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Abstract

This paper presents the exact static and dynamic analyses of simply supported rectangular plates. The
analytical solutions for displacements, buckling loads, natural frequencies and dynamic responses are
obtained by using the double U-transformation method and the finite difference method. After an
equivalent system with cyclic periodicity in two directions is established, the difference governing equation
for such an equivalent system can be uncoupled by applying the double U-transformation. Then the exact
analytical finite difference solutions, the exact error expressions and the exact convergence rates are derived.
These results cannot be obtained if other methods are used instead.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

As an important numerical computational method, the finite difference method has broad
applications in various scientific research fields, e.g. physics, mechanics, astronomy and
engineering technology. The study on the convergence of difference schemes always attracts the
attention of computing mathematicians and dynamicists.

It is well known that the governing equations of cyclic periodic structures can be uncoupled in
each mode subspace by using the U-transformation method [1]. This method may be employed to
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greatly reduce the computational effort in the numerical analysis of cyclic periodic [2], periodic [3],
nearly periodic [4] and bi-periodic structures [5,6].

For another important application of the U-transformation method, it can be used to study
the convergence of computational schemes for numerical methods. In 1993, Chan et al. applied
the U-transformation method to study the convergence rates of the natural frequencies
and the dynamic responses of simply supported plates by using the non-conforming rectangu-
lar element, and the explicit finite element solutions were derived [7]. Liu et al. extended this
method to the convergence study of the finite difference method. The static analysis of a
simply supported beam subjected to uniformly distributed loads was investigated and exact
convergence rates of difference solutions were obtained by using the one-dimensional finite
difference formula [8].

For the structures with cyclic periodicity in two directions, the double U-transformation
method may be applied to the static and dynamic analyses [9]. The present paper is therefore to
extend the application of the U-transformation method to the convergence study of two-
dimensional difference formula. The analysis of two-dimensional periodic structures is more
complex than that of one-dimensional structures. The static and dynamic analyses of a simply
supported rectangular plate are studied by using the two-dimensional finite difference method. By
adopting the double U-transformation technique, the governing equations in difference form can
be uncoupled to a set of independent equations, and then the analytical expressions for the static
displacements, buckling loads, natural frequencies and dynamic responses can be easily obtained.
The convergence rate can be discussed simply and effectively from the explicit solutions. A few
numerical results are given to demonstrate the proposed procedure.

2. Simply supported plate
A rectangular plate with all edges simply supported is considered. The structure may be divided

into n x m equal rectangular elements, as shown in Fig. 1. L, L, denote the lengths of the plate
and a, b denote the lengths of an element in the x and y directions, respectively. P is the load
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Fig. 1. Simply supported rectangular plate with n x m elements.
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Fig. 2. Equivalent system with 2n x 2m elements.

function acts on the node (j, k), and j, k are the node numbers. Now the plate may be regarded as
a periodic structure in two directions.

At the outset, let us consider the extended plate (see Fig. 2) whose length and width are twice
that of the actual ones. Moreover, the anti-symmetrical loads about the right side and lower side
of actual plate must be applied on the corresponding extended part and then we regard the
extended plate as one having cyclic periodicity in x and y directions [10]. The boundary conditions
of the original plate can be satisfied automatically so that an equivalent system is produced.

3. Static displacements

Consider now the equivalent system with 2n x 2m substructures and cyclic periodicity instead
of the actual original structure. The governing equations for all substructures are of the same
form, i.e.,

DV4W(/’/() = F(/-’k), ] = 1,2,. . .,211, k= 1,2,. . .,21’1’1, (1)

where D is the flexural rigidity, w(x) and F;x) denote the transverse displacement and loading for
the node (j, k) and

Fixy=—=Fiom-i) = —Fon-ji) = Fon—jom-ry, j=12,....,n, k=12,...,m. )
From the cyclic periodicity in two directions, the following conditions are obtained:

Wen+lk)y = Wk,  Wen+t12m+1) = W1,1),  Wi2m+1) = W(i 1),

i=1,2....2n, k=1,2,...,2m. 3)
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Substituting the difference formula for V4w(,~,k) into the governing equation (1) results in
(6 4 602 4 8o)wijpy) — 4(1 + wia—1y — 41 + Wiar1y — 41+ Dwi_1x)
— 41 + a)Wt1,0) + 2001 k—1) + 20W (it 1e+1) + 20W(41k—1)
+ 20w (o1 k1) F O WG—2k) F EWs2k) + Wik-2) + Wiks2) = @ Fx)/D 4)

in which o = a?/b?, a = L,/m, b= Ly/n.
In order to uncouple the difference equation (4), the double U-transformation need to be used,
1.e., let

1 2n 2m i .
- —iG=Drp a=itk=Dsip, )
-y = e e Wik S5a
9(r.s) mm; ;; G.k) (5a)
or
1 2n  2m

L i(j— Dy pi(k—1)sy,
Wik)y = —F7— — e' e . 5b
(k) /_21’1 /_21’}7; ; Q(I,S) ( )

in which i = +/—1, and ¢, = 2n/2n, Y, = 21/2m.
Applying the double U-transformation (5) to the difference equation (4) results in

DAq(}’,S) :f(r,s)a (6)
where
1 1061 [N .
A= 16+ 66 + 8 — 4(1 + )2 — 4(1 + ) — a1 + e

— do(1 + a)e™ 4 2ae VeV 4 2gelVielV2 4 2geiie Vo

+ 2ae—in//leisx//z + OC2672irl//1 + O(2621’)‘1//] + 672i51//2 + e2is1//2]’ (7)
1 2n  2m o ]
foog = e_l(’_l)"/”e_‘(k_l)s"’QF(,-,k). ®)
) V2ny2m = kz:;

Now, the governing equation (1) has been uncoupled into Eq. (6) successfully. From Eq. (6), ¢,
can be expressed as

f(r,s)
Q(r,s) = AD . (9)

Consider the simple case of a square uniform plate with n x n uniform elements subjected to a
uniform load with magnitude p,, i.e.,

L
n=m Li=lo=L a=b=", a=l, §=yp="=1 (10a)

n
F(j’k)=p0, j=1,2,...,l’l, k=1,2,...,m. (IOb)
Substituting Eq. (10) into Egs. (7) and (8) yields

A = 4(cos ) + cos sy — 2)* Ja*, (11)
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fo=— 2pyeelV sin 7 sin sy LA o
() = n (1 —cosrp)(1 —cossy)”  °° 77707 ’
f(r,s)zo, rors=24,...,2n. (12)

Inserting Eqs. (11) and (12) in Eq. (9), the generalized displacement ¢, ;) becomes
a*p, y e el sin rp sin sy
nD "~ 2(cosry + cos sy — 2)*(1 — cosrp)(1 — cossyr)’

dis) = — r,s=1,3,....2n—1,

445 =0, rors=24,..2n (13)

Now every nodal displacement can be obtained from the double U-transformation (5) with
Eq. (13), i.e.,

Wik = (14)

Z sin jry sin ksy sin rj sin sy
ZD, 13 s=13 (cosry + cos sy — 2) (1 —cosry)(1 — coss1//)'

The maximum displacement occurs at the center of the square plate and its magnitude can be
expressed as

atpy L sin 7(rr/2) sin s(r/2) sin 1y sin sy
Wmax = Wn/2n/2) = 50 (15)
’ n=D S &4 (cosrp + cos sy — 2)*(1 — cos rp)(1 — coss)
E

Expanding the right side of

g. (15) into power series of i results in

Lep L4 =1 n=l (_\r=D/2_ys=D/2 222
Winax = p06 Z ( ) - ( 2)2 |: (l" 2 s ) + 0(1’1_4) (16)
Dr® o4 o rs(r* + %) 12(r* + )
Let
S VIR YIRS S
A(l’l) ( l)r 1) 2( l)S 1)/2
r; 5—21:3 rs(r2 + 52)*
B(n) = nzi nzi (— )=V y=D/2 (=% (17)
=13 s=13 128502 + 52
Introducing Eq. (17) into Eq. (16) yields
. 161’0 w14 20 -2 —4 1
Wimax = — & X [A(m) + Blm)n(n™5)] + O ™). (18)
By letting n approach infinity, the limit of A(n) and B(n) becomes the definite integral
lim A(n) = 0.244094, lim B(n) = —0.0027984. (19)

The first term on the right-hand side of Eq. (18) represents the limiting solution, which is in
agreement with the analytical solution. The second term represents the main error of the
displacement found by finite difference method. When # approaches infinity, the finite difference
solution for displacement converges to the analytical solution at an asymptotic rate of n~2. And
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Table 1
The central displacement wy,,x of simply supported square plate
n 2 4 8 16 32 00
Wnax 0.79438 0.94860 0.98715 0.99679 0.99920 1.00000
Multiplier P0L4/ D
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Fig. 3. Simply supported rectangular plate subjected to pressure in middle plane.

meanwhile the precise coefficient of the error term —0.044774p,L*/Dn* is determined. Some
numerical solutions for Eq. (18) are given in Table 1, from which one can know that the central
displacement converges quickly.

4. Buckling loads

Simply supported rectangular plates subjected to uniformly distributed compression in x and y
directions are considered. P, and P, denote the pressure per unit length in x and y directions as
shown in Fig. 3.

The buckling equation can be expressed as

azw-k aQW-k
DV*wip + P Usk) VR — 20
Wi k) + < o2 TP 32 , (20)

where f = P,/P,. Substituting the difference formulae for V4w, 0*w(x)/0x?, 8w /dy* and

double U-transformation (5) into the buckling equation (20) results in

(cosry; —1)  P(cossy, — 1)
Cl2 + b2

DAq(l‘,S) + 2Px|: :|q(r,s) = 0, (21)

where A has been defined as Eq. (7).
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From Eq. (21) the critical load can be written as
po— —DA
T 2((cosrpy — 1)/a® + Plcos sy, — 1)/b%)

Obviously the buckling load depends on the ratios between p, and p,. Firstly, consider the case
of bi-directional uniform compression, i.e., p, = p, = p. Substituting # = 1 into Eq. (22) results in

p —DA
T 2((cos iy, — 1))@ + (cos sy, — 1)/b%)

Consider the case of simply supported square plate with n x n uniform elements. Substituting
Eqgs. (10a) and (11) into Eq. (23) yields

—2D(cosry + cos sy — 2)

(22)

(23)

P, = . (24)
Expanding the right-hand side of Eq. (24) into a power series of i results in
D(r2 +S2)lp2 P +S4 5 A
P, = — . 2
a? 12(r2 + 52) V' + 000 (25)
The minimum buckling load P, can be expressed, by substituting » = 1 and s = 1 into Eq. (25), as
2Dn*>  Dr*
Po=""5——>n?+0m". 26
7 o2 (n™") (26)

The first term on the right-hand side of Eq. (26) represents the limiting solution which is in
agreement with the analytical solution. Then the second term represents the main error of the
buckling load found by the finite difference method. When n approaches infinity, the buckling
load converges from below the analytical solution at an asymptotic rate of n~2.

Secondly, consider the case of unidirectional compression, i.e., p, = p and p, = 0. Substituting
f =0 into Eq. (22) results in

—DAa®
Pi=———.
2(cosry; — 1)

Consider the case of simply supported square plate with # x n uniform elements. Substituting
Egs. (10a) and (11) into Eq. (27) yields

2D(cos 1y + cos sy — 2)?

27)

P, = 28
a*(1 — cosry) (28)
Expanding the right-hand side of Eq. (28) into a power series of s results in
D(rZ + S2)2w2 r2S2 _ r4 _ 2S4 5 4
Pp=— _—— 29
and the magnitude of buckling load is
4Dn*  Drn*
Po= 28 T 02 oY, (30)

L> 37
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The first term on the right-hand side of Eq. (30) is in agreement with the analytical solution and
then the second term represents the main error of the buckling load found by the finite difference
method. Making a comparison between Egs. (30) and (26), leads to the conclusion that the rates
of convergence of finite difference formulae for both unidirectional and bi-directional
compression are the same.

5. Natural frequency

Consider the equivalent system with cyclic periodicity in x and y directions shown in Fig. 2. The
dynamic equations for all substructures are of the same form, i.c.,

azw
DV*wix + p a(; = Fx)» (31)

where p denotes the mass per unit area of plate.
Substituting the difference formula for V4wj into the governing equation (31) results in

D
?[(6 + 60> + 80()141(,"1() —4(1 + O()W(ﬁk_]) —4(1 + O()W(]',k_,_]) —4o(1 4+ OC)W(,'_l,k)

— 4ol + o)Wp14) + 20W(—1k—1) + 200041 kg 1) + 2001 k—1) + 20061 k4 1)

62w ik

+ W2k + W2k + Wik + Weke)] P ZZ’ L= Fip. (32)
Applying the double U-transformation (5) into Eq. (32) results in
q(r,s) +— 0 q(r s) — pb) (33)

where 4 and f, ; have been defined as Eqgs. (7) and (8).
Firstly, con51der the natural vibration. Inserting ¢, ,(¢) = O, S)e“" and f ., = 0 into Eq. (33)
yields the frequency equation

DA
<7 o S)> Q) =0, (34)

where @5 denotes the natural frequency found by the finite difference method. The natural
frequencies can be obtained from Eq. (34) as

N DA
Dy =—— (35)
p

Consider the simple case of a square plate with n x n uniform elements. Substituting Eq. (11)
into Eq. (35) yields

4D
~?, 9= a4 (cos ry + cos sy — 2)%. (36)

Expanding the right-hand side of Eq. (36) into a power series of s results in

~ l’ +S _ _
w(r,s) - a)(r,s) 1 - 12(1’2 ) 2 2 + O(I’l 4) 5 (37)
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Table 2
Natural frequencies @y for simply supported square plate

n

(r,s) 2 4 8 16 32 00
(1,1 15.6805 18.7245 19.4855 19.6758 19.7234 19.7392
(—0.206)* (—0.0514) (—0.0129) (—0.00321) (—0.000803)

(1,2),(2, 1) 40.7233 47.1918 48.8090 49.2133 49.3480
(—0.175) (—0.0437) (—0.0109) (—0.00273)

2,2) 62.7220 74.8981 77.9422 78.7032 78.9568
(—0.206) (—0.0514) (—0.0129) (—0.00321)

Multiplier L’z\/D—/p

4The numbers in the parentheses denote the relative errors.

where ;) denotes the analytical solution for natural frequency defined as

w* |D
D(rs) = (”2 + Sz)P \/; (38)

The natural frequencies found by the finite difference method converge from below the exact
answers at an asymptotic rate of n=2 when n approaches infinity. Some numerical results for Eq.
(37) are given in Table 2.

6. Dynamic response

Let a concentrated load of magnitude p(¢) being time dependent act at the center of the simply
supported rectangular plate with n x m uniform elements where n and m are even. For this case,
the loading for equivalent system may be expressed as

(1) (1)
Fopomp2) = Fgn2mem/2) = pa_b’ Fopmim2) = Fugnjomz) = _pa—b (39)
with other nodal loadings being equal to zero.

Substituting Eq. (39) into Eq. (8) yields

2p(t) iy sy, - I . ST
Sfog=— We' Vigis sin—-sin—- (40)
and then inserting Eq. (40) in Eq. (33) results in
; DA 2p(te™ieV:  rm . sm
9ot 7(](”) =— 4,0611) — sm73m7. (41)
The dynamic equation (41) can be solved by means of Duhamel integral, i.e.,
2eiee  pm s f! .
Q) = — m sin > sin > /0 (1) sin @ 5(t — 1) d1, (42)
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where @5 has been defined by Eq. (36). Now the response function of the deflection can be
obtained from the double U-transformation (5) with Eq. (42)

1 2n—1 2m—1

Wik = ———
o N 2na/2m r; e

The response function of the displacement at the center of the plate may be found by
substituting j = n/2 and k = m/2 into Eq. (43), i.e.,

=ity (43)

4 n—1 m—1 1 t
Wwe(t) = - / (1) sin &4 (t — 1) dr. (44)
pL1L2 ,,:21’:3 s=21;3 CU(r,s) 0 5

The analytical solution may be obtained by the double sine series method. The center deflection
can be expressed as

4 o0 e} 1 t
we(t) = / p(7) sin w5 (t — 1) dr. (49)
pLiL, ,; S; O(r,s) Jo )

The finite difference solution shown in Eq. (44) converges but does not converge uniformly to the
analytical solution when the number of elements approaches infinity. The convergence rate is
dependent on the characteristic of the loading function.

7. Conclusions

Explicit finite difference solutions for displacements, buckling loads, natural frequencies and
dynamic responses have been developed to study the static and dynamic convergence. The two-
dimensional finite difference formulae are studied, and the solutions are in agreement with the
exact analytical ones. At the same time, the exact coefficients of the main error terms are derived.
It is shown that the U-transformation method has great advantages in exact structural analysis.
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