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Abstract

The resonant scattering by a periodic infinite array of fluid-filled cylindrical cavities in an elastic matrix is
studied. The exact reflection and transmission coefficients of the array are calculated by means of a multiple
scattering formalism taking into account all the interactions between the cavities. Numerical results are next
given for low frequencies for which only the longitudinal and transverse zero modes propagate. A first
study based on the analysis of the transmission coefficients clearly shows that the resonances of the array
can be classified into two sets: those close to the resonances of a single cavity and those due to a resonant
coupling between a cavity and its nearer neighbors. The resonant coupling is due to the interaction between
the whispering-gallery surface waves propagating around each cavity. In the case of cavities with very close
spacing, it is observed that the dispersion curves of the waves propagating along the array can also be
classified into two sets: those with a positive group velocity have cut-off frequencies that correspond to the
resonances of a single cavity, those with a negative group velocity have cut-off frequencies that correspond
to the resonances resulting from the strong coupling. A new method for the analysis of the resonances is
presented. It is based on the properties of the scattering matrix and consists in studying the resonant
eigenvalues of the scattering matrix of the array once the background is removed. For the detection of very
fine resonances, as well as in the separation of several resonances very close to each other, this method
proves to be more efficient than one based on the analysis of the reflection and transmission coefficients.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When a plane wave is incident upon a periodic array of identical elastic tubes immersed in
water, a multiple scattering formalism is normally used to account for all the interactions between
the tubes [1-3]. In this formalism, the reflected and transmitted fields are expressed as a
superposition of modal plane waves. It has been shown that some of these modes are evanescent
while the others propagate [4]. Varadan et al., using the approach of the T-matrix widely
presented in Ref. [5], studied similar problem for SH waves propagating through an elastic slab
containing a periodic array of elastic spheres [6]. Later, Lakhatia et al. [7] studied the case of P
(or longitudinal L) and SV (or transverse 7) waves propagating through an array of cylindrical
cavities in a slab interposed between two elastic media. In this last case they obtained a complete
solution of the scattering problem by using a Fourier—Bessel mode-matching procedure
particularly valid for low frequencies.

In the present work, a different procedure is followed. The multiple scattering formalism of
Twersky [2] and Audoly [3] is generalized to describe the problem of a plane wave incident on a
linear periodic array of fluid-filled cylindrical cavities in an infinite elastic medium. Because of the
propagation of two types of waves, L and T, the reflected and transmitted fields depend on the
conversion of L waves into 7 waves, and vice versa. A mode conversion occurs each time a wave 1s
incident on a cavity. In order to take into account all the mode conversions due to the multiple
scattering process, the multiple scattering general theory applied to an arbitrary finite number of
cavities is first presented. Then, it is applied to the array consisting of fluid-filled cavities
embedded in an elastic medium. Although the validity of this analytical approach does not depend
on the frequency range investigated, the reflection and transmission coefficients are computed at
low frequencies. The frequency range investigated corresponds to that of the propagation of the
zero order mode only. The resonant behavior of the array is somewhat difficult to analyze because
of the existence of a background noise produced by the cavities. In order to circumvent
this difficulty, the scattering matrix associated with the array is constructed. Then, once the
background has been removed as recommended by the Resonant Scattering Theory (RST) [8], the
resonances are isolated from a study of the eigenvalues of the resonant matrix. The results are
compared to those obtained from the behavior of the squared modulus and the phase derivative of
the transmission coefficients. The procedure followed here differs from that of Ref. [9] where the
eigenvalues are obtained from the transmission matrix and computed with no considerations
about the background noise. As in Ref. [10], our study can be used to calculate the propagation of
waves in cavity bundles by considering these as a reticular plane of diffraction gratings [11].

2. Scattering by a finite number of cavities

The geometry is given in Fig. 1. We study a two-dimensional problem for which the axes of the
2N + 1 cylindrical cavities are parallel to the z direction. Let (d,, x.) be the polar coordinates
related to the cavity ¢ (—Nn<e< N) centered on O,, (r, 0) those of the point of observation on the
outside of cavities with respect to the main frame (O, x, y, z), and (., 0,) the polar coordinates of
the point of observation P in the frame (O;, x;, y,, z). Throughout the paper, ¢ and ¢ (resp. V)
indicate scalar (resp. z component of vector) potentials, and a e’ time dependence, while
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Fig. 1. Elastic scattering by a finite number of cavities: geometry.

omitted, is assumed. Let k;, = w/cp (resp. ki = w/cr) be the longitudinal L (resp. the transverse
T) wavenumber, with o the angular frequency.

A harmonic plane wave, either longitudinally or transversely polarized, is incident on all
cavities. The whole longitudinal scattered field, as well as the whole transverse scattered field, are
looked for. The procedure is quite simple and well-known [1-6]. Initially, the scattering properties
of each single cavity ¢ are supposed to be known, via its scattering coefficients Tﬁf)i’ (i,j=L,T)
defined below: the responses of the cavity to the incident longitudinal (i = L) or transverse (i = T)
cylindrical field J,(k;r,)e"* are the scattered longitudinal field Tﬁf)"LHfll)(kLrS)ei"(’s and the
scattered transverse field Tgf)iTH,(})(kTrg)ei"G*:(J,,(kirS) denotes the Bessel function of order n and
H Ell)(kfrs) the Hankel function of the first kind and of order n. The coefficients Tgf)” , where the
subscript # denotes a mode of vibration, are obtained from the boundary conditions at the fluid/
solid interface of the cavity [12]. Assuming these coefficients to be known, the whole field scattered
by a finite number 2N + 1 of cavities is expressed as the sum of the fields scattered by each cavity.
This procedure was presented in a previous paper [13]. It is summarized in the following in the
case of a longi-tudinal incident plane wave. Extension to the case of a transverse incident plane
wave is straightforward.

Assuming the incident L wave is propagating with an incidence angle oy, its potential can be
written in the frame (O, x, y, z) as follows

+00 +o00
Pine = elkLr cos(0—ar) _ Z ineflnocLJn(kLr)em() — Z aan(kLr)e”’U. (1)
n=—0o n=—oo
In the frame (O,, x;, y,,z), one has
+o00 ) ' +00 .
q)fz)c — Z aneldeg cos(afog)Jn(kLrs)emHg — Z Afj’)LJn(kLrg)e‘”"*‘. (2)
h=—00 n=—00

The overall L and T waves scattered by cavity ¢ are respectively written as [6]

+00 +00
¢O = > COMHD k)™, P =" COTHD(krr)e"". (3a,b)

n=—oo n=—0oQo
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In these expressions, the Hankel function of the first kind and of order n, Hf,“, is introduced
in order to respect the Sommerfeld radiation condition. For the unknown complex
coefficients CE,E)LT, for instance, ¢ refers to the cavity, L to the nature of the incident wave
and T to that of the scattered wave. It should be noted that interactions between cavities
are taken into account and each coefficient Cff)LL or C,(f)LT depends on all scattering
amplitudes TW/ (-N<e<N;i,j=L,T). The total acoustic fields incident on scatterer &
are then

S =0l +> 0, Y= v, (4a.b)
T#¢E T#E

where ), represents the sum of the fields of the same type scattered by all other scatterers e,
except scatterer ¢ itself. Next, the addition theorem [14] is used to translate the basis functions
from O; centers to the O, center:

+00
Hl(’ll) (kjrr) e = Z Sl Hizl—)m (kjrar)«]m (kjrs) elm0:

m=—0o0

= Z GV, (kjr,)e™" (5)

m=—

with j = L or T. Introducing Eq. (5) in Egs. (4a,b), it follows that

+00 +00
P =D AP DD GECH] T ) (6a)
n=—00 T#€& M=—0o0
and
Vine = Z [Z Z GETCOLT | T, (krr,)e™. (6b)
n=—00 | T#& m=—00

Consequently, according to the T-matrix approach [5,6], the waves scattered by scatterer ¢ can be
written as

d)gs) Z T(B)LL Hgl)(kLVE)eings

n=—00o

+00
+ Z TS:)TL

n=—00

A(B)L + Z Z G(‘ES)Lc(‘E)LL

T#& M=—00

+00
Z Z G;EZ)T C(‘E)LT

T#& m=—00

H (ke pr,)e, (7a)

+00
Agls)L + Z Z GS;Z)LC(T)LL Hgll)(kLra)elnGg

T#E& M=—00

+00
Z Z G](/;;)TC(T)LT

T#& mM=—00

+00
3 LT
W= T

n=—00

+00
+ Z TE:,&)TT
n=—00

HP Geprp)e™. (7b)
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Comparison of Egs. (7a,b) with respectively Egs. (3a,b) leads to the linear system

+o0 +oo
CS;:)LL _ T’(f)LL Z Z GS;Z)T ngrl)LL _ Tgls)TL Z Z G’(;Z)T C’(:,)LT _ TE[S)LL AE::)L’

T#& M=—00 T#E M=—00
+00 +o0
CS;)LT _ T,(f)LT Z Z G;(:,Z)LC;(:I)LL _ Tff)TT Z Z GE;Z)TCEZ)LT — TEIS)LTAEI{:)L' (8)
T#& M=—00 T#& M=—00

In the case of a plane incident 7 wave, one would find

+00 400
ngs)TL _ T’(f)LL Z Z Gg'r;l)L CE:;)TL _ Tgls)TL Z Z G,(:,Z)T C’(:,)TT — TE[S)TLAS:)T’
TF#E M=—00 TF# & M=—00
+00 +00
Cfx,S)TT _ TEZS)TT Z Z G’(;;)T CE;)TT _ T,(1£)LT Z Z GS;;)L C;‘;)TL — TEIS)TTA,(;;)T- (9)
T#E M=—00 TF#E& M=—00

The unknown coefficients Cff)LL and Cﬁf)LT (resp. Cff)LT and Cff)TT ) are found by solving the
linear system (8) (resp. Eq. (9)). The overall fields scattered by the linear array are next obtained
by summing all the scattered potentials d)E,’:) and npgc) . For a longitudinal incident plane wave, the

linear array scatters the potentials

N +00 N 400
¢ = Z Z COLLE M (e r,)ee, o, = Z Z COLT D (fepr, )0, (10a,b)
e=—N n=—00 e=—N n=—o00

Up to now, no assumptions on the respective positions of the cavities have been done, except that
the positions were supposed to be known. The particular case of the infinite number of cavities,
periodically placed in a linear array, is studied in the next section.

3. Scattering by a periodic array

The geometry of the problem is given in Fig. 2. It is assumed that all scatterers are identical and
equally spaced. The array is then a periodic one. By exploiting this periodicity and by assuming at
first the case of an incident L wave, one obtains

Cglr)Lj — C’(/;s)Ljei(r—s)de sin oy, — C;S)Ljei(r—s)(pL, ] — L or T, (11)

d being the distance between the centers of two consecutive cavities. In Eq. (11), ¢ is the number of
a given cavity, considered as a reference cavity, the choice of which being arbitrary. The following
parameters are then introduced.

p=1t—¢ pd=ryg 0,="04, (12)
with
0,=+mn/2if p<0, 0,=—n/2if p>0. (13)
With these notations, and using the Snell law

kL sin oy = kT sin ar, (14)
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Fig. 2. Elastic scattering by a periodic array of cavities: geometry.

system (8) becomes

+00
Z {[5,m - T,fLoL(m - n)] C,flL - TnTLUT(m — n)C,ﬁT} = Tf‘lLAﬁlL),
m=—00
+00
Y AL = Ty or(m = m)]|CLT = T ar(m —m)Cfy = T AP, (15)

In both equations of this system, o,,, represents the Kronecker symbol. The superscript ¢ has been
skipped because all scatterers are identical, and

ai(m—n) = Z Hg;)_n (kjp d) eikipd sin o oi(m—n)d, (16)
p#0
is the Schlémilch series [15] with j = L or 7. By replacing va:_ ~ by ;’ioo in Egs. (10a,b) and

by taking into account that all scatterers are identical, the overall fields scattered by the array can
be put in the form

+00 Ix
o= 5t v= 5 an (7
n=—00 n=—00
with
_ +oo ] .
S= 30 D ), = LorT. s

p=—00
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Eq. (18) represents a sum of cylindrical waves scattered by the individual scatterers. It can be
rewritten as sum of plane waves more suitable to express the array reflected and transmitted fields.
To this end, a differential operator that allows to increment or decrement the index of the Hankel
functions is introduced. If it is applied # times to a function (n can be as well a positive or a
negative integer), one writes it

1 0 al"
A= |28 o, 1
(_kj),, [ax—{—lay] if n=0 (19a)
., 1 [a a1 |

The operators A" are known as creation (n>0) or annihilation (n<0) operators in
quantum mechanics. The relation A"H{ (k;r,) = HV (kjr,)e"’ can be verified straightforwardly
to give

A"Z) =3 (20)
Next (see the Appendix), the following transformation is introduced
_ f cikipd sing,Hgl)(kjr ) — f iei(kL/’|x\+a;/)y) @1
¥ T =k
with
o)) = kj sino; + ? and kO = +(k? - 40") ) (22)

Zj then represents a sum of plane waves. Each propagates in its own direction given by the
pI‘O]eCtIOHS fx},’) and kl(,’) of its wavevector, with either the velocity of longitudinal waves (j = L) or
that of transverse waves (j = 7). From Eq. (22), oc(’) is real, while k;,’) may be complex. When
ki< |oc(/)| the pth plane wave is evanescent, the effectlve propagation being in the dlrectlon of the
array (y direction) while its amplitude decays in the x direction. Otherwise, if k;> |<x )|, it is
propagative. In order for the amplitude of the evanescent waves to decay as the dlstdnce of the
obse(g)vation point to the array is increased, one must choose, in Eq. (22), a positive imaginary part
of k.

Itpfollows from Eq. (20) that the right-hand side of Eq. (18) can also be expressed as a sum of
plane waves

+oo ) — ;:MO7" )

) 2 | Fik o) 0
> = § P P el(kp Ix[+oz; y)’ 23
n e kg) d kj (23)

where, in the brackets, the — sign corresponds to x>0 and the + sign to x <0. Consequently, the
potentials of the overall scattered fields (Egs. (17a,b)) are put in the form

+00 +x
s = { > C,fLA”}ZoL, W, = { > C,STA”}ZOT : (24a,b)
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The reflected and transmitted fields are both scattered fields, either evaluated at x<0 or at x>0
(see Fig. 2). In the case of an incident L wave, for instance, the reflected potentials (j = L or T,
x<0) may be finally written as

+oo +00
b= S5 D,y = S5 A s
p== p=—00
with
o2 = [0+ ik”
Lj __ Lj| P P
e p—— () P (26)
! kg)dn_z_:oo " ke
For the transmitted fields, we get
o LL (kP x+alFy = LT i(kD ypoD
Buans = Y, 10Ty = N Tl ) (27a.b)
p=—00 p=—00
with
— 2 &= [u —ikD]"
Lj _ - Lj | 7P P
ZP - 5;’0 + k(/')d Z C” kr (28)
p ¥ n=—0c0

In Eq. (28), 55)0 is defined by 550 = 0,0 (the Kronecker delta) and 5;;) = 0.
The equations above show that the array reflects and transmits an infinity of plane propagating
or evanescent waves following different angles defined from Eq. (22). The cut-off frequencies of

the linear array are the frequencies such that kg) = 0 [3]. Each value of p corresponds to two
different cut-off frequencies, f;,L) and fLT), satisfying f[()jil > fz(vj) (j=L,T). For frequencies less

than flf)L), all longitudinal modes of order po propagate if } po‘ < } p|, and are evanescent if ‘ po‘ > ‘ p’.

The two first cut-off frequencies, under which only the p = 0 modes L and T correspond to
propagating waves, are given by

() _ -
/e _d(l + sin ocj)’

G j=LorT. (29)

These frequencies are proportional to 1/d; the denser the array, the higher the cut-off frequencies.
They are also decreasing functions of o;. Moreover, as ¢; >cr, one has f (T <f LL As we are only
interested by the propagating p =0 modes L and 7 in the following, computations will be
expanded for frequencies less than f LT

Now, then, the waves reflected by the array, as well as those transmitted, are known. Both types
of waves are described as an infinite sum of plane waves, and each plane wave is indexed by the
integer p. The reflection and transmission coefficients, also indexed by p (cf. Egs. (26) and (28)),
contain infinite sums over the integer n. Their effective computation requires the series to be
truncated. One way to check all truncations have been correctly done is to check the conservation
of energy.
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4. Energy conservation laws and numerical study of the transmission through the array
4.1. Energy conservation laws

In this paper, all the reflection and transmission coefficients defined above have been computed
by using the following criterion of convergence: computation of a series is stopped as soon as the
moduli of two consecutive terms are less than 0.1% of the modulus of the truncated series.
Moreover, the exact calculation of these coefficients has been checked by verifying step by step the
energy conservation laws which are defined in this section. In addition, the energy conservation
laws will help us to build the scattering matrix in Section 5. Let u be the displacement vector and ¢
the stress tensor. The x component of the acoustic intensity vector j = (1/2)Re(—6.u*) can be

written, in the case of time harmonic waves where u = —iwu as
) %
o= 3Im(aMx n axyujf). (30)
The sign * denotes the complex conjugate, while
_ 09 oy _ 09 oy

N =T A la,
" ~ox oy’ “ 0y Ox (31a,)

represent the components of the displacement vector and
¢ Y ¢ Yy Y
= —Jk? 2ul =5 +=— w=U 22—+ =5 —= 2a,
Onx = —Hk1 9 + <a 7t axay> Ty “( oxdy T 52 6x2> (322,5)

are components of the stress tensor associated with a longitudinal field described by potential ¢
and a transverse field described by 1. The constants 4 and u are the Lamé coefficients of the elastic
medium. The energy flux in the increasing x direction perpendicular to the array is

400
J= / j.dy. (33)

o0

In the case of an incident L wave, ¢ = ¢,;,. and = 0. If the incidence angle is o,
. @ ,
Jinex = 5k3L(A + 2u)cosay . (34)

The transmitted waves are in this case ¢ = ¢ and Y = Yo, It follows from Eqgs. (27), (31)
and (32) that

. = (42 )kzgfk@)tu n k wi’fk(T)ler 35)
Jtransx — 4 n L2 K 2 = P |P :

For the reflected waves, we get similarly, from Egs. (25), (31) and (32)
B +00 ) W +00 5
D A Sl e ST S e I (36)
p=—00 p=—00

Now, the expression of the flux balance
Jine + Jreft = Jtrans (37)
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with Jine, Jren and Jirans obtained by using Eq. (33) and the appropriate j, defined above, leads to
the energy conservation law for an incident L wave

+ (L) (T) (L) (T)

3| CATIR AT A T -
&L |'r L |'r L |» L |'p -

p=—o0 \Kg kg kg kg

with kgL) = kg cosay. The energy conservation law, for an incident 7 wave and an incidence angle

ar, 18 obtained the same way (kf)T) = kycosar):

“+00 (k(L) ’2 k(T) ’2 k(L) ’2 k(T) ‘2>

Z P TL + )4 T + 4 [LL

L _ = 1. (39)
e kE)T) p kE)T) p kE)T) p

4.2. Numerical study of the transmission through the array

Throughout the paper, the numerical studies are performed for an array of water-filled cavities
embedded in an aluminum matrix with the following parameters: density p = 2700kg/m?,
longitudinal velocity ¢, = 6380 m/s and transverse velocity ¢z = 3140 m/s. The water parameters,
density p,, = 1000 kg/m? and sound velocity ¢,, = 1494 m/s, are contained in the single scattering
coefficient Tﬁf)"j previously mentioned in Section 2. Scattering by a single cavity is a function of
xr = kra, with a the radius of the cavities. The period of the array is d = fa. As the cut-off
frequencies are inversely proportional to d, the frequency dependence of the behavior of the array
may be wholly described by its dependence on x;. This is the reason why all figures will be plotted
versus x;. Whatever the frequency and the incidence angle, energy conservation has been
numerically verified with less than 0.001% error. Moreover, we found that only the propagating
modes p need to be taken into account, in Eqgs. (38) and (39). This is rather logical, as evanescent
waves do not carry energy in the x direction (an evanescent wave propagates in the y direction,
while its amplitude decays in the x direction).

The following study has been performed for low frequencies, such that only the p = 0 modes are
propagating waves. Each transmitted field in Egs. (27a,b), then, is a sum of only one propagating
wave and an infinite number of evanescent ones. However, provided the result is evaluated far
enough from the array itself, only the propagating waves need to be taken into account in the
calculation of either the transmitted fields, or the reflected ones. Four transmission coefficients of
the array, then, may be determined, which are 5, /57, ¢f*, and #l7.

4.2.1. Comparison of squared moduli and phase derivatives of the transmission coefficient

We have studied the squared modulus and the derivative with respect to frequency of the phase
(simply called the phase derivative below) of the transmission coefficient 7. The squared
modulus of the transmission coefficient is a quantity which can be straightforwardly obtained
from an experimental measurement. This is the reason why it has been investigated first. In
addition, many investigators detect resonances from the peaks of the modulus of the transmission
coefficient. The phase derivative of the transmission coefficients is also studied because it has been
shown that it is an even more efficient tool for the detection of resonances. This tool is based on
the study of the dynamics of the phase of the transmission coefficients with regard to the
frequency. However, the phase derivative is easier to use theoretically than experimentally [16].
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Our first effort has been to compare the results obtained from the squared modulus of the
transmission and from the phase derivative. The case of the incident L wave with «; = 0° is shown
in Figs. 3 and 4 for two different distances between the cavities: = 2.05 and = 3. The
respective first cut-off frequenciestT then correspond to x; = 1.03 and x; = 1.51. For ff = 2.05,
resonances in Fig. 3 can be classified into two sets: those close to the resonances of a single cavity,
called ‘single cavity resonances, their values of which are x; = 0.42, 0.70, 0.89, 0.96, 1.16, 1.25,
1.42; and those pointed at x; = 1.39 and x; = 1.49 on both sides of x; = 1.42. As predicted, they
are clearly observed in Fig. 4. In addition, the two single-cavity resonances x; = 1.16 and x; =
1.25 observed in Fig. 3 are seen to be split each into two others. A similar phenomenon can be
observed for f = 3. For a given resonance, the comparison of the two curves shows the following
phenomenon: the narrower the peak of the resonance in Fig. 3, the higher the amplitude of the
phase derivative in Fig. 4. If the amplitude of the phase derivative at a maximum is denoted by
2/y, the half-width I' measured in Fig. 3 is such that I'>7v. For the resonance at x; = 0.42 one has
I' >~ 0.048 and y ~ 0.044 (2/y ~ 45.3), while for x; = 0.70, I' ~ 0.01 and y >~ 0.009 (2/y =~ 215).
The relation I"' >y is due to the fact that peaks in Fig. 3, even isolated, have not really a resonance
curve shape because the transmission coefficient is perturbed by the so-called background
discussed in Section 5. By derivating the phase, a part of the perturbation (the slowly varying part
due to the background) becomes negligible. So, it appears to us that the values of y are more
representative of the resonance half-widths than those of I'.

4.2.2. The splitting of resonances

For a finite linear array of elastic shells immersed in a fluid, the splitting of resonances has
already been observed at low frequency [17]. In such a case, the resonances of a single shell that
split are all related to the bending A wave [18]. This phenomenon is called resonant interaction. It
is not surprising to observe a resonant interaction in the frequency range where the bending A
wave circumnavigates a single shell. The energy of this wave is known to be mainly localized in the

Transmission coefficient squared modulus

0.8 1 12 1.4

Reduced frequency

Fig. 3. Squared modulus of the transmission coefficient 75~ plotted versus the reduced frequency x; for two distances
between the cavities: f = 2.05 (in solid line) and § = 3 (in dotted line); o; = 10°.
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Fig. 4. Modulus of the phase derivative of #f* plotted versus x; for f = 2.05 (in solid line) and f = 3 (in dotted line);
oy = 10°.

surrounding fluid. Consequently, the bending A wave (one bending A wave propagates around
each shell of the finite linear array) can interact as the distance between the shell axes diminishes.

In a previous paper [13], it was shown that resonant interactions also occur for a finite number
of water-filled cavities embedded in a solid, with the emergence of a large number of resonances
due to the splitting of the resonances of a single cavity. Resonances of a single cavity occur each
time a whispering-gallery surface wave [12] circumnavigates the cavity with such a phase velocity
that an integer number of wavelengths fits over its circumference. However, the strong reemission
of the energy from the cavities into the solid gives rise to unknown resonant coupling mechanisms
that are much more complicated than in the fluid case previously discussed. Properties of the
whispering-gallery surface waves are less known than those of the bending A wave. In our
opinion, the splitting of resonances observed in Fig. 4 for the periodic infinite array of fluid-filled
cavities embedded in a solid is also due to a strong coupling between the cavities caused by the
whispering-gallery surface waves.

Two points are worth underlining. Firstly, a resonant interaction takes place especially for a
small distance between the cavities. This leads us to classify the resonances of the array into two
sets : those close to single cavity resonances and those due a resonant coupling between each
cavity and its nearer neighbors. Secondly, the splitting of resonances always happens around the
single-cavity resonances. For f = 2.05, both resonances at x; = 1.16 and at x; = 1.25 are split
into two, and resonance at x; = 1.42 is split into three. One reason why the scattering matrix
formalism is introduced later is to clarify this phenomenon.

4.2.3. Dispersion curves obtained by using the phase derivatives

In the following, the resonances will be studied with the phase derivative of the transmission
coefficients, rather than from their squared moduli. In order to get an overview of the resonant
properties of the array, the phase derivative of the transmission coefficients 75*and 57 are plotted
in Figs. 5 and 6 versus both the reduced frequency and the incidence angle, for f = 2.05. In this
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case, the cavities of the array are close to each other. The maxima of the phase derivative
(which point out the resonance frequencies) draw black curves on the diagrams. One can note that
the resonant behavior of the array is rather complicated, particularly in the vicinity of the cut-off
frequency. Generally speaking, the phase derivatives of the two transmission coefficients show the
same resonant behavior, except in the frequency range 0.2<x;<0.3 where an additional
resonance is detected for the f7transmission coefficient. The other transmission coefficients
(1IF and IT) show similar results. The vertical dotted lines in Figs. 5 and 6 indicate the resonance
frequencies of a single cavity. For small incidence angles (x;<10°), most of them are also
resonances of the array. This result confirms that the resonances of the single cavity play a great
role in the resonant behavior of the array. When the distance between cavities is larger (f = 3), as
in Fig. 7, all the resonances of the array are simply single cavity resonances. For very close cavities
(f = 2.05) and large enough incidence angles (o; >10°), the resonant coupling is reinforced.
Clearly, there are new resonances which are not detected at small incidence angles.

The curves in Figs. 5-7 can also be interpreted in terms of dispersion curves associated to waves
propagating along the array. As for Lamb waves in elastic plates [19], the excitation angle 0 of
these waves is related to k’y, the real part of the complex wavenumber k, = k; sin oy + 2nn/d that
characterizes the propagation in the y direction, as follows

/

sin 0 = é (40)

The phase velocity ¢, of the waves is classically given by k;, =w / ¢pi- Consequently, we get the
relation between 0 and ¢, namely sin 0 = ¢, / cpi- Two types of dispersion curves are observed in
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Figs. 5 and 6 according to the sign of the group velocity. The waves with a cut-off frequency
corresponding to a single-cavity resonance have always a positive group velocity. On the contrary,
most of the other dispersion curves, those with a cut-off frequency that does not correspond to a
single-cavity resonance, show a negative group velocity. It is worth to note that there is no
repulsive phenomenon when the curve of one type of wave meets one of the other type. The
dispersion curves intersect. It is not surprising because the energies of the corresponding waves
propagate in opposite directions along the array. From the wave propagation point of view, this is
certainly the most interesting phenomenon. Unfortunately, even for the simpler case of Lamb
waves propagating in elastic plates, the reason why waves have a negative group velocity is not
well understood.

As a conclusion to this section, the resonances of the array can be classified into two sets, those
of a single cavity, and those due to a coupling between the cavities. Most eigenmodes of the array
have a negative group velocity.

5. Scattering matrix for the array p = 0 mode

The curves we have plotted so far are rather complicated to use for a precise analysis of
resonances, for which both the position and the width have to be determined. For a simpler
structure such as an elastic plate in water, it has been shown that the eigenvalues of the scattering
matrix make easier the physical interpretation of the reflection and transmission coefficients of the
plate [20]. Proceeding in the same way, the computations of the eigenvalues of the scattering
matrix of the array should, theoretically, supply us with more information. Unfortunately, in the
present case, the problem is more difficult, because the resonant behavior of a single cavity or of
an array in an elastic medium is widely masked by a background. So, it is rather difficult to obtain
accurate values of the resonance frequencies. One of the key moments of the resonant scattering
theory (RST) is the separation of the field scattered by an elastic object into two components [8],
namely, the background and the resonant component. The background varies slowly with
frequency, while the resonant component varies fast. Isolation of the resonant component may be
achieved in different ways. The simplest method consists in removing, from the considered
scattered field, the field that would be scattered by a reference scatterer. This field is the
background. The skill required is in choosing that background, i.e. the reference scatterer. In early
applications of the RST to acoustics [8], two different reference scatterers were considered: the
rigid one (Neumann boundary condition) and the soft one (Dirichlet boundary condition). No
waves can penetrate into such scatterers, and it was assumed that they could not give rise to
resonances. In order to explain the physical meaning of the background, it is useful to discuss the
scattering process in terms of geometric and surface waves. Consider, for example, the scattering
by a single fluid-filled cavity. There are the specularly longitudinal and transverse reflected waves,
which are geometric type waves, the creeping (or Franz) waves and the peripheral elastic waves,
which are surface waves circumnavigating the cavity. Scattering by a rigid or a soft scatterer gives
rise to the reflected and creeping waves only. It has been shown that if the background chosen is
correct, the reflected and creeping waves of the reference scatterer practically coincide with those
of the elastic scatterer. Then, after removal of the background from the field scattered by the
elastic object, the only contribution left is that of the peripheral elastic waves, which are
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responsible for the resonances. According to the RST, the only way to remove the background is
to factorize the scattering matrix S = SOS® | with S associated with the background and S®
with the resonant component of the field. The next step, then, is the construction of the scattering
matrix S of the array.

5.1. Scattering matrix of the array

As before, the frequency range investigated is such that only the zero modes are propagating
waves. The main property of the scattering S matrix is its unitarity ; this is due to energy
conservation. So, our first step in the construction of the S matrix will be deduced from energy
conservation laws, Egs. (38) and (39), established in Section 4.1, in which the infinite summation
may be reduced to the p = 0 terms

(T) (T)

k k
4 T S+t 6T =1, @41
0 0
A A
IS+ T+t I+ 1T = 1 (42)
0 0

The following relationships between coefficients hold (they can be verified from computations):

1 1
TL LT TL.  _TL,LT L

Yo To =rr’o s Yo ly ==zl (43)

0 0
with
kP
LT 0
2 S T (44)

0 kgT) X

The problem consists now in building a matrix S that verifies the following unitarity condition [21]
SSt=StS=1,, (45)
where + denotes the hermitic conjugation and I; the identity matrix. Of course, S will be well

defined if Eq. (45) involves Eqgs. (41) and (42). The most natural way to solve this problem is to
introduce a matrix that takes into account the mode conversions between the L and T type waves

Set SIE]
L ““
where each component Sg (i,j = LorT)is a (2 x 2) submatrice defined as
i i
I O
Sy = xg[ Ak (47)
Ly To|

with xg = 1if i = . First, it is easy to show analytically that Eq. (45) involves Egs. (41) and (42).
Then, the unitary character of the S matrix defined in Eq. (46) has been checked numerically. Two
general properties of unitary matrices in addition to Eq. (45) are: (i) the eigenvalues have absolute
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value unity, (ii) the associated eigenvectors define an orthonormal basis. Consequently, the S
matrix can be put in the diagonal form Sg,.

5.2. Numerical results

In order to remove the background, the S matrix is factorized:
S =SOs® (48)

with S© the scattering matrix related to the array made up of empty cavities and S the resonant
matrix. In this way, the simple interactions due to the reflections between two neighboring
cavities, which are almost the same for empty cavities as for fluid-filled ones, are cancelled. Such a
choice of the background leads to keep only the fluid—solid interactions for the multiple scattering
analysis. Then, the S® matrix is diagonalized. Its eigenvalues are the roots of a characteristic
polynomial of degree four which cannot be factorized easily. Although it would be possible to
obtain those roots analytically, we have searched them numerically to avoid numerous square
root determinations. A (4 x 4) diagonal matrix ngg is then obtained, from which is constructed
another diagonal matrix, the resonant Tgig matrix [5]:
1
T, =3; (S5 —1a). (49)
The squared moduli of the elements of this new matrix are plotted versus frequency in Figs. 8
and 9. Fig. 8 corresponds to f =3 and o, = 0°. This curve shows a series of well-shaped
Breit—Wigner curves [22]. As established by the RST, each peak corresponds to a resonance. The
most interesting result is that the splitting of resonances, already observed in Fig. 4, is much better
shown here. In Fig. 4 (dotted lines), there is only one resonance around x; = 0.9, while there are
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Fig. 8. Squared moduli of the four eigenvalues of the scattering matrix S® of the array plotted versus x; for
0.2<x, <1 with = 3.
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Fig. 9. Squared moduli of the four eigenvalues of the scattering matrix S® of the array plotted versus x, for
0.2<x,<1.5 with g =2.05.

two of them in Fig. 8. However, in Fig. 8, we got rid of the background and the two resonances do
no more overlap as in Fig. 4. The second curve considered corresponds to f = 2.05 and a; = 10°.
Fig. 9 shows the evolution with regard to the frequency of the squared moduli of the elements of
ngg- As previously, a series of well shaped Breit—Wigner curves is observed. Once more,
comparison with Figs. 5 and 6 shows that a few resonances, detected from the analysis of the
resonant eigenvalues, are not observed on the phase derivative curves, because of the interference
effect due to the background. It is interesting to compare the half-widths I'gr obtained in Fig. 9
with the half-widths y furnished by the phase derivative plotted in Fig. 4. For x; = 0.42, I'gp =~
0.043 and y >~ 0.044 while for x; = 0.70, I'gr =~ 0.009 and y =~ 0.009. Actually, after computation
of the resonance half-widths, one finds the relation I'gr <y<I. This leads to conclude that for
most of the resonances, I’ gr furnishes the best estimation.

As a conclusion of this section, from a theoretical point of view, the study of the resonant
eigenvalues is the best tool for analyzing the resonant behavior of the array.

6. Conclusion

A multiple scattering formalism for an array of fluid-filled cylindrical cavities has been
presented. The reflection and transmission coefficients have been computed at low frequencies
where only the longitudinal and transverse zero modes propagate.

A first resonance study, based on the analysis of the transmission coefficients, reveals that the
resonances of the array can be separated into the single-cavity resonances and the ones resulting
from a resonant coupling between each cavity and its close neighbors. The dispersion curves of the
waves propagating along the array have been classified into two sets. Those with a positive group
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velocity have cut-off frequencies that correspond to the single-cavity resonances. Those with a
negative group velocity have cut-off frequencies that corres-pond to the resonances resulting from
the strong coupling.

The resonances have been studied by analyzing the scattering matrix eigenvalues of the array.
The background noise produced by the cavities has been removed by following the Resonant
Scattering Method (RST). It appears that the use of the resonant eigenvalues is a much more
powerful method than the one based on analysis of the transmission coefficients. It allows us to
detect very thin resonances as well as to separate two resonances that are very close to each other.
However, from an experimental point of view, it is again not possible to obtain the resonant
eigenvalues. This is the reason why it remains of interest to study the transmission coefficients,
and especially the derivative with regard to the frequency of their phases, which is the more
efficient method to detect resonances in this case.

Appendix
The Hankel function H (()1) (kjrg) is the solution of the nonhomogeneous Helmholtz equation
(v2 + kj)Hg”(k,r,,) — 40(x)3(y — pd), (A1)

in which V? = 8%/0x? 4+ 9°/0)? denotes the Laplacian and d(e) the Dirac distribution. From
Eq. (A.1) and the Poisson sum formula, one deduces [1] that

v+ i) 5 = Mo S ad A2
(V+0)5h =Zo0) Y o, (A2)

p=—00

with oc[()f) = sin o; + 2np/k;d. The physical solution v{, of the partial differential equation

<v2 + k})lg, — 4i5(x)eirs’ (A.3)
being
, 2 a0 ")
v = ——— (K +y) (A.4)
P )
o kpj d
with k;j) = <k]2 — ag)2> , one can write
S=> 1 (A.5)
p=—0o0

which represents the right-hand side of Eq. (21). Here, the choice of the positive determination for
k;’) leads to

lim X =0 (A.6)

|x]—+00

and ensures that evanescent plane waves are scattered by the array.
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For 3/, one applies the operator A", Eqs. (19a,b), to the Hankel function Hf)l)(kjr,,) to give
HV (kjr,)e". 1t then follows that
AZ =3 (A.7)

Eq. (23) is now proved by considering separately the cases x>0 and x<0. If x>0, Eq. (A.5)
becomes

Zj _ > 9 i(k(/')x+o<;,j)y) A8
0+ — pzoo KDdq e (A-8)
== P

and one obtains, after having applied A" to Z{) 4
+o00 0 _ D" )
. 2 | ik iy
D= WO e ei(kyx+2"y) (A.9)
j

p==x""p

If x<0, one has analogously
x 2 oc},j) + ik;j) "
) .
p=—00 kpj d ki
By unifying Eqgs. (A.9) and (A.10), Eq. (23) is found.

5= el (ki x+o) (A.10)
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