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Abstract

Stability in transverse parametric vibration of axially accelerating viscoelastic beams is investigated. The
governing equation is derived from Newton’s second law, Boltzmann’s superposition principle, and the
geometrical relation. When the axial speed is a constant mean speed with small harmonic variations, the
governing equation can be treated as a continuous gyroscopic system with small periodically parametric
excitations and a damping term. The method of multiple scales is applied directly to the governing equation
without discretization. The stability conditions are obtained for combination and principal parametric
resonance. Numerical examples demonstrate that the increase of the viscosity coefficient causes the lager
instability threshold of speed fluctuation amplitude for given detuning parameter and smaller instability
range of the detuning parameter for given speed fluctuation amplitude. The instability region is much
bigger in lower order principal resonance than that in the higher order.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering devices can be modeled as axially moving beams [1,2]. One major problem is
the occurrence of large transverse vibrations, termed as parametric vibration, due to tension or
axial speed variation.
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Transverse parametric vibration of axially accelerating beams has been extensively analyzed.
Although Pasin [3] first studied the problem as early as in 1972, much progress was achieved
recently. Oz et al. [4] applied the method of multiple scales to study dynamic stability of an
axially accelerating beam with small bending stiffness. Ozkaya and Pakdemirli [5] applied the
method of multiple scales and the method of matched asymptotic expansions to construct
non-resonant boundary layer solutions for an axially accelerating beam with small bending
stiffness. Oz and Pakdemirli [6] and Oz [7] used the method of multiple scales to calculate
analytically the stability boundaries of an axially accelerating tensioned beam under simply
supported conditions and fixed—fixed conditions, respectively. Parker and Lin [8] adopted a
I-term Galerkin discretization and the perturbation method to study dynamic stability of an
axially accelerating beam subjected to a tension fluctuation. Ozkaya and Oz [9] applied artificial
neural network algorithm to determine stability of an axially accelerating beam. Yang and Chen
[10] and Chen et al. [11] applied the averaging method to analyze the stability of axially
accelerating linear beams on simple or fixed supports. Yang and Chen [12] studied numerically
bifurcation and chaos of an axially accelerating nonlinear beam. Their investigations were
based on two-term Galerkin truncation. Chen and Yang [13] applied directly the method of
multiple scales to study the axially moving viscoelastic beam with variable speed on simple or
fixed supports.

All above-mentioned researchers considered elastic beams [3-9] or viscoelastic beams
constituted by the Kelvin model, a differential constitutive law [11-13]. There is no investigation
on transverse vibrations of axially accelerating beams constituted by the viscoelastic constitutive
law of an integral type. To address the lack of research in this aspect, the authors investigate
parametric resonance of an axially accelerating viscoelastic beam constituted by Boltzmann’s
superposition principle. The stability conditions are obtained for combination and principal
parametric resonance by using the multiple scales method. The numerical examples for stability of
beams with simple supports and fixed supports are presented and the effect of viscoelasticity is
discussed.

2. The governing equation

A uniform axially moving viscoelastic beam, with density p, cross-sectional area A, moment of
inertial 7 and initial tension Py, travels at the time-dependent axial transport speed v(7T) between
two prismatic ends separated by distance L. Consider only the bending vibration described by the
transverse displacement V(X,T), where T is the time and X is the axial coordinate. Newton’s
second law of motion yields

o*U ’U  dvdU LU PUX,T) FMX,T)
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where M (X, T) is the bending moment given by

MX,T) = — /A Zo(X,Z,T)dA, 2)
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where Z, X plane is the principal plane of bending, and (X, Z, T') is the disturbed normal stress.
The viscoelastic material of the beam obeys the Kelvin model, with the constitution relation

o(X,Z,T)=e(X,Z, T)E®O) + / t E(T — The(X,Z,T)dT', (3)
0

where e(X,Z,T) is the axial strain, E(T) is the relaxation modulus, and # is the viscosity
coefficient. For small deflections, the strain—displacement relation is

PUX,T)
X, Z1T)=-72——>—. 4
e( ) e 4)
The relaxation modulus E is assumed as
E(T) = (Ey — a) + ae”*"", ®)

where bookkeeping device ¢ is a small dimensionless parameter accounting for the fact the
viscosity coefficient is very small.

Substitution of Egs. (4) and (5) into Eq. (3) and substitution of the resulting equation into Eq.
(2) lead to

2
MX,T) = EOIGLX;’T)_ 81761[/ e—en(T=T) M dr’. (6)
oX 0 oX?
Substitution of Eq. (6) into Eq. (1) leads to
PA\or2 T Paxor Tdr ox axz "ox?
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Introduce the dimensionless variables and parameters
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Eq. (7) can be cast into the dimensionless form
%u 0%u  dydu o*u
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where

t
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Using Eq. (8) and its derivative, one can get
5= —eus + 64_14 (11)
B ox*’

3. Stability condition via the method of multiple scales

In the present investigation, the axial speed is assumed to be a small simple harmonic variation,
with the amplitude ¢y, and the frequency w, about the constant mean speed 7,

(t) = 7y + &y, sinwt. (12)
Here the bookkeeping device ¢ is used to indicate the fact that the fluctuation amplitude is small,

with the same order as the dimensionless viscosity coefficient. Substitution of Eq. (12) into Eq. (9)
and neglect higher order ¢ terms in the resulting equation yield

o%u Ou . 0%u . %u
MW—F GE + Ku = — 28"/1 Slna)tm — 28'))0'))1 Slnmlﬁ
0
— £WY; COS a)t—u + eaDys, (13)
0x
where the mass, gyroscopic, and linear stiffness operators are, respectively, defined as

M=I G= 2y03 K =(3- 1)6—2+Doa—4.
’ ox’ 0 0x? ox*
The method of multiple scales will be employed to solve Egs. (9) and (11). A first-order uniform
approximation is sought in the form

u(x, t;e) = uo(x, To, T1) + eur(x, To, T1) + - - - (15)

(14)

and a zero order to s is
s(x, ;8) = s1(x, To, T1; ¢), (16)

where T) =t and T = ¢t are, respectively, the fast and slow time scales. Substitution of Egs.
(15), (16) and the following relationship

o_2a 2. GR az+2 az+
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into Eqgs. (9) and (11) and then equalization of coefficients of ¢ and ¢ in the resulting equation
lead to

(17)
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Wickert and Mote [14] have obtained the solution to Eq. (18)

up(x, To, T) = Y [¢r() (T + () A(T1)e 7], 1)
k=0,1,...

where the over bar denotes complex conjugation, and the kth natural frequency and the kth
complex eigenfunction can be determined by the boundary conditions.
To investigate the summation parametric response, Eq. (21) can be expressed as

MO(X, TO: Tl) = qbn(x)fl}’l(]ﬂl)eiwnT0 + d)m(x)flm(]ﬂl)eimeO + cc, (22)

where cc stands for the complex conjugate of all preceding terms on the right hand of an equation.
Substituting Eq. (22) into Eq. (19) and neglecting higher order ¢ terms in the resulting equation
yield

nn = 1(0 a 1 10)
= And," - T+ Ay T+ ce. (23)

m

If the variation frequency w approaches the sum of any two natural frequencies of system (13),
summation parametric resonance may occur. A detuning parameter ¢ is introduced to quantify
the deviation of w from w, + w,,, and w is described by

w = w, + o, + &, (24)

where w, and w,, are, respectively, the nth and mth natural frequencies of system (13).
Substitution of Egs. (22)—(24) into Eq. (20) yields

62u1 6u1
M—+ G— + Ki
6T2 + T, + Ku

.o , 1 ! icT i iw
= {_2An(1wn¢n + ”/od’n) + Y1 |:§ (wm - wn)d) + 1y0¢1n:| d) d + i nd) } wTo
. . ’ 1 =/ . =1 ioT, OCD1 " 1a),,1 To
+ _2AM(lwm¢m + VO(»bm) + 71 E(wn - wm)¢n + %d)n ¢ +— o, m¢
+ cc + NST, (25)

where the dot and the prime denote derivation with respect to the slow time variable 7'y and the
dimensionless spatial variable x, respectively, and NST stands for the terms that will not bring
secular terms into the solution. Eq. (25) has a bounded solution only if a solvability condition
holds. The solvability condition demands the orthogonal relationships

OCD]

. 1 -/ .oz "n
<_2An(iwn¢n + yOd);) + 71 |:§ (wm - COn)gbm + 1V0¢mi| ¢ ot + A (/) ¢n> =

. , 1 AR aD "o
(=2Anti0no 0+ 1 500 = o), + i B+ 500 " ) =0, 0

where the inner product is defined for complex functions on [0, 1] as

1
(f,g>=/0 fgdx. (27)
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Application of the distributive law of the inner product to Eq. (26) leads to
An + oAy + V]dnm/_lmeiUTl =0,

Am + oCpmAm + yldmnf-lneiUT1 =0, (28)
where
(D /iwy) Lol g, dx
Cikk = — - I 1/ _k fO k d)lk T (k:l’l,l’l’l),
2(ion Jy dudicdx+30 fy di.didx)
1 =/ = . 1 =r=
W — (¢, dx + 2i ¢, dx

dkj _ _( )j k) fg ¢]¢k Yo fo ¢] ¢k (k —mm, j=m, I’l). (29)

4<iwk fol brPr dx + 7, fol ¢ P dx>

These coefficients are determined by the eigenfunctions, the natural frequencies and the constant
part of the axial speed, and are independent of parametric excitation due to the variation of axial
speed.

Eq. (28) takes the same form as Eq. (21) in Ref. [13], although the coefficients are different. Eq.
(31) in Ref. [13] gives the analytical expression of the stability boundary in summation parametric
resonance
o 2 2[0? -

[_ (Cfn - cﬁm)} + (CrIfn + Crlftm) |:Z + azcllfncrl;im + V%dnmdmn = 0’ (30)

where superscript R denotes the real of part of the coefficient. Therefore, the instability region is
given as

_2\/”/% Re(dnmc-lmn) - azcyllznclﬁin < 6<2\/’V% Re(dnmdmn) - azcilfncrlflm

1+ x2 1+ x2 ’ (1)
where
Cfn - Ci}flm
= o (32)

Now we consider the principal parametric resonance where the variation frequency w
approaches two times of a natural frequency of system (13). Denote

o =2w, + ¢o. (33)
Let m = nin Eq. (30). Then the resulting equation gives the stability boundary in the nth principal

parametric resonance.
2 2 2 2
=21/ P du|* — 02cR <a <27/ P} dm|* — 02cR . (34)

The stability in difference parametric resonance can be treated similarly. Denote

W=, — 0y + 0. (35)
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The stability boundaries are expressed by Eq. (30), while the coefficients in them are given by

(D1 /i) fo & Gndx (D1 fiwn) [y " B dx

nn — 2(160,1 fol (ﬁn(ﬁn dx + Yo fOl (ﬁ;(ﬁn dX)’ mm — 2(160m f()l ¢m(ﬁm dx — Yo fOl (p:n(ﬁm d.X) D

_ (0 + @) fol ¢-)l/11d-)n dx — 2i7)0 fol q;;q;n dx do = (@y + ©p) fol d;;d;m dx + 2iVO fol (Z)Zq-sm dx
4w, [i dpbndx + 70 fy Py dx) 4G [y Py dx — 7 Ji Db dX)
(36)

nm

4. Stability boundaries of beams with simple supports

The boundary conditions of an axially moving beam with simple supports in dimensionless
form are

oxX2| ., Ox2

The eigenfunction corresponding to the kth natural frequency w; of that boundary conditions is
given by Eq. (19) in Ref. [6]
2 2 (i ~ 2 2 N (A -
¢k(x) — ei[)’]kx _ (ﬂézlk - ﬁ;k)(e%ﬁ'}k - efﬁ]k) ei/Jka _ (ﬁgk — ﬂék)(e?l}}k - ellﬂlk) ei[)’3kx
(134/( — ﬂ2k)(e1ﬁ3k — elﬁzk) (ﬂ4n — ﬂ3n)(e1ﬂzk — elﬁy\')
. (Bix — PP — elfi) B (B — PP — etfic) e
(‘Bik — ﬁ%k)(eiﬂsk — eiﬁZk) (‘Bik — ﬁ%k)(eiﬁzk — ei.B_zk) ’

where B (j = 1,2,3,4) are eigenvalues of simple supported case.

Consider an axially moving beam with Dy =2.0, D; =0.1 and y =3.5. In summation
parametric resonance, Eq. (29) gives ¢;; = 0.0615, ¢op = 0.0282,d1, = 1.3960 + 0.93341, and d5; =
0.3051 4 0.2040i. The stability boundaries for the summation resonance of first two modes in
plane ¢ — y, are shown in Fig. 1 for & = 0,0.5,0.8. The increasing viscosity coefficient makes the
stability boundaries move towards the increasing direction of y; in plane (w, y,) and the instability
regions become narrow. The larger viscosity coefficient leads to the larger instability threshold of
y; for given o, and the smaller instability range of ¢ for given 7,.

In principal parametric resonance, Eq. (29) gives dj; = —1.2001 + 1.2562i, dy» = —0.4330 +
0.9798i. Eq. (34) yields the stability boundaries for the first and second principal resonance in
plane ¢—7y, shown, respectively, in Figs. 2 and 3 for « = 0,0.5,0.8. In both cases, the increasing
viscosity coefficient makes the stability boundaries move towards the increasing direction of y, in
plane (w,y;) and the instability regions become narrow.

In difference parametric resonance, there is no instability region found.

To compare the difference of the three kinds of resonance instability, we use the same scale of
coefficients and also the viscosity is chosen as the same in Figs. 1-3. These figures indicate that the
area of the stability boundary in the first principal resonance is the biggest and that of the
summation resonance is the smallest. But the stability boundary for the summation resonance is
the most sensitive to the change of the viscosity coefficient and that for the first principal the least.

u(0,7) = u(l, ) = 0, —0. (37)

x=1

(3%)



X.-D. Yang, L.-Q. Chen | Journal of Sound and Vibration 289 (2006) 54—65 61

0.1

0.08

0.06 |

71

0.04

0.02

Fig. 1. The stability boundaries for the summation resonance of beams with simple supports.
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Fig. 2. The stability boundaries for the first principal resonance with simple supports.
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Fig. 3. The stability boundaries for the second principal resonance with simple supports.

5. Stability boundaries of beams with fixed supports
For an axially moving beam with simple supports, the boundary conditions in dimensionless

form are

6_14
Ox

_au

w0, =u(l,) =0, = —
x=0 0x

— 0. (39)

x=1

And the eigenfunction of the boundary conditions equation (39) corresponding to the kth natural
frequency wy is given by Eq. (17) in Ref. [7]

_ aifux _ (Bax — Br)(efs — etf) iy (Pax — Pu(eFs — ey iByx
P = e B = @ =) (Bay = o) — )
| — (Bag — Bu)(efsn — etfv) _ (Bar. — Br)(ef — elfu )} AT
(Bat— P& — ) (B — Pyl —el)| <

where B (G = 1,2,3,4) are eigenvalues.

Consider an axially moving beam on fixed supports with Dy = 2.0, D; = 0.1 and y = 8.0. Eq.
(29) gives Cl1 = 0.1391, Cry = 0.0356, dlz = —0.2067 — 0.2028i, and d21 = —0.0594 —
0.05831, dy; = 2.2594 — 1.2201i1, dy = 0.5021 — 0.97331. The stability boundaries in the summa-
tion resonance of first two modes in plane o—y, are illustrated in Fig. 4 for « = 0,0.1,0.2. The
stability boundaries for the first and second principal resonance in plane o—y, are illustrated,

(40)
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Fig. 4. The stability boundaries for the summation resonance of beams with fixed supports.

respectively, in Figs. 5 and 6 for & = 0,0.5,0.8. In all figures, the instability regions draft towards
the increasing direction of the amplitude with the increase of the viscosity coefficient. Like the
results obtained for the simple supports case, the stability boundary in the first principal
resonance is the least sensitive to the change of the viscosity coefficient and that in summation
resonance the most. And also there is no instability region found in the difference resonance.

6. Conclusions

Transverse stability of axially moving viscoelastic beams is studied in this paper. The
viscoelastic beam is constituted by Boltzmann’s superposition principle. The axially moving speed
is assumed as harmonically fluctuating about a constant mean value. The method of multiple
scales is applied to the partial-differential equation governing the transverse parametric vibration.
The stability boundary is derived from the solvability conditions. Axially accelerating beams with
simple supports and fixed supports are numerically investigated. The results show that instability
occurs when the axial speed fluctuation frequency is close to the sum of any two natural
frequencies or two times of a natural frequency of the unperturbed system. A detuning parameter
is used to quantify the deviation between the speed fluctuation frequency and the sum of two
natural frequencies or the multiple of a natural frequency. The stability boundaries are
numerically determined in the axial speed fluctuation detuning parameter—amplitude plane for
varying viscosity coefficient. With the increase of the viscosity coefficient, the lager instability
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Fig. 5. The stability boundaries for the first principal resonance with fixed supports.
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Fig. 6. The stability boundaries for the second principal resonance with fixed supports.
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threshold of speed fluctuation amplitude becomes large for given detuning parameter, and the
instability range of the detuning parameter becomes small for given speed fluctuation amplitude.
The instability region is much bigger in first principal resonance than that in the higher order
principal resonance and the summation resonance. In addition, the viscosity coefficient has more
significance on the stability boundary in summation resonance than that in the principal
parametric resonance.
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