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Abstract

This paper deals with the nonlinear vibration and dynamic response of a functionally graded material
(FGM) plate with surface-bonded piezoelectric layers in thermal environments. Heat conduction and
temperature-dependent material properties are both taken into account. The temperature field considered is
assumed to be a uniform distribution over the plate surface and varied in the thickness direction of the
plate, and the electric field is assumed to be the transverse component E. only. Material properties of the
substrate FGM layer are assumed to be temperature-dependent, and graded in the thickness direction
according to a simple power-law distribution in terms of the volume fractions of the constituents, whereas
the material properties of piezoelectric layers are assumed to be independent of the temperature and the
electric field. The nonlinear formulations are based on the higher-order shear deformation plate theory and
general von Karman-type equation, which includes thermo-piezoelectric effects. The numerical illustrations
concern nonlinear vibration characteristics of functional graded plates with fully covered piezoelectric
actuators under different sets of thermal and electric loading conditions. The effects of temperature change,
control voltage and volume fraction distribution on the nonlinear vibration and dynamic response are
examined in detail.
© 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a,b length and width of a rectangular plate

d31,ds; piezoelectric strain constants of a piezo-
electric layer

A, B, D, E, F, H stiffness matrices

Ay, By, Dy, E3 Fr, H oreduced  stiffness ma-
trices

Ny, My, P;; dimensionless forms of forces,
moments and higher-order moments

t time

Ty, T, temperature on the upper and low
surfaces of a rectangular plate

Vuy, Vi applied voltage on the upper and low
piezoelectric layers

U,V,W displacement components

u,v,

E Young’s modulus W dimensionless forms of displacement
F stress function components
F dimensionless form of stress function w* dimensionless form of initial deflection
F* dimensionless form of initial stress o thermal expansion coefficient

function Kr thermal conductivity of an FGM layer
G shear modulus Kp thermal conductivity of a piezoelectric
h total thickness of a rectangular plate layer
he thickness of an FGM layer v Poisson’s ratio
hy thickness of a piezoelectric layer @ frequency
k, 1, m,n displacement mode number Y., ¥, mid-plane rotations
N volume fraction index VY., ¥, dimensionless forms of mid-plane rota-
Ny, My, Py forces, moments and higher-order tions

moments ¥\, ¥} dimensionless forms of initial mid-plane

rotations

1. Introduction

Functionally graded materials (FGMs) have gained considerably attention in engineering
community, especially in high-temperature applications such as spacecraft and nuclear plants, due
to their advantages of being able to withstand severe high-temperature gradient while maintain
structural integrity. FGMs were initially designed as thermal barrier materials for aerospace
structures and fusion reactors. They are now developed for the general use as structural
components in high-temperature environments, and consequently many studies on thermo-
mechanical characteristics of FGM plates are available in the literature, see, for example Refs.
[1-6]. Liu and co-workers [7,8] studied numerically the mechanics problem for FGM plates in as
earlier as 1991. Furthermore, they [9-11] analyzed the wave characteristics of functionally graded
piezoelectric materials by using an inhomogeneous layer element method.

In recent years, with the increasing use of smart material such as piezoelectrics, shape alloys,
and rheological fluids in vibration control of plate structures, the mechanical response of FGM
plates with surface-bonded piezoelectric layers has attracted some researchers’ attention. Among
those, He et al. [12] and Liew et al. [13—15] presented the finite element formulation for the shape
and vibration control of FGM plates with integrated actuators and sensors by using classical plate
theory (CPT) and first-order shear deformable plate theory (FSDPT). Ootao and Tanigawa [16]
studied the transient piezothermoelasticity of a functionally graded plate with surface-bonded
piezoelectric layers on the basis of 3D elasticity. Reddy and Cheng [17] gave the 3D asymptotic
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solutions for functionally graded plates with an active material layer to suppress the vibration
amplitude by using the transfer matrix and asymptotic expansion technique. All the
aforementioned studies focused on the linear vibration problems. In fact, when the plate
deflection-to-thickness ratio is greater than 0.4, the nonlinearity is very important and should be
put into consideration. Yang et al. [18] presented a large amplitude vibration analysis of an FGM
plate with surface-bonded piezoelectric layers by using a semi-analytical method based on 1D
differential quadrature and Galerkin technique. In their analysis, however, the heat conduction
and/or temperature-dependent material properties are not accounted for.

The present work attempts to solve this problem, that is, to provide analytical solution for
nonlinear free and forced vibration of FGM plates with surface-bonded piezoelectric layers in
thermal environments. The temperature field is assumed to be constant in the plane and only varies
in the thickness direction of the plate, and the electric field is assumed to be the transverse
component E. only. Material properties of the substrate FGM layer are assumed to be temperature-
dependent, and graded in the thickness direction according to a simple power law distribution in
terms of the volume fractions of the constituents, whereas the material properties of piezoelectric
layers are assumed to be independent of the temperature and the electric field. The formulations,
including thermo-piezoelectric effects, are based on Reddy’s higher-order shear deformation plate
theory [19] and general von Karman-type equations [20-22]. An improved perturbation technique is
employed to determine the nonlinear frequencies and dynamic responses of the hybrid FGM plate
with surface-bonded piezoelectric layers. Due to the bending and stretching coupling effects, a
nonlinear static problem is first solved to determine the pre-vibration deformation caused by
temperature field and control voltage. By adding an incremental dynamic state to the pre-vibration
state, the equations of motion are solved by an improved perturbation technique to determine
nonlinear frequencies and dynamic responses of hybrid laminated plates. The parametric studies
show the effects of volume fraction index, temperature change and control voltage on the natural
frequency, nonlinear to linear frequency ratio and dynamic response of the hybrid FGM plate.

2. Theoretical development

The hybrid laminated plate considered herein comprises a substrate FGM layer with surface-
bonded piezoelectric layers, as shown in Fig. 1. The substrate FGM layer is made from a mixture

Piezoelectric layer (h,) A Z
i -
FGM layer (hy) —
- » [
0 hi
Piezoelectric layer (hy)

Fig. 1. Schematic diagram of a hybrid FGM plate.
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of ceramics and metals. The length, width and total thickness of the hybrid laminated plate are a,
b and h. The thickness of the FGM layer is /iy, while the thickness of each piezoelectric layer is /,,.

In order to accurately model the material properties of FGMs, the properties must be
temperature-dependent and position-dependent. This is achieved by using a simple rule of mixture
of composite materials. The effective material properties Py of the FGM layer, like Young’s
modulus E7, and thermal expansion coefficient oy, can then be expressed as

Pr=> Py, )
=

where P; and V' are the material properties and volume fraction of the constituent material j, and
the sum of the volume fractions of all the constituent materials makes one, i.e.

Y V=1 @)
=1

It is assumed that the constituent material properties can be expressed as a nonlinear function
of temperature (see Ref. [23])

Pj=Py(P_iT™" + 1+ P\T + P,T* + P;T), (3)

where Py, P_i, P;, P, and Pj3 are the coefficients of temperature 7 (K) and are unique to the
constituent materials.

In addition, a simple power-law exponent of the volume fraction distribution is used to provide
a measure of the amount of ceramic and metal in the FGM. In the present case, the volume
fraction of ceramic is defined as

NN
2Z+@> @

VC(Z) = < 2hf

in which volume fraction index N dictates the material variation profile through the FGM plate
thickness and may be varied to obtain the optimum distribution of component materials.

We assume that the composition of the FGM layer is varied from the top to the bottom surface,
i.e. the top surface (Z = hy/2) of the plate is ceramic-rich whereas the bottom surface (Z =
—hy/2) is metal-rich. The effective Young’s modulus £, and thermal expansion coefficient oy of
the FGM layer are of temperature-dependent, whereas the mass density Prs Poisson’s ratio v, and
thermal conductivity ks are independent to the temperature. From Egs. (1)~(4), one has

N
EZ, T>=[EZ(T>—Eb<T)1<222,;hf ) T ED), (sa)
N
(7, T)=[af(T>—ab(T>1<222;hf ) (7). (5b)
N
w(Z):(v,—vb)(zZz,;’“f) " (50)
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27 4+ h\ Y
pf(Z)=(p,—pb)< 2;; / ) + Pps (5d)

\NN
(2= =0 (5 )+ (59

in which subscripts ‘¢ and ‘b’ imply the top and bottom surfaces of the FGM layer respectively.

We assume that the temperature variation occurs in the thickness direction only and 1D
temperature field is assumed to be constant in the XY plane of the plate. In such a case, the
temperature distribution along the thickness can be obtained by solving a steady-state heat
transfer equation

d dT
~dz {K(Z) d_Z] =0, (6)

where
Kp (hy[2<Z<hp + Iy /2),

kK(Z) ={ k(Z) (=hy/2<Z<hy/2), (7a)
Kp (—hp—hf/2<Z<—hf/2),

Tp(Z) (hf/2<Z<hp + /’lf/2),
T(Z2)=1{ TH(2) (—h/2<Z<hy/2), (7b)
TWZ) (=hy—hy/2<Z< ~ Iy /2),

where «, is the thermal conductivity of piezoelectric layers. Eq. (6) is solved by imposing the
boundary conditions

hy - hr
T, (hp + 2f> =Ty, T, (—hp - 2f) =T (8a)
and the continuity conditions
Tyhy [2) = Tylhy/2) = T1,  Ty(=hy/2) = Tp(~hy/2) = T, (8b)
dT,(2) dT/(Z) dT,(2) dT(2)
K =K , K = Kp (8¢c)
! dZ Z:/’lf/2 [ dZ ZZ/’I]/Z ! dZ Z:—/’l/'/z dZ Z:—h/‘/z

The solution of Egs. (6)—(8) can be expressed as polynomial series [24]

u(z _ hf/2),

T(Z)=T+
hp

o T —T
TW(2)=T,+-2 "L

(Z + hy /2 + hy),
hP
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27 +h 27 + h\ M 27 + hp\ V! 27 + hp\ N
Tf(Z) = +Cl1< f> +a2< f) +Cl3< f) +a4< f)

20, 2y 2y 2h,
2Z /’l i 4N+1 2Z h i S5N+1
boas( 2N p (Y Loz, ©)
2h, 2h,

where constants 7', T, and a; (j = 0—6) can be found in Appendix A.

From Egs. (5a) and (5b), it can be seen that E; and o, are functions of temperature and
position.

Suppose the plate is subjected to a transverse dynamic load ¢(X, Y, ). The coordinate system
has its origin at the corner of the plate on the middle plane. Let U, ¥ and W be the plate
displacements parallel to a right-hand set of axes (X, Y, Z), where X is longitudinal and Z is
perpendicular to the plate. ¥, and ¥, are the mid-plane rotations of the normals about the Y and
X axes, respectively. Reddy [19] developed a simple higher-order shear deformation plate theory,
in which the transverse shear strains are assumed to be parabolically distributed across the plate
thickness and which contains the same dependent unknowns (U, V', W, ¥, and Sf’y) as in the first-
order shear deformation theory, but no shear correction factors are required. Based on Reddy’s
higher order shear deformation plate theory, Shen [20] derived a set of general von Kérmén-type
equations which can be expressed in terms of a transverse displacement W, two rotations ¥, and
?’}, and stress function F defined by N, = F,yy, Ny =F,. and ny = —F,xy, where a comma
denotes partial differentiation with respect to the corresponding coordinates. These general von
Karman-type equations are successfully used in solving many nonlinear problems, e.g. nonlinear
bending, postbuckling and nonlinear vibration of shear deformable laminated plates (see Refs.
[25-27]). Following Shen [20], we can easily obtain the motion equations of the hybrid FGM plate
including thermo-piezoelectric effects as

Ly(W) — Lio(Py) — Lis(P,) + Lia(F) — Lis(N"y — Lig(1")

— LW, F)+ Liy(W) + I (aal‘j( %q;> +q, (10)
Loy(F) + Loo(P) + Loz (P,) — Loa(W) — Las(N") = —% Lw, W), (11

L o . oW .
L31(W) + L3(¥x) — L33(¥y) + Laa(F) — Las(N") — £36(8") = I i + 10 ¥y, (12)

oW

La(W) = Ln(P) + Las(P,) + Laa(F) — Las(N") — La(3") = Iy = 37

+11()'P (13)

in which /; and /; are defined as in Huang and Zheng [27], and the linear operators L;() and the
nonlinear operator L() are defined as in Refs. [21,22].
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In the above equations, the superposed dots indicate differentiation with respect to time. The
equivalent thermo-piezoelectric loads are defined as

N N NE
Mt =M+ | . (14)
S* ST SE

For the plate type piezoelectric material, only thickness direction electric field E is dominant,
and Ez is defined as Ez = —® z, where @ is the potential field. If the voltage applied to the

actuator in the thickness only, then
V
E;=-"*, (15)
hy,

where V. is the applied voltage across the kth ply and /; (k = 1 and/or 3) is the thickness of the

piezoelectric ply.
The forces, moments and higher-order moments caused by temperature or electric field are

defined as

=T =T 5T
G g 2 bl
, r B :zk: . Ay (1,Z,ZHAT(Z2)dZ, (16a)
—- - - —f—1
ny Mxy Xy Wl
.| [ P,
=T - T 4 =T
yo| = My 2| Y (16b)
aT - T 3h™ |
Sy M., P,
or
<E . E  5ET
X MX Pf h B.X
~E .~ E sE k V
Coa P =y [ B aizz) bz (160)
<E -=E sE k Y=l | B k
ny Mxy ny Wl
Sc] [ P,
=E - E 4 | 5
O R 7 iy o (16d)
oE - E 3h™ | g
x| M, Py
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where AT(Z) = T(Z) — T is temperature rise from the reference temperature 7y at which there
are no thermal strains, and

[ Ay T [0 O Q] [l 0] o

Ay | == 01 On 0Ox||0 [0622]’ (17a)
| Axy | | Q16 @6 Qe | |0 O
[ By | (O Qi Q] [1 0] ds)

By | == Q1 On 0Ox|]|0 [d32]’ (17b)
| By | | Q16 Q26 e | [0 O

where o1, 0, are the thermal expansion coefficients in the longitudinal and transverse directions,
and d3 and d3; are piezoelectric strain constants of a piezoelectric ply, Q; are the transformed
elastic constants, details of which can be found in Refs. [21,22]. Note that for FGM layer o;; =
0y = O(f(Z, T(Z)) and

0, =0, =%T?) _W(2)ENZ,T(2))
n=¥n= l—vj%(Z) ) 2= l—v]%(Z) )
E((Z.T(2))

Q16 = Q26 =0, Q44 = st = Q66 = (18)

21+ v(2))

It is assumed that all four edges are simply supported with no in-plane displacements. The
boundary conditions are

X =0, a
W = Ef’y =0, (19a)
U=0. (19b)

Y=0,b
W=¥,=0, (19¢)
V=0. (19d)

Note that the stretching—bending coupling gives rise to bending curvatures under the action of
in-plane loading, no matter how small these loads may be. In this situation the boundary
condition of zero bending moment cannot be incorporated accurately, as reported in Ref. [21].
The conditions expressing the immovability conditions (19b) and (19d) are fulfilled on the average
senses as (see Ref. [21])

a haU
— dXdY = 2
/0 [ Sydxdr=o, (20a)

b aaV
/0 /O 5y dYdx =0 (20b)
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in which

oU O°F O°F 4 o 4 op,
~ =4l 552+ 41 +(BT1_—ET1> x“‘(BTz_—E*) ;

X ) 32 é 32 712) Yy
4 (W W\ 1w\ . p . p
e(En G m Gr) <5 () ARt e
oV, O*F  OF .4\ oy, .4 oy
a—zAzz ﬁ"‘Alz W"‘ (le _WEm)@—X—i_ (Bzz—WEn)a—Yy
4 ( W W\ 1w\ o . b
_W <E21 aXZ +E22 ay2> _5 <W> - (AIZNX +A22Ny)‘ (21b)

In Egs. (21a) and (21b), and what follows, [A;.], [B;.], [D:.';], [E}], [F;] and [H}] (i,j = 1,2,6) are
reduced stiffness matrices, determined through relationships

A*=A"" B*=—-A"'B, D'=D-BA'B, E*=-A"'E,
F*=F—-FEA"'B, H  =H—-EA'E, (22)
where A4;; , By etc., are the plate stiffnesses, defined in the standard way [21].

3. Analytical method and asymptotic solutions
Having developed the theory, we will try to solve Egs. (10)—(13) with boundary condition (19).

Before proceeding, it is convenient to first define the following dimensionless quantities for the
plate (with 7, in Eq. (29) below defined as in Refs. [21,22]).

x=nX/a, y=nY/b, z=Z/h, f=alb, W = W/[DTIDﬁzA’flA;z]l/“,
F= F/[DTlDﬁzl”z, (P, ¥)) = (P, 'Py)a/n[DTlD?zATlAEz]”“, Vs = — A/ A%,
Y4 = D5%/Di12 ya = 147/ Griavr) = (A%, AT)@ f2[D}, D]
(p1:7p2) = (BY, BY)a® [2°[D} D3] V2,
(/73774 V76 V1) = (Di,D;,F){,Ff)az/nzthT]
(VP35 VP4 VP6s Vp7) = (Df, DyE» Ff, Ff)az/nzthT1

(M, M,, P, P,, M7, M, P, Pl)
= (M, M,4P./31% 4P, /3%, M", Mf L4P" 312, 4135 J30)d? |7 D [ DY D, AL A%

nt  |E 11E0a2 AE (Isly — 1415)
T=— p_’ 0=~ p > Y111 =
0

a w2pDy, 3poh*l1 DY,
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(730> V90> V10) = (18719,110)[) /lq = qa4/7f4DTl[DTlDizATlAzz]l/“ (23)

in which Ey and p,, are the reference values of E; and p, at the room temperature (7 = 300 K),
respectively, and let

AT DT FT I
AT DT F Z / (1 Z,Z)AT(Z2)dZ, (24a)
y y
B: DY FE 3
F pE |AV = — / (1 ZZ)—dZ (24b)
E E E
By Dy Fy Xk: I

where T = (T + Ty — 2To)/2.
Egs. (10)—(13) can then be re-written in the following dimensionless form:

Liy(W) = Lia(¥x) — Li3(¥y) + yi4L1a(F) — Lig(M")

. a'P
= B LW, F)+L17(W)+V80< o +ﬂ—> + g5 (25)
1
L1 (F) + 9y Loa(Wx) + Y24 Lo3(Wy) — Vg Loa(W) = — 5?24[3214( w,Ww), (26)
» W
L3 (W) + L3p(¥y) — L33(¥)) + p14L34(F) — L3s(S™) = 79 o + 710, (27)
G114
Ly(W) = Lip(Wx) + Las(Py) + p14Laa(F) — Lag(ST) = V9oﬁ + 71075, (28)

where the dimensionless operators L;() and L() are defined as in Refs. [21,22].
The boundary conditions of Eq. (19) become

x=0, m
W=, =0, (292)
, 0°F 0°F v, oY, o*w 5 62W
Vz4ﬁ B EREIY) + T4 Vst 5o + Vmﬁ — Vs (Vo1 33 +72mB” =
1 awN\* o,
5 74\ 3¢ + 24771 — V57 2)T + (02ayp1 — V57p2)AV | dxdy = 0. (29b)
y=0, m

W =%, =0, (29¢)
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P 0*F oV, oY, oW 262
6x2 5P B + V24| V220 ox o ~V24{ V240 33 + V6228
1

ow _
) V24ﬁ2 (a) + O = vsvr)T + (o — vsyp)AV

dydx = 0. (29d)

We assume that the solutions of Eqs. (25)—(29) can be expressed as
W(x,p,7) = W*(x, ) + W(x,,7),

WX(X’ ya T) = Ti(xa J/) + iIX(x: ya T)’
'I,y(xa J/: T) = 'I’;(X, J’) + 'jjy(xa y: T)v

F(xﬂyaf):F*(xay)—i_ﬁ(xayar)ﬂ (30)
where W*(x,y) is an initial deflection due to initial thermo-piezoelectric bending moment, and
W(x,y,) is an additional deflection. Yi(x, ), 'P;‘,(x, y) and F*(x,y) are the mid-plane rotations

and stress function corresponding to W*(x,y). ¥.(x, v, 1), 'f’y(x, y,7) and F(x,y,1) are defined
analogously to ¥ (x, ), ¥}(x,y) and F*(x, ), but is for W(x,y,1).

Due to the bending—stretching coupling effect in the FGM plate, the thermal preload will bring
about deflections and bending curvatures which have significant influences on the plate vibration
characteristics. To account for this effect, the pre-vibration solutions W*(x, y), ¥i(x,»), 'I’;(x, »)
and F*(x,y) are sought at the first step from the following nonlinear equations:

owr W
Liy(W*) — Liy(W%) — Lis(P3) + 914 Lia(F*) — Lis(M”) + 9,48 <px a2 TP )

o
= 7P L(W*, FY), (1)
Lan(F*) s Ln(W) + 1asas(5) = sl W) = — S PLOVE, WYY, (32)
L3i(W*) + Lao(¥5) — Ls3(¥}) + 714 L3a(F*) — Lag(S”) = 0, (33)

Lay(W™) = Lap(P7) + Las(¥)) + 71aLaa(F) — Lus(S”) = 0. (34)

In Eq. (31), p, and p,, are edge compressive stresses induced by temperature change and control
voltage with edge restraints. The solutions of Eqgs. (31)-(34) can be assumed as

W*(x,y) = Z Z Wy sin kx sin [y,

k=13,... I=13,...
Pi(x,y) = Z Z () cos kx sin Iy,
k=13,... I=13,...

i) = Y. > () sinkxcosly,

k=13,... I=1,3,...
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1 . .
F(x,y) = — E(Bg)%)y2 + bg%)xz) + Z Z S sinkxsin ly. (395)
k=13,... I=13,...

We then expand the constant thermo-piezoelectric bending moments in the double Fourier sine
series as

M?sP MO 5O 1
[ MP SP] =— [ M'(o) S(O)] E E o sin kx sin Iy. (36)
y y y Vo | k=13, I=13,...

Substituting Egs. (35) and (36) into Egs. (31)—(34), applying Galerkin procedure to the Egs. (31)
and (32), Wi, (W) (b)) and f; can be determined, the detailed expressions are given in
Appendix B.

Then W(x,y,1), P(x,y,7), i’y(x, y,7) and F(x, y, 7) satisfy the nonlinear dynamic equations

Liy(W) — Lio(Py) — Lis(Py) + p1aLia(F) = y14° LW + W*, F) + Li7(W)

P, v,
— / 37
+V80<ax + ay)‘i‘/tq, (37)
X . . . 1 . .
Loi(F) + 724 Lon(P) + 124 Los(P)) = 124 Las(F) = = 0aPLOV + 205 0), - (38)
o ~ - - aﬁ/ B
L31(W) + L3y(¥y) — L33(V)) + y14L34(F) = 799 a +710%xs (39)
o ~ - o 6[/%/ B
Lyy(W) — Lyp(¥y) + Laz(V)) + y14Las(F) = V9o,3§ + 710y (40)
The initial conditions are assumed to be
. oW
l;mo = — =0, (41a)
0t |,
N oY,
Yoilimo= — =0, (41b)
61 7=0
N oy
qulrz() = a—‘[y 0 = 0. (410)

A perturbation technique is now used to solve Eqgs. (37)—(41). The essence of this procedure, in
the present case, is to assume that

W(x.p.%e) =Y &dW(x,p.%),
=

F(x,p,%,6) = Z dFi(x,,%),
j=1
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Po(x, 0,88 =Y &Wy(x,0,%),
j=1

lj’y(xa ) %9 8) = Z 8i'{/yj(xa Vs %)7
J=1

Ay, Ee) = dAi(x.p.%), (42)

J=1

where ¢ is a small perturbation parameter. Here we introduce an important parameter 7 = et,
which may be called a slow variable, to improve perturbation procedure for solving nonlinear
dynamic problem.

Substituting Eq. (42) into Eqgs. (37)—(40), and collecting terms of the same order of ¢, a set of
perturbation equations is obtained. Applying Galerkin procedure to the second equation of
each order, and solving these equations step by step, we obtain asymptotic solutions, up to third
order, as
W(x,y, 1) = e[wi(z) + gw1(t)] sin mx sinny + (swl(r))3[ocg3“ sinmx sinny + g3, sin 3mx sin ny

+ g3 sin mxsin 3ny] + O(e*), (43)

P(x,y,7) = s[g(lll’l)wl(r) + gowi(t)]cos mx sinny + gm(aawl(r))2 sin 2mx
+ (ew (r))3[ocg(111’1)g311 cosmxsinny + g(131’1)g331 cos 3mx sin ny

+ g(]11’3) g313 cosmx sin 3ny] + 0(84), (44)

Py(x, y, 1) = gy wi(2) + g33i1 ()] sin mix cos ny + gyy(ewn (1))” sin 2ny
+ (ewl(r))3[ocg(211’l)g3“ sinmx cosny + g(231’1)g331 sin 3mx cos ny

+ g5V g315 sin mx cos 3ny] + O(e*), (45)

~ . . . 1
F(x,y,1) = e[ggll’l)wl (1) + g4W1(7)] sin mx sinny — 3 (ew; (r))z(Bf)%)y2

+ b x> — 2492 €08 21y — 245 €05 2mx) + (&1 (2))[og”

3.1
+ ggl )

g31; Sinmx sinny

g331 Sin 3mx sinny + ggll’3)g313 sin mx sin 3ny] + O(e*), (46)

2q(x,3,7) = e[gywi1(1) + g43Wi1(7)] sin mx sinny + (ew; (r))z(g441 COS 2mX + g4, COS 2nY)
— 714w (0))? Z Z 14}1(1(38%)/62 + b(()%)ﬁ — 4k*n? g 49, cOS 2ny
ko1

— 412m2g420 cos 2mx) sin kx sin [y + dgy,(ew; (1))’ sin mx sinny + O(e*). 47)

Note that in Eqgs. (43)~(47) 7 1s replaced by 7 and for the case of free vibration « =0, & =1,
otherwise o =1, @ =0. Coefficients g(l’i’), g(z’i’) , gg’i’) (i,j = 1,3), etc. are given in detail in
Appendix B.
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Then multiplying Eq. (47) by (sinmxsinny) and integrating over the plate area, one has

d’(ew _ -
953 T 1 gy (o) + gaa(on )+ Fgatem)’ = 7,0 9)
in which
/Tq(r) = iz / / Aq(x,y,7)sinmx sinny dxdy. (49)
= Jo Jo

Substituting Eq. (30) into boundary condition (29), the coefficients Bg%), bg%), Bgzo) and bg%)) are

then determined as given in Appendix B.

3.1. Free vibration

When & =1 and A,(t) = 0, the Eq. (48) becomes the free vibration equation of the plate. The
nonlinear frequency of the plate can be expressed as (see Ref. [28])
1/2
9942941 — 1093&4 42 /
1243,
In Eq. (50), w; = [g41/g43]1/2 is the dimensionless linear frequency, and A = Wy, /h is the

amplitude to thickness ratio. According Eq. (23), the corresponding linear frequency can be
expressed as @y = wL(n/a)(Eo/pO)l/z, where E, and p,, are defined as in Eq. (23).

ony =or |1+ (50)

3.2. Forced vibration

When the forced vibration is under consideration, we take & = 0. In such a case, Eq. (48) can be
re-written as

£1(0) + i (07 + 24 (o () + 0t = 242 (51)
943 943

Eq. (51) may then be solved by using the Runge—Kutta iteration scheme (see Ref. [29])

(A
(ew1)iy = (ew1); + At(ewy), + G (L1 + L, + L3),
) ) At
(eW1)iyy = (8W1); + Z(Ll + 2Ly 4+2L5 4+ Ly), (52)

where At is the time step, and

Ly =f(zi,(ew1)), Ly =f<fi +%:(8W1)i +

At(evr); N (A1) L1>

At(ewy);
7).

At
L3 :f<7'-i + 7&(8“}1)1' + 2 4

2
Ly :f<1'i + Az, (ew1); + At(ewr); + (AZT) L2> -
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in which
Zq
Fox) = —wix— 94 2 fa@ (54)
943 943

As a result, the solution of Eq. (51) is obtained numerically. Re-substituting it into Eqs. (43)—
(47), both displacement and stress function are determined.

4. Numerical examples and discussion

A number of examples were solved to verify the present method. In all examples k£ and / in
Eq. (35) are taken as 1,3, and 5. In the present study, the adopted time step for Runge—Kutta
direct iteration method was 2 ps.

4.1. Comparison studies

To ensure the accuracy and effectiveness of the present method, three test samples were solved
for free and forced vibrations of FGM plates with or without piezoelectric layers.

Example 1. We first examine the static response of a simply supported FGM plate with
symmetrically fully covered G-1195N piezoelectric layers. The substrate FGM layer consists of
zirconia and aluminum. The top surface of the substrate FGM is ceramic-rich, whereas the
bottom surface is metal-rich. The material properties adopted, as given in Ref. [14], are:

E, =151.0GPa, v, =03, p, = 3000kg/m3, K, = 2.09 W/mk,

o, = 10 x 107 for zirconia;

Ey=700GPa, v, =03, p,=2707kg/m’, &, =204W/mk,

ap = 23 x 107% for aluminum;

E,=630GPa, v,=03, p,= 7600kg/m3, kp = 0.17W/mk,
o, = 1.2 x 107* for G-1195N.

The side and thickness of the substrate FGM square plate are 400 and 10 mm, and the thickness of
each piezoelectric lay is 0.1 mm. The temperature on the top surface is 20 °C, and on the bottom
surface is 0°C. The temperature is varied only in the thickness direction and determined by the
steady-state heat conduction equation with boundary conditions. A stress free temperature Ty =
0°C was taken. The curves of static centerline deflections for the hybrid FGM plate subjected to
thermal loading were plotted in Fig. 2 and compared with the FEM results of Liew et al. [14]
based on classic laminated plate theory (CLPT).

Example 2. We now consider the free vibration of an FGM square plate with symmetrically fully
covered G-1195N piezoelectric layers. The substrate FGM plate is made of aluminum oxide and
Ti—6Al-4V. The material properties adopted, as given in Ref. [12], are:

E, =32024GPa, v,=0.26, p,=3750 kg/m3, for aluminum oxide;
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Fig. 2. Comparisons of centerline deflections for the hybrid FGM plate under thermal loading.

E,=105.70GPa, v, = 02981, p,=4429kg/m’, for Ti—6Al—-4V;

E,=630GPa, v,=03, p,=7600kg/m’, d3 =ds=254x10""m/V.

The side and thickness of the substrate FGM square plate are 400 and 5 mm, and the thickness
of each piezoelectric lay is 0.1 mm. The initial ten frequencies of the plate as a function of the
volume fraction index N are listed in Table 1 and compared with the FEM results of He et al. [12]
based on classical laminated plate theory (CLPT).

Example 3. Finally, the curves of central deflection as functions of time for an FGM square plate
subjected to a uniform sudden load ¢, = —10° N/m? and in thermal environments are plotted and
compared in Fig. 3 with the FEM results of Praveen and Reddy [1] based on first-order shear
deformation plate theory (FDSPT). In Fig. 3, dimensionless central deflection and time are
defined by W = (WE,h/qya*) and f = [E,,/a*p,]'*, respectively. In this example, the FGM
plate is made of aluminum and alumina. The side and thickness of the square plate are 200 and
10 mm, respectively. The top surface is ceramic-rich, whereas the bottom surface is metal-rich. The
temperature is varied only in the thickness direction and determined by the steady-state heat
conduction equation with the boundary conditions. A stress free temperature 7 = 0°C was
taken. The material properties adopted, as given in Ref. [1], are

E,=70GPa, v, =03, p,=2707kg/m?, o, =23.0x10"°/°C,
kp = 204 W/mK, for aluminum,

E; =380GPa, v,=03, p,=3800kg/m®, o =7.4x107%/°C,

k; = 10.4W/mK, for alumina.



X.-L. Huang, H.-S. Shen | Journal of Sound and Vibration 289 (2006) 25-53 41

Table 1
Comparisons of natural frequency @, (Hz) for simply supported FGM plates with actuator layers bonded on the top
and bottom surfaces

Mode Method N=0 N =0.5 N=1 N=5 N =15 N =100 N = 1000
1 He et al. [12] 144.25 185.45 198.92 230.46 247.30 259.35 261.73

Present 143.25 184.73 198.78 229.47 246.86 258.78 260.84
2 He et al. [12] 359.00 462.65 495.62 573.82 615.58 645.55 651.49

Present 358.87 461.02 494.65 571.87 613.95 643.92 649.83
3 He et al. [12] 359.00 462.47 495.62 573.82 615.58 645.55 651.49

Present 358.87 461.02 494.65 571.87 613.95 643.92 649.83
4 He et al. [12] 564.10 731.12 778.94 902.04 967.78 1014.94 1024.28

Present 563.42 727.98 778.61 899.91 964.31 1012.54 1023.72
5 He et al. [12] 717.80 925.45 993.11 1148.12 1231.00 1290.78 1302.64

Present 717.65 922.83 992.87 1146.87 1229.44 1288.73 1301.34
6 He et al. [12] 717.80 925.45 993.11 1148.12 1231.00 1290.78 1302.64

Present 717.65 922.83 992.87 1146.87 1229.44 1288.73 1301.34
7 He et al. [12] 908.25 1180.93 1255.98 1453.32 1558.77 1634.65 1649.70

Present 907.87 1177.34 1223.36 1451.66 1557.12 1632.18 1648.56
8 He et al. [12] 908.25 1180.93 1255.98 1453.32 1558.77 1634.65 1649.70

Present 907.87 1177.34 1223.36 1451.66 1557.12 1632.18 1648.56
9 He et al. [12] 1223.14 1576.91 1697.15 1958.17 2097.91 2199.46 2219.67

Present 1219.32 1571.65 1695.17 1956.79 2095.67 2197.47 2217.94
10 He et al. [12] 1223.14 1576.91 1697.15 1958.17 2097.91 2199.46 2219.67

Present 1219.32 1571.65 1695.17 1956.79 2095.67 2197.47 2217.94

50
—e—— N=0.2, Praveen & Reddy [1]
i N = 0.2, Present
0% T = ---m--- N=20, Praveen & Reddy [1]
Tw - N = 2.0, Present

Dimensionless center deflection

10 L I L I L 1 L I L
0.0 25 5.0 75 10.0 12,5

Dimensionlesstime

Fig. 3. Comparisons of central deflection versus time curves for an FGM square plate subjected to a sudden load in
thermal environments.
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Good agreement can be seen in these three comparisons. Note that in these examples the
material properties are assumed to be independent of temperature.

4.2. Parametric studies

Parametric studies have been performed to study the nonlinear vibration and dynamic response
of hybrid FGM plates subjected to the combined action of transverse dynamic load, electric load
and thermal loading. Two types of the hybrid FGM plate are considered. The first hybrid FGM
plate has fully covered piezoelectric actuators on the top surface (referred to as P/FGM), and the
second has two piezoelectric layers symmetrically bonded to the top and bottom surfaces (referred
to as P/FGM/P). Silicon nitride (SizN4) and stainless steel (SUS304) are chosen to be the
constituent materials of the substrate FGM layer, and the upper surface of the FGM plate is
ceramic-rich and the lower surface is metal-rich. The thickness of the substrate FGM layer
hy = 1.0mm and the thickness of each piezoelectric layer 4, = 0.1 mm. The side of the hybrid
FGM plate is ¢« = b = 24mm. The mass density, Poisson’s ratio and thermal conductivity are
2370 kg/m?, 0.24,9.19W/mK for Si3N,, and 8166kg/m?, 0.33,12.04 W/mK for SUS304.
Young’s modulus and the coefficient of thermal expansion are assumed to be dependent on the
temperature and listed in Table 2. The material properties of the piezoelectric layers (PZT-5A)
are E, =63.0GPa, G, =242GPa, v, =0.3, o =0an =09 x 10°%/K, Kp =2.1W/mk, p, =
7600 kg/m? and d3; = d3; = 2.54 x 107"m/V.

The temperature field is assumed to vary only in the thickness direction of the plate and may be
determined by the steady-state heat conduction equation with thermal boundary conditions
and continuity conditions across the plate thickness. A stress-free temperature 7¢ = 300K was
used.

Typical results are listed in Tables 3-6 and plotted in Figs. 4-7, for which the dynamic load is
assumed to be a suddenly applied uniform load with g, = 2MPa. Six different applied voltages:
VU = —2OOV, VU = OV, VU = 200V, and VL = VU = —200V, VL = VU = OV, VL = VU =
200V are used, where subscripts ‘L’ and ‘U’ imply the low and upper piezoelectric layer.

Table 3 shows the effect of volume fraction index N, control voltage and temperature field on
the natural frequency parameter Q = @ h\/Eo/p,/a* of the two types of the hybrid FGM plate.
Ej and p,, are defined as in Eq. (23). It can be seen that the natural frequency of these two plates is
decreased by increasing temperature and volume fraction index N. The plus voltage decreases, but
the minus voltage increases the plate natural frequency.

Tables 4-6 show, respectively, the effect of volume fraction index N, control voltage and
temperature field on the nonlinear to linear frequency ratios wny /oy of these two hybrid FGM

Table 2

Temperature-dependent coefficients for ceramic and metals, from Reddy and Chin [30]

Materials Properties Py P_, P, P, P;

SizNy E (Pa) 348.43¢ + 9 0.0 —3.070e—4 2.160e—7 —8.964e—11
o (1/K) 5.8723e—6 0.0 9.095¢—4 0.0 0.0

SUS304 E (Pa) 201.04e + 9 0.0 3.079¢—4 —6.534e—7 0.0

o (1/K) 12.330e—6 0.0 8.086e—4 0.0 0.0
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Table 3
Natural frequency parameter Q = @ (a>/hy)[p, /Eo]l/ 2 for the hybrid FGM plates under different
electric loading conditions

43

sets of thermal and

Stacking sequence  Temperature environment  Applied voltage Volume fraction index
SisN4 0.5 2.0 4.0 SUS304
(P/FGM) T, =300K
Ty =300K Vy=-200V 12485 9.120 7.223 6.718 5.897
Vy=0V 12.460 9.100 7.206 6.710 5.879
Vy =200V 12.435 9.080 7.189 6.702 5.861
Ty =400K Vy=-200V 11.705 8.455 6.623 6.127 5.252
Vy=0V 11.682 8438 6.608 6.113 5.237
Vy=200V 11.658 8.421 6.595 6.101 5.224
Ty = 600K Vy=-200V 10.128  7.222  5.632 5215 4717
Vy=0V 10.123  7.215 5.612 5191 4.674
V=200V 10.120  7.213  5.595 5.169 4.624
(P/FGM/P) T, =300K
Ty =300K Vy=V,=-200V 11.675 8869 7217 6.768 5.779
Vy=V,=0V 11.661 8.830 7.181 6.733 5.744
Vy=V, =200V 11.649 8790 7.144 6.697 5.711
Ty =400K Vy=V,=-200V 10.721 7905 6.304 5848 4.867
Vy=V,=0V 10.716  7.860 6.262 5807 4.829
Vy=V,=200V 10.720 7.815 6.221 5766  4.788
Ty = 600K Vy=V,=-200V 8.544 5713 4434 4221 1.594
Vy=V,=0V 8.529 5.671 4.417 4212 1442
Vy=V,=200V 8.514 5.629 4399 4211 1.289
Table 4

Effect of volume fraction index N on nonlinear to linear frequency ratio wny /@y, for the hybrid FGM plates in thermal

environments (7, = 300K, Ty = 400 K)

Wmax/h

0.0 0.2 0.4 0.6 0.8 1.0
(P/EGM) (Vy = 200V)
SisNy 1.000 1.022 1.084 1.180 1.302 1.445
0.5 1.000 1.022 1.086 1.184 1.311 1.457
2.0 1.000 1.023 1.088 1.186 1.313 1.459
4.0 1.000 1.023 1.089 1.188 1.316 1.462
SUS304 1.000 1.024 1.091 1.190 1.319 1.467
(P/EGM/P) (V, = Vi =200V)
SisN, 1.000 1.022 1.086 1.181 1.304 1.447
0.5 1.000 1.023 1.088 1.189 1.316 1.465
2.0 1.000 1.024 1.090 1.191 1.319 1.468
4.0 1.000 1.024 1.091 1.193 1.326 1.479

SUS304 1.000 1.025 1.096 1.208 1.344 1.504
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Table 5
Effect of temperature field on nonlinear to linear frequency ratio wnp/wy for the hybrid FGM plates (N = 0.5)

W max /1

0.0 0.2 0.4 0.6 0.8 1.0
(P/FGM) (Vy = 200V)
Tp=300K Ty =300K 1.000 1.019 1.075 1.163 1.275 1.406
T, =300K Ty =400K 1.000 1.022 1.086 1.184 1.311 1.456
Tr=300K Ty = 600K 1.000 1.025 1.097 1.206 1.345 1.505
(P/IFGM) (Vy = VL =200V)
T, =300K Ty = 300K 1.000 1.018 1.071 1.185 1.261 1.387
T, =300K Ty =400K 1.000 1.023 1.088 1.190 1.319 1.469
Tr.=300K Ty =600K 1.000 1.033 1.128 1.270 1.446 1.644

Table 6
Effect of applied voltage on nonlinear to linear frequency ratio wnp/wp for the hybrid FGM plates in thermal
environments (77 = 300K 7Ty = 400K, N = 2.0)

Wmax/h

0.0 0.2 0.4 0.6 0.8 1.0
(P/FGM)
Vy=-200V 1.000 1.021 1.083 1.178 1.300 1.441
Vy=0V 1.000 1.021 1.083 1.179 1.301 1.442
Vi =200V 1.000 1.021 1.083 1.179 1.301 1.443
(P/FGM)
Vy=V,=-200V 1.000 1.022 1.084 1.182 1.305 1.449
Vy=V.=0V 1.000 1.022 1.086 1.184 1.309 1.454
Vy="V, =200V 1.000 1.022 1.087 1.186 1.313 1.459

plates. It can be seen that the ratios wny/w; increase as the volume fraction index N or
temperature increases. It is noted that the control voltage only has a small effect on the frequency
ratios.

Figs. 4 and 5 show, respectively, the effect of volume fraction index N and temperature change
on the dynamic response of the P/FGM plate. The results show that the dynamic deflections of the
P/FGM plate are increased by increasing volume fraction index N and temperature change, this is
because the stiffness of the plate becomes weaker when the temperature or volume fraction index
N is increased. They also show that the greater the temperature change and volume fraction index
N are, the greater the initial bending moments will be.
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Fig. 4. Effect of volume fraction index N on the dynamic response of P/FGM plate subjected to a sudden load, control
voltage and in thermal environments. (a) Central deflection versus time; (b) central bending moment versus time.
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Fig. 5. Effect of thermal environmental conditions on the dynamic response of P/FGM square plate subjected to a
sudden load and control voltage. (a) Central deflection versus time; (b) central bending moment versus time.

Fig. 6 shows the effect of control voltage on the dynamic response of the same plate. The results
show that the control voltage has a significant effect on the initial bending moment, but it affects
the dynamic deflection insignificantly.

Fig. 7 compares the dynamic response of the P/FGM and P/FGM/P plates. It can be seen
that the central deflection and the bending moment of the P/FGM plate are higher than those of
the P/FGM/P plate under the same loading condition.

5. Concluding remarks

Nonlinear free and forced vibration analyses have been presented for simply supported, hybrid
FGM plates subjected to the combined action of transverse dynamic load, electric load and
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thermal loading. Heat conduction and temperature-dependent material properties are both taken
into account. The formulations are based on higher-order shear deformation plate theory and
general von Karman-type equations, and include thermo-piezoelectric effects. Analytical
solutions have been presented by using an improved perturbation technique. A parametric study
for hybrid FGM plates with different values of volume fraction index and under different sets of
electric and thermal loading conditions has been carried out. Numerical results show that the
natural frequencies are reduced by increasing the volume fraction index N, temperature change
and plus control voltage, but increased by minus control voltage. The results also confirm that the
temperature field and the volume fraction distribution have a significant effect on the dynamic
response of hybrid FGM plates. In contrast, the control voltage only has a small effect on the
dynamic response.
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Appendix A

In Egs. (9)
K
K;d + K j(TU — T
Ty=To+(Ty—T))————(T2=Tp), To=Tr+-—t—e—.
Kp Kp 4 K.d + 15
hy chy
T a_Tl_TZ a__Tl_TZ Kib a_Tl_T2 K7,
2 c 7 c (N+r, ¢ N+
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Appendix B
In Eq. (35)
3 2 3 3 2 3
_ ' (@) | ) ' (@) | Pr)
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Sua= C(3k1 Z)lec/ + C(k Dy + Cg’g ’,
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W = wa + 5+ 5 W = S w4+ 5+ S5 (B.1)
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— st )cgs ))/(5( )0(31 ))

k)l kil (ki k) (ki k) (ki (k1
d() (b(2)c(13)+b(3)c(23)+b(4)c(33) J’)/(S(kl)c31 ))

2

gD — 327’14k1ﬁ2
3n2

WD = MOk/1+ MOk, Y0 =—80/1, ¥ = psO/k,
B = y10(m)* + 291 10m)* () B + 7114Gn)* B — 914> (0, + p ),
B = —[y120(im)’ + 7150im(jn)* ],

B = —[131(m)%jnf + 71330m)° ],

B = 1aln1aoim)* + 910y ()2 B2 + 71440 B,

B = —p2lp2a0(im)* + 9210 (im)* (i)’ B + 24ain)* B,

B = y2alrmae(im) + yam(im) 7],

BSY = p2lyasi (im) (i) + 7233(n)* 1,

B = m* + 2905(im)*(in)* B + pa1a i)' B,

B = 931(im) — p310(im)* — y315(im)(in)* B,

B = 31 4 raao(im)? + p3o(in)* 2,
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B = yy(im)(im)p,
bé’f) = —724[P220(iM)’ + Yo (im)(jin)* 71,
b =y Gm)B — pari (im)* () — ya13Gn)* B,
by = y331 (im)(m)B.

bgij) = 741 + rao(im)” + 43, (in) B,

B = —p1alya (Y2 + 723G B1. (B.2)
In Eq. (36)
MO SO 16h Y13 VY13 —7r16 | . | VP3 VP —7
[M«(O) S(O)] ER 1/4([ 73 T3_ T6]T+[P3 P3_4P6 AV), (B.3)
v v n2[D}, D3, A7 A% Vra VT4 — V17 Vs Vpa = VpP7
In Egs. (43)~(47) (with i,/ = 1,3)
1 -
By = P RY) (3471 = 7s772) + 75Crp2 — sy 1T
(V5 - V24)ﬂ

4 I
-2 >y i [ — 307 B 10 = v24s11 + 757220000 = 124233 + 75952)nBgg
k=13, =13,

+ 72411 + V2441 BHIWit + 75724 (Daaom® + Vézznzﬁz)wkl]},

b(O) _

00 = {[“/5(?%4%1 —95772) + 302 — vsvr)IT

(”/% - V%4)

1
) Z Z E[(V% — M 11 = 12157511+ V2472200 — 124057233 + V347520V
k=13, 1=13,...

+ 95724 (V611 m* + "/244"2ﬁ2)Wk1 + ’/34(?240’”2 + V622”2ﬁ2)Wk1]},

(i) 7,Gi) (i) 7.(0)
(liij) _ k23 k31 - k33 k21
AR (i) 7,(i) °
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(i) 7,Go) (i) 7.(0)
(zz‘ii) _ k22 k31 — k32 k21
AT @) 1.0 °
Kk’ — k3y'kyy

@) _ (@) (i) (i) (i) (i)
gii’ =ay” +by7g) + 7 gy



50 X.-L. Huang, H.-S. Shen | Journal of Sound and Vibration 289 (2006) 25-53

?24’"2”252 y24m2n2[32

9a02 = > Yao = AN
266 64 m
) 16y214n4ﬁ4+643’14?’24?223”/32 2<16m4+ V14VZ4V220 2)
Va1 + 44307 V31 4730

81220714 _ 87’2337’14”3ﬁ3
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— = >
Va1 + 44302
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(k12 k23 _k22 k13 )(kll k33 _k31 k13 )_(k12 k33 _k32 k13 )(kll k23 _k21 k13 )
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k(l’l)gl + k(l’l)gz 1,1 11 1,1
- k(l’l) 12 5 g4:a(]’ )gl +b(1, )g2+c(1,)g37
13

g3 =
1,1 L) (1,1 L1 (1,1 0 0
g = 40 KD D Y 4 00
) 2 2
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2 1,1 1,1
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= 2 (1 — cosmmn) 2-1—lcos3m cosm
9as = 2mn 9441 T 373 n T

2 1
+9aar(1 — cosnm) <§ + gcos 3nm — cos nn)} - y14,[>’2(Bf)%)m2 + bg%)nz)wmn,

Yaa(m? + 5n* ) @ _ Vaalysm® + V3 B)

= T sy B4
where
s = % k_; 1_12,3:,.‘. [2(]“2”2 + ) G T2k Ji dm 2k —1 4im> G Tl Jlr an 21 —1 4n>
— kimn <2m1+ =t 5m 1_ k) <2n1—|— it 1_ 1) (05w +fk1)a]
by = yogm + Vlog(lll’l), by = yoonf + Vlog(zlfl)- (B.5)

In the above Egs. (B.2)—(B.5)

KD = p110(im)* + 29115m)* () B2 + 71140 B+ 71alv10(im)* + p142(im)* () B
+ 71a4Gn)* B — o1y B2 BO M + B0 n?),

k(liij) = —[Vlzo(im)3 + Vlzzim(i”)zﬁz] + V14[V140(im)4 + y142(im)2(jn)2[32 + V144(f”)4ﬁ4]b§i’j),
K5 = =11 m)nf + 713500 8]+ 11ala0m)* + 9100m)(n)* B + 914Gy 61,
kS = syim — 310(m)* — 310im(n)* B — 71alpang(im)’ + paalim)(iny’ 10,
K = 31 + r3a0(im)® + 130G B — 71[vs20(im)* + pys(im)(im)* B1677,
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KD = 341 + raso(im)? + 7430 B = p1alpast (im)2(Gn)B + pasa(n)* B16). (B.6)
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In Eq. (B.6), when wyy, Yy, ¥4y and f}; are considered, o) = 1, otherwise o; = 0, and

(i) _ V24 { . \4 Ry . \4 pd
a;”’ = — . ; V240(im)" + Y240 (im)~(jn)~ B~ + P44(in)* B
1 m* + 29515(im)2 () B + p314Gin)* B

+2—ﬁzz > 2(k“+122)l— L1 et 1
) I " 2k +am 2k —am)\1 " 21+ 4n 20— 4n

k=13,... I=13,...
1 1 1 1
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: mé 4 29,15(im)>(in)* B + po1aGin)* B

C(lz;j) _ y24[y231(im)2(/n)[3 + V233(f”)3ﬂ3] (B.7)

m* + 29,1, (im)>(jn)* B> + 9214Gn)* B*
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