditions for the reference of other researchers.
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