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Abstract

Thermal postbuckling and vibration behaviors of the functionally graded (FG) plate are investigated.
The material properties of the FG plate are assumed to vary continuously through the thickness of the plate
and as temperature with the nonlinearity. The nonlinear finite element equations based on the first-order
shear deformation plate theory are formulated for the FG plate. The von Karman nonlinear
strain–displacement relationship is used to account for the large deflection of the plate. The incremental
form considering the initial displacement and initial stress is adopted for the nonlinear temperature-
dependent material properties of the functionally graded material. The numerical result shows the
characteristics of the thermal postbuckling and vibration of the FG plate in the pre- and post-buckled
regions.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are the advanced composites which have continuously
varying material composition and properties through certain dimension of the structure to achieve
the desired goals. Because the fiber-reinforced composites have a mismatch of material properties
across an interface of two discrete materials bonded together, there could be the severe thermal
see front matter r 2005 Elsevier Ltd. All rights reserved.
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stress concentration phenomena at the interface of the fiber-reinforced composites. However, by
gradually varying the material properties of FGMs, this problem can be avoided or reduced.
Therefore, FGMs with a mixture of the ceramic and metal are applied to the thermal barrier
structures for the space shuttle, combustion chamber and nuclear plants, etc.
Reddy [1] researched the linear and nonlinear static analyses of the functionally graded (FG)

plate under thermomechanical loads. Theoretical formulation, Navier’s solution and finite
element model for the FG plate were presented. Croce and Venini [2] performed the static analysis
of the FG plate under the thermal and mechanical loads using the finite element method. The
static and dynamic responses of the functionally graded ceramic-metal plate were investigated [3].
In their study, the response of the FG plate with material properties between those of the ceramic
and metal was not intermediate to the response of the ceramic-metal plates. Cho and Oden [4]
studied thermo-elastic characteristics of FGMs using Crank–Nicolson–Galerkin method. It was
found that the FGMs show considerable improvement in the temperature and thermal stress
distributions. Woo and Meguid [5] performed the nonlinear static analysis for the FG plate and
shallow shell under the mechanical load and a temperature field. Yang and Shen [6] investigated
the nonlinear bending behavior of the FG plate subjected to the uniform load with the
temperature rise. In their research, material properties of the FG plate were assumed to be
dependent on the position and temperature. Javaheri and Eslami [7] studied the thermal buckling
of the FG plate using the analytical solution based on the classical plate theory. Lanhe [8]
presented the analytical solution for the thermal buckling of the thick FG plate. Na and Kim [9]
researched three-dimensional thermal buckling analysis of the FG plate using the assumed strain
mixed formulation. Eighteen-node solid elements were adopted to account for the variation of
material properties and temperature field along the thickness direction. The three-dimensional
exact solution for the vibration analysis of the FG plate was presented [10]. Pradhan et al. [11]
studied vibration characteristics of the FG shells using Rayleigh method. Natural frequencies of
the FG shells were observed to be dependent on the constituent volume fraction. Yang and Shen
[12] investigated the free and forced vibration problems for the initially stressed FG plate in the
thermal environment. Material properties of FGMs are assumed to be temperature dependent
and graded in the thickness direction. Their results show that the plates with intermediate material
properties do not necessarily have intermediate dynamic response. Kitipornchai et al. [13] studied
the nonlinear vibration of imperfect FGM plates based on Reddy’s higher-order shear
deformation plate theory using semi-analytical solution. Material properties were assumed to
be temperature dependent in their paper. Yang et al. [14] showed the influences of FG material
composition and temperature change on the dynamic stability, buckling and vibration of FGM
plates. He et al. [15] researched the active control of the FG plate using piezoelectric sensors and
actuators. Liew et al. [16] investigated postbuckling characteristics of piezoelectric FGM plates
with various applied voltage, inplane forces, volume fraction exponents and temperature. Averill
and Reddy [17] studied the nonlinear response of laminated composite panels subjected to thermal
loads using the refined theory and finite element method. Zhou et al. [18] investigated the
vibration of the thermally buckled composite plate. The initial deflection was considered, and
triangular elements were used for the finite element method based on the classical plate theory.
Lee and Lee [19] studied the vibration of the thermally postbuckled composite plate using the
first-order shear deformation plate theory (FSDT). Park et al. [20] performed the vibration
analysis of the thermally postbuckled composite plate embedded with shape memory alloy (SMA)
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fibers. To account for the temperature-dependent material properties of SMA fibers, the
incremental method considering the initial displacement and initial stress was adopted.
However, there have been few researches dealing with characteristics for the thermal

postbuckling and vibration of the FG plate considering the nonlinear temperature-dependent
material properties. Therefore, in this study, the nonlinear finite element equations based
on the FSDT are formulated for the FG plate under thermal loads. The von Karman
nonlinear strain–displacement relationship is used to account for the thermal large deflection.
The incremental form considering the initial displacement and initial stress is adopted for
the nonlinear temperature-dependent material properties of FGMs. The numerical results
show the characteristics of the thermal postbuckling and vibration of the pre- and post-buckled
FG plate.
2. Nonlinear finite element formulation

2.1. Incremental method

The temperature rise dT from the reference temperature T ref to the current temperature T can
be divided by many and small temperature increment DT as shown in Fig. 1(a). The small
temperature increment is defined as DT ¼ T � T0; where the subscript ‘0’ means the initial state.
It can be assumed that the temperature-dependent properties are constant with the values at the
current temperature T during the small temperature increment. As shown in Fig. 1(b), the
governing equation for the given temperature increment DT is derived considering the initial
displacement and initial stress.
2.2. Incremental strain–displacement relationship

The von Karman nonlinear incremental strain–displacement relationship for the FSDT can be
written as follows [20]:
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Fig. 1. (a) Definition of temperature increment; (b) incremental displacement of the FG plate.
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The incremental inplane strain vector is
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or

De ¼ Dem þ Dey þ De0 þ zDj ¼ De þ zDj, (1b)

where Dem; Dey; De0 and Dj are the incremental inplane linear strain vector, the incremental
nonlinear strain vector, the incremental inplane strain vector due to the initial deflection and the
incremental curvature strain vector, respectively. As shown in Eq. (1a), the incremental inplane
strain consists of the incremental displacement Du; Dv and Dw; the incremental rotation Dyx and
Dyy and the initial deflection w0:
In addition, the incremental transverse shear strain vector can be expressed as

Dc ¼
Dgyz

Dgxz

( )
¼

qDw

qy
þ Dyy

qDw

qx
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8>><
>>:

9>>=
>>;. (2)

2.3. FGM material properties

By the power law, the volume fraction for the ceramic-metal FGM is given as

VcðzÞ ¼
z

h
þ
1

2

� 	k

ð0pko1Þ, (3a)

VcðzÞ þ VmðzÞ ¼ 1, (3b)

where V and k are the volume fraction of the constituent material and volume fraction index for
the ceramic, respectively. In addition, subscripts ‘c’ and ‘m’ indicate the ceramic and metal,
respectively. Fig. 2 shows the distribution of the volume fraction Vc through the plate thickness
for various of the volume fraction index for the ceramic k.
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Fig. 2. Variation of volume fraction Vc through the plate thickness for various values of the volume fraction index k.
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Material properties of FGMs can be written as [12]

Pðz;TÞ ¼ ðPcðTÞ � PmðTÞÞVcðzÞ þ PmðTÞ, (4a)

PcðTÞ or PmðTÞ ¼ P0ðP�1T þ 1þ P1T þ P2T
2 þ P3T

3Þ, (4b)

where P is the effective material property. P0; P�1; P1; P2 and P3 are the coefficients of
temperature. Therefore, material properties such as Young’s modulus, the thermal expansion
coefficient and the density of FGMs can be calculated using Eq. (4). However, in this study,
Poisson’s ratio is assumed to be constant as v ¼ 0:3: Material properties of FGMs vary
continuously through the thickness of the plate and as temperature with the nonlinearity, as
shown in Eqs. (3) and (4).

2.4. Constitutive equation

The constitutive equation for the FG plate during the small temperature increment can be
expressed as [20]
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Q ¼ AsDc þQ0, (5b)

where A; B; D and As are the inplane, bending–stretching coupling, bending and transverse
shear stiffness matrices, respectively. N; M and Q are the resultant vectors of the inplane force,
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moment and transverse shear, respectively. Further, NDT and MDT are the thermal inplane
force and thermal moment due to the incremental temperature DT ; respectively. N0; M0

and Q0 are the inplane force, moment and transverse shear force due to the initial stress,
respectively.
2.5. Governing equation

By using the principle of the virtual work and Eqs. (1), (2) and (5), the governing equation of
the FG plate under thermal loads can be derived as follows:

dW ¼ dW int � dW ext ¼ 0. (6)

The variation of the internal virtual work dW int is given as

dW int ¼

Z
A

½deTNþ djTMþ dcTQ�dA

¼ ddTðK� KDT þ K0 þ Kw0 þ
1
2
KN1w0 þ

1
2
KN1þ 1

3
KN2ÞDd

� ddTPDT þ ddTP0 � ddTPw0DT
þ ddTP0w0

, ð7Þ

where d ¼ ½u v yx yy w�T is the displacement vector. K; KDT ; K0 and Kw0
are the linear stiffness

matrix, the incremental thermal geometric stiffness matrix, the geometric stiffness matrix
due to the initial stress and the initial deflection linear stiffness matrix, respectively. KN1w0

is the
first-order nonlinear mixed stiffness matrix which depends on the initial deflection and the first-
order nonlinear incremental term. KN1 and KN2 are the first- and second-order nonlinear
incremental stiffness matrices, respectively. In addition, PDT ; P0; Pw0DT

and P0w0
are the

incremental thermal load vector, the initial stress load vector, the incremental thermal load vector
due to the initial deflection and the load vector due to the initial load and initial deflection,
respectively. There are the detailed derivations for the stiffness matrices and load vectors in
Appendix A.
On the other hand, the variation of the external virtual work dW ext is given as

dW ext ¼

Z
A

�I0ð €udu þ €vdv þ €wdwÞ � I1ð€yxdu þ €udyx þ
€yydv þ €vdyyÞ

�I2ð€yxdyx þ
€yydyyÞ

2
4

3
5dA

¼ � ddTMD€d, ð8Þ

where ðI0; I1; I2Þ ¼
R h=2
�h=2 rð1; z; z

2Þdz and h denotes the thickness of the plate. In addition,M is the
mass matrix.
By substituting Eqs. (7) and (8) into Eq. (6), the governing equation for the FG plate under

thermal loads can be obtained as

MD€dþ ðK� KDT þ K0 þ Kw0 þ
1
2
KN1w0 þ

1
2
KN1þ 1

3
KN2ÞDd

¼ PDT � P0 þ Pw0DT
� P0w0

. ð9Þ
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3. Solution procedures

The solution of Eq. (9) is assumed to be as

Dd ¼ Dds þ dt, (10)

where Dds is the time-independent particular solution which means the incremental thermal large
deflection, and dt is the time-dependent homogeneous solution with small magnitude at the
buckled position of d0 þ Dds:
Two sets of equations can be obtained by substituting Eq. (10) into Eq. (9) as

ðK� KDT þ K0 þ Kw0 þ
1
2
KN1w0s

þ 1
2
KN1s þ

1
3
KN2sÞDds

¼ PDT � P0 þ Pw0DT
� P0w0

, ð11aÞ

M€dt þ ðK� KDT þ K0 þ Kw0 þ KN1w0s
þ KN1s þ KN2sÞdt ¼ 0. (11b)

Eqs. (11) are equations for the thermal postbuckling and vibration analyses of the thermally
postbuckled plate. Further, the subscripts ‘s’ and ‘t’ denote the static and dynamic displacement,
respectively.

3.1. Thermal postbuckling problem

Newton–Raphson iterative method is adopted to solve the thermal postbuckling displacement.
Introducing the function WðDdsÞ to Eq. (11a) as,

WðDdsÞ ¼ ðK� KDT þ K0 þ Kw0 þ
1
2KN1w0s

þ 1
2KN1s þ

1
3KN2sÞDds

� PDT þ P0 þ Pw0DT
þ P0w0

¼ 0. ð12Þ

The tangent stiffness matrix and unbalance load vector for Newton–Raphson iterative method
can be written using above function WðDdsÞ as
For the ith iteration,

Ktani
¼

dðWðDdsÞÞ

dðDdsÞ

� �
i

¼ ðK� KDT þ K0 þ Kw0 þ KN1w0s
þ KN1s þ KN2sÞi (13a)

and

WðDdsÞi ¼ K� KDT þ K0 þ Kw0 þ
1
2
KN1w0s

þ 1
2
KN1s þ

1
3
KN2s

� �
i
Ddsi

� PDT þ P0 þ Pw0DT
þ P0w0

. ð13bÞ

Therefore, Eq. (11a) can be written as

Ktani
ddsiþ1

¼ �WðDdsÞi. (14)

The incremental displacement is updated as

Ddsiþ1
¼ Ddsi

þ ddsiþ1
. (15)

It is considered that the incremental displacement is converged when the maximum value of
kddsiþ1

k is less than 10�6: In addition, the thermal postbuckling displacement is calculated using
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the converged incremental displacement as

ds ¼ d0 þ Dds. (16)

3.2. Vibration problem

After the thermal postbuckling displacement is calculated from the thermal postbuckling
analysis, the vibration analysis is performed at the updated equilibrium position of d0 þ Dds:
Because the sum of stiffness matrices of Eq. (11b) equals the tangent stiffness matrix with the

converged displacement in Eq. (14), therefore, Eq. (11b) can be expressed as

M€dt þ ðK� KDT þ K0 þ Kw0 þ KN1w0s
þ KN1s þ KN2sÞdt

¼ M€dt þ Ktandt ¼ 0. ð17Þ

If the analyses for the thermal postbuckling and vibration at the thermally postbuckled state are
completed during the given temperature increment, the initial displacement and initial stress are
updated for the next temperature increment. These solution procedures are performed until the
temperature reaches the final temperature.
4. Numerical results and discussions

In this section, the code verification and numerical analyses for the thermal postbuckling and
vibration of the FG plate are performed using the finite element method (FEM). A uniform 6
 6
mesh of nine noded elements is employed. To prevent the shear locking phenomena, the reduced
integration technique is used to integrate terms related to the transverse shear stress.

4.1. Code verification

To verify the code used in this study, three examples are discussed. First, the thermal buckling
analysis of all simply supported square FG plate is performed and compared with Ref. [7]. The
ceramic is rich at the top and the metal is rich at the bottom of the FG plate. In this example,
temperature-independent material properties are considered; Young’s modulus and the thermal
expansion coefficient for aluminum are Em ¼ 70GPa and am ¼ 23
 10�6=�C and for alumina are
Ec ¼ 380GPa and ac ¼ 7:4
 10�6=�C; respectively. Poisson’s ratio v is assumed to be constant as
0.3. Fig. 3 shows that the present result using FEM has good agreement with the analytical
solution of Ref. [7].
Second, the linear vibration analysis of all simply supported FG plate is performed for the two

special cases of the isotropy. Table 1 represents the present result that agrees well with the result of
Ref. [15].
Finally, to ensure the accuracy of the incremental method used in this study, the thermal

postbuckling behavior of the composite plate using the incremental method is compared with the
previous result of Ref. [17]. The thickness of a lamina is 1:25
 10�4 m; the planar dimension of
the square plate is 0.15m, and the lay-up condition is ½45=� 45=0=90�s: The boundary conditions
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Table 1

Natural frequency for simply supported FG plate for the two special cases of isotropy

Mode No. Natural frequency (Hz)

k ¼ 0 k ¼ 2000

Present Ref. [15] Present Ref. [15]

1 145.06 144.66 274.23 268.92

2 362.41 360.53 685.18 669.40

3 362.41 360.53 685.18 669.40

4 579.39 569.89 1095.40 1052.49

5 724.62 720.57 1369.98 1338.52

J.-S. Park, J.-H. Kim / Journal of Sound and Vibration 289 (2006) 77–93 85
are all simply supported with the immovable inplane edges. The material properties are

E1 ¼ 155:0GPa; E2 ¼ 8:07GPa,

G12 ¼ G13 ¼ 4:55GPa; G23 ¼ 3:25GPa,

v12 ¼ 0:22; r ¼ 1586kg=m3,

a1 ¼ �0:07
 10�6=�C; a2 ¼ 30:1
 10�6=�C.

Fig. 4 shows that the present result using the incremental method has an excellent agreement with
the result of Ref. [17].
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Table 2

Material properties of ceramic and metal for two types of FGMs [12]

Material P�1 P0 P1 P2 P3

E (Pa) Si3N4 0 348:43
 109 �3:070
 10�4 2:160
 10�7 �8:946
 10�11

SUS304 0 201:04
 109 3:079
 10�4 �6:534
 10�7 0

Aluminum oxide 0 349:55
 109 �3:853
 10�4 4:027
 10�7 �1:673
 10�10

Ti-6A1-4V 0 122:56
 109 �4:586
 10�4 0 0

r ðkg=m3Þ Si3N4 0 2370 0 0 0

SUS304 0 8166 0 0 0

Aluminum oxide 0 3750 0 0 0

Ti-6A1-4V 0 4429 0 0 0

a (1/K) Si3N4 0 5:8723
 10�6 9:095
 10�4 0 0

SUS304 0 12:330
 10�6 8:086
 10�4 0 0

Aluminum oxide 0 6:8269
 10�6 1:838
 10�4 0 0

Ti-6A1-4V 0 7:5788
 10�6 6:638
 10�4 �3:147
 10�6 0

J.-S. Park, J.-H. Kim / Journal of Sound and Vibration 289 (2006) 77–9386
4.2. Thermal postbuckling analysis

The thermal postbuckling behavior of the FG plate is studied. The ceramic is rich at the top and
the metal is rich at the bottom of the FG plate. The planar dimension of the plate ða 
 bÞ is
0:30
 0:30 (m) and the thickness ratio ðh=aÞ is 1/100. The simply supported boundary conditions
are considered for all edges which are immovable for the inplane directions. Table 2 shows
material properties for two types of FGMs used in this research. The uniform temperature change
is applied to the plate, and the reference temperature T ref is assumed to be 300K.
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Figs. 5–7 represent the thermal postbuckling behaviors of the Si3N4/SUS304 and aluminum
oxide/Ti-6A1-4V FG plates. For the isotropic plates with Si3N4, SUS304, aluminum oxide and
Ti-6A1-4V, thermal postbuckling behaviors are the bifurcation buckling behaviors that the
thermal large deflection has suddenly occurred when the temperature reaches the critical
temperature. However, for the Si3N4/SUS304 and aluminum oxide/Ti-6A1-4V FG plates, the
thermal large deflection is increased monotonically as the temperature increases from the
reference temperature. This is because the FG plate is the unsymmetric plate. It is well known that
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the postbuckling behaviors for the isotropic and symmetric laminated composite plates are the
bifurcation buckling behavior.
Fig. 5 shows the thermal postbuckling behaviors of the isotropic plates with Si3N4 and SUS304

and the Si3N4/SUS304 FG plates with k ¼ 0:3; 1 and 5. The larger the volume fraction index for
the ceramic k, the larger the thermal postbuckling deflection of the FG plate. In addition, there
are the thermal postbuckling behaviors of the Si3N4/SUS304 FG plate between the thermal
buckling behaviors of the isotropic plates with Si3N4 and SUS304.
Fig. 6 represents the thermal postbuckling behaviors of the isotropic plates with the aluminum

oxide and Ti-6A1-4V and the aluminum oxide/Ti-6A1-4V FG plates with k ¼ 0:3; 1 and 5. The
temperature–displacement relationship of the aluminum oxide/Ti-6A1-4V FG plate is similar with
that of the Si3N4/SUS304 FG plate, however, unlike the thermal postbuckling behavior of the
Si3N4/SUS304 FG plate, the larger the volume fraction index for the ceramic k, the smaller the
thermal postbuckling deflection of the FG plate. In addition, there are no thermal postbuckling
behaviors of the aluminum oxide/Ti-6A1-4V plate between the thermal buckling behaviors of
the isotropic plates with the aluminum oxide and Ti-6A1-4V. Fig. 7 shows the thermal
postbuckling behaviors of the Si3N4/SUS304 and aluminum oxide/Ti-6A1-4V FG plates for
k ¼ 1: The thermal large deflection of the FG plate with aluminum oxide/Ti-6A1-4V is lower than
that with Si3N4/SUS304.

4.3. Vibration analysis

Figs. 8–10 represent the vibration behaviors of the FG plates in the pre- and post-buckled
regions for the thermal postbuckling behaviors discussed in Section 4.2.
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For the isotropic plates with Si3N4, SUS304, aluminum oxide and Ti-6A1-4V, the fundamental
frequencies go to zero as the temperature approaches the critical temperature as shown in Figs. 8
and 9. However, fundamental frequencies of the FG plate do not go to zero because the thermal
postbuckling behavior of the FG plate is not the bifurcation buckling behavior. In addition, for
both the isotropic and the FG plates, as the temperature is increased, fundamental frequencies
have decreased in the pre-buckled region, but increased in the postbuckled region, because the
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Fig. 10. Vibration behaviors of the Si3N4/SUS304 and aluminum oxide/Ti-6A1-4V FG plates with k ¼ 1:
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thermal large deflection increases the nonlinear stiffness of the plate. At the reference temperature,
there are fundamental frequencies of the FG plates between those of the isotropic plates with two
constituent isotropic materials, and the larger the volume fraction index for the ceramic k, the
smaller fundamental frequency of the FG plate. The temperature–frequency relationship for the
aluminum oxide/Ti-6A1-4V FG plate is more monotonic than that for the Si3N4/SUS304 FG
plate.
Fig. 10 shows the vibration behaviors of the Si3N4/SUS304 and aluminum oxide/Ti-6A1-4V FG

plates for k ¼ 1: In the pre-buckled state, the fundamental frequency of the aluminum oxide/Ti-
6A1-4V FG plate is higher than that of the Si3N4/SUS304 FG plate, however, in the postbuckled
region, the fundamental frequency of the aluminum oxide/Ti-6A1-4V FG plate is lower than that
of the Si3N4/SUS304 FG plate. This is because the thermal postbuckling deflection of the Si3N4/
SUS304 FG plate is larger than that of the aluminum oxide/Ti-6A1-4V FG plate.
5. Conclusions

This study represents characteristics of the thermal postbuckling and vibration of the FG plate
under thermal loads. For the numerical analysis, the nonlinear finite element equation based on
the first-order shear deformation plate theory is formulated, and the incremental method for
considering the initial displacement and initial stress is adopted to account for the nonlinear
temperature-dependent material properties of FGMs. The numerical results show that the
behaviors of the thermal postbuckling and vibration of the FG plate are different from those of
the isotropic plate, and the volume fraction of the constituent materials for FGMs has an effect on
the behaviors of the thermal postbuckling and vibration of the FG plate. In addition, the
behaviors of the FG plate do not necessarily lie in between those of the isotropic plates with the
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ceramic and metal. For the future study, the behavior of the FG structure under various
temperature distributions will be researched.
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Appendix A

The stiffness matrices and load vectors in Section 2.5 can be derived as follows. By using Eqs.
(1), (2), (5) and (6), the variation of the internal virtual work dW int is represented as

dW int ¼

Z
A

½deTNþ djTMþ dcTQ�dA

¼

Z
A

ðdeTm þ deTy þ deT0 ÞðADe þ BDj �NDT þN0Þ
�
þdjTðBDe þDDj �MDT þM0Þ þ dcTðAsDc þQ0Þ

�
dA

¼

Z
A

ðdeTm þ deTy þ deT0 ÞðADem þ ADey þ ADe0 þ BDj �NDT þN0Þ
�
þ djTðBDem þ BDey þ BDe0 þDDj �MDT þM0Þ

þdcTðAsDc þQ0Þ
�
dA

¼

Z
A

½deTmADem þ deTmBDj þ djTBDem þ djTDDj þ dcTAsDc�dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K

þ

Z
A

½deTmADey þ deTyADem þ deTyBDj þ djTBDey�dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2KN1

þ

Z
A

½deTyADey�dA|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
3KN2

�

Z
A

½deTyNDT �dA|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
KDT

þ

Z
A

½deTyN0�dA|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
K0

þ

Z
A

½deTmADe0 þ deTyADe0 þ deT0ADem þ deT0ADey�dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2KN1w0

þ

Z
A

½deT0ADe0 þ deT0BDj þ djTBDe0�dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kw0
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�

Z
A

½deTmNDT þ djTMDT �dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PDT

þ

Z
A

½deTmN0 þ djTM0 þ dcTQ0�dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P0

�

Z
A

½deT0NDT �dA|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Pw0DT

þ

Z
A

½deT0N0�dA|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
P0w0

¼ ddTðK� KDT þ K0 þ Kw0 þ
1
2
KN1w0 þ

1
2
KN1þ 1

3
KN2ÞDd

� ddTPDT þ ddTP0 � ddTPw0DT
þ ddTP0w0

. ðA:1Þ
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