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Abstract

A method of reverberation-ray matrix has been extended to the investigation of the field of wave
propagation in a transversely isotropic laminate. By using the decomposition in a local coordinate system,
any complicated waves can be separated into a departing part and an arriving part, which are expressed in
the local scattering matrix at structural interface. Together with the local phase matrix, we obtain a certain
wave transmitting from a layer to the neighboring one. Thus, the wave propagation in the whole laminate
can be described when assembling the local information with global phase and global permutation matrices.
This method is perfectly suitable for evaluating the transient waves involving a large number of generalized-
rays. In this paper, the method is applied to laminate made of transversely isotropic material. Numerical
results show the influence of the change of thickness and elastic constants of the layers on the wave
propagation in laminate.
r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Studies of the propagation of elastic waves in the layered media have long been of interest to
researchers in the fields of geophysics, acoustics, and nondestructive evaluation [1–7]. Common to
all of these studies is the investigation of the degrees of interaction among the layers, which
manifest themselves in the forms of reflection and transmission agents and give rise to geometric
dispersion. These interactions depend, among other factors, upon the mechanical properties of
see front matter r 2005 Elsevier Ltd. All rights reserved.
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media, geometric arrangements, the number of layers, interfacial conditions, and loading
conditions. In recent years, continued efforts have been expended upon modeling wave
propagation interacted with layered anisotropic media mostly in fields other than seismology,
such as nondestructive evaluation. This interest has been prompted by the recent expansion of the
use of composite materials in a wide variety of applications [8]. In comparison with the reasonable
rich literature on the interaction of plane harmonic waves in anisotropic media, very little work is
available on the response of such media to concentrated source loadings. Following the classical
work of Lamb [9] who obtained the exact solution for the disturbances that are generated by an
impulsive, concentrated load applied a line on the free surface of homogeneous isotropic elastic
half-space, Kraut [10] examined the influence of transverse isotropy on such a problem. Van der
Hijden [11] used the Cagniard’s de-Hoop method [12] to study unbounded anisotropic media.
Taylor [13] studied Lamb’s problem for semi-space that has as low as monoclinic symmetry. By
using numerical transforms, Weaver et al. [14] studied the dynamic response of a thick plate,
whose axis of transverse isotropy is normal to the plate surface.
In this paper, we extend the newly developed method of reverberation-ray matrix [15–18] to the

evaluation of the propagation of elastic waves in a transversely isotropic laminate to simulate the
wave propagation in the composite material. We intend to demonstrate the high accuracy, simple
computing process of this method, and to study the effects aroused by the change of thickness and
elastic constants in the interlayers. By applying Hankel transform and Laplace transform into the
spatial variable and the time variable, respectively, the integrals of wave numbers can express
the steady-state waves generated by point source to the receiver in axisymmetric problem. Using
the method of separating elastic waves into two different parts, the wave departing from and
arriving at the same interface, the process of transmission and reflection at the interface of two
adjacent layers is represented by a local scattering matrix. Associating with local phase matrix,
which expresses the relationship between departing and arriving of waves shown by two opposite
local coordinate systems in the same layer, the global scattering matrix and phase matrix of the
laminate can be expressed by assembling the local ones of all layers, respectively. Their product
together with a global permutation matrix gives rise to the reverberation-ray matrix R; which
represents the multi-reflected and transmitted steady-state waves within the entire medium. The
transient waves are then determined by another integration consisting of two inverse-numerical
transforms, known as the ray-integrals that contain a power series of R: After satisfying the
convergence criteria of ray expansion by adjusting the real part of the complex number p, which is
a parameter in the Laplace transform, we can approximately calculate the ray-integrals. This
method is particularly suitable for evaluating the transient waves involving a large number of
generalized-rays by calculating the double integrals numerically as illustrated by the examples of
laminates, which are made of transversely isotropic material in this paper. Furthermore, we
discuss the influence of the change of thickness and elastic constants in the layers on the wave
propagation in laminate.
2. Global and local coordinate system

Consider a laminate consisting of m transversely isotropic layers impacted by axisymmetric
load, we adopt capital letters such as I ; J; . . . to denote the interfaces of the laminate, and then
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denote the layer by using the name of its surface, such as IJ; JK ; . . . . In each layer, we define two
local cylindrical coordinate systems ðr; zÞIJ and ðr; zÞJI ; whose origins are on the upper and lower
surface, respectively, shown in Fig. 1. If the thickness of a certain layer is hIJ ; we deduce the
relationship equations as follows:

rIJ ¼ rJI ; zIJ ¼ hIJ
� zJI . (1)

Using the definition of displacements and stresses, we get their relations between two local
coordinate systems ðr; zÞIJ and ðr; zÞJI :

uIJ
r ðrIJ ; zIJÞ ¼ uJI

r ðrJI ; hIJ
� zIJÞ, (2)

uIJ
z ðrIJ ; zIJÞ ¼ �uJI

z ðrJI ; hIJ
� zIJÞ, (3)

tIJ
zz ðr

IJ ; zIJÞ ¼ tJI
zz ðr

JI ; hIJ
� zIJÞ, (4)

and

tIJ
zr ðr

IJ ; zIJÞ ¼ �tJI
zr ðr

JI ; hIJ
� zIJÞ. (5)
Fig. 1. The schematic diagram of global and local coordinates.
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3. Elastic waves in a transversely isotropic laminate

The wave equations for an axisymmetric problem in a local coordinate system ðr; zÞIJ are
expressed as

C55
q2ur

qz2
þ C11

q2ur

qr2
þ
1

r

qur

qr
�

ur

r

� �
þ ðC13 þ C55Þ

q2uz

qz qr
� r

q2ur

qt2
¼ 0, (6)

ðC13 þ C55Þ
q2ur

qz qr
þ
1

r

qur

qz

� �
þ C33

q2uz

qz2
þ C55

q2uz

qr2
þ
1

r

quz

qr

� �
� r

q2uz

qt2
¼ 0, (7)

where ur and uz are the displacements in r and z directions, respectively. r is the density of the
material, and C11;C55;C13; and C33 are the independent elastic constants of the transversely
isotropic material. Then the stresses in the plate are expressed as

tzz ¼ C13
ur

r
þ
qur

qr

� �
þ C33

quz

qz
, (8)

tzr ¼ C55
qur

qz
þ

quz

qr

� �
. (9)

The Hankel transform and Laplace transform are defined, respectively, as

f̂
Hv
ðk; z; tÞ ¼

Z 1

0

f ðr; z; tÞJvðkrÞrdr, (10)

f̂ ðr; z; pÞ ¼

Z 1

0

f ðr; z; tÞe�pt dt. (11)

Application of Laplace transforms in time variable t into Eqs. (1) and (2), and then Hankel
transforms of rank one and zero in spatial variable r into displacement ur and uz; respectively, yields

C55
q2ûH1

r

qz2
� C11k

2ûH1
r � ðC13 þ C55Þk

qûH0
z

qz
� rpûH1

r ¼ 0, (12)

ðC13 þ C55Þk
qûH1

r

qz
þ C33

q2ûH0
z

qz2
� C55kûH0

z � rpûH0
z ¼ 0. (13)

Furthermore, so do Eqs. (8) and (9), we obtain

t̂H0
zz ¼ C13kûH1

r þ C33
qûH0

z

qz
, (14)

t̂H1
zr ¼ C55

qûH1
r

qz
þ C55kûH0

z . (15)

Then the formal solutions of Eqs. (12) and (13) can be expressed as follows:

ûH1
r ¼ a1e

s1z þ a2e
s2z þ d1e

�s1z þ d2e
�s2z, (16)

ûH0
z ¼ a1w1e

s1z þ a2w2e
s2z þ d1w3e

�s1z þ d2w4e
�s2z, (17)
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where s21 and s22 are the roots of quadratic algebraic equation

Ax2 þ Bx þ C ¼ 0, (18)

whose coefficients are defined as

A ¼ C33C55, (19)

B ¼ �C55rp2 � c11k
2C33 � rp2C33 þ 2k2C55C13 þ k2C2

13, (20)

C ¼ C11k
4C55 þ C11k

2rp2 þ rp2C55k
2
þ r2p4, (21)

and

w1;2 ¼ ðC55s
2
1 � C11k

2
� rp2Þ=ððC55 þ C13Þks1;2Þ, (22)

w3;4 ¼ �w1;2. (23)

Defining the arriving wave and departing wave displacement vectors â ¼ fa1; a2g
T and d̂ ¼

fd1; d2g
T; the displacement vector Ûðk; z; pÞ ¼ fûH1

r ðk; z; pÞ; ûH0
z ðk; z; pÞgT can be denoted as

Ûðk; z; pÞ ¼ Auðk; z; pÞâþDuðk; z; pÞd̂, (24)

where â and d̂ are the unknown amplitudes,

Au ¼
es1z es2z

w1e
s1z w2e

s2z

" #
; Du ¼

e�s1z e�s2z

w3e
�s1z w4e

�s2z

" #

and the stress vector F̂ðk; z; pÞ ¼ ft̂H1
zr ðk; z; pÞ; t̂H0

zz ðk; z; pÞgT is expressed as

F̂ðk; z; pÞ ¼ Af ðk; z; pÞâþDf ðk; z; pÞd̂, (25)

where

Af ¼
C55ðs1 � kw1Þe

s1z C55ðs2 � kw2Þe
s2z

ðC13k þ C33w1s1Þe
s1z ðC13k þ C33w2s2Þe

s2z

" #
,

Df ¼
C55ð�s1 � kw3Þe

�s1z C55ð�s2 � kw4Þe
�s2z

ðC13k � C33w3s1Þe
�s1z ðC13k � C33w4s2Þe

�s2z

" #
.

4. Scattering matrices for waves at interfaces

For simplification, we first consider a vertical point force F ðtÞ ¼ �F0HðtÞ acting on the location
r ¼ 0; and z ¼ zJ (interface J) of the plate with zero initial condition. This method is also suitable
to more complicated cases. According to the interface conditions, we obtain four continuity
conditions at the interface J.

ûJðJ�1Þ
r ðx; 0; pÞ � ûJðJþ1Þ

r ðx; 0; pÞ ¼ 0, (26)
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ûJðJ�1Þ
z ðx; 0; pÞ þ ûJðJþ1Þ

z ðx; 0; pÞ ¼ 0, (27)

t̂JðJ�1Þ
rz ðx; 0; pÞ þ t̂JðJþ1Þ

rz ðx; 0; pÞ ¼ 0, (28)

t̂JðJ�1Þ
zz ðx; 0; pÞ � t̂JðJþ1Þ

zz ðx; 0; pÞ ¼ �F̂ðpÞ=2p; J ¼ 2 . . .m � 1. (29)

At the upper and lower surface of laminate, the continuity conditions are rewritten as

t̂12zz ¼ �F̂ ðpÞ=2p, (30)

t̂12zr ¼ 0, (31)

t̂mðm�1Þ
zz ¼ F̂ ðpÞ=2p, (32)

t̂mðm�1Þ
zr ¼ 0. (33)

Substituting Eqs. (24) and (25) into the above equations yields

AJaJ þDJdJ ¼ ĝ
J , (34)

where AJ and DJ are 4	 4 matrices. aJ and dJ are unknown vectors which represent amplitudes
of waves departing from and arriving at interface J, respectively, which are expressed as

aJ ¼ fa
JðJ�1Þ
1 ; aJðJ�1Þ

2 ; aJðJþ1Þ
1 ; aJðJþ1Þ

2 gT,

dJ ¼ fd
JðJ�1Þ
1 ; dJðJ�1Þ

2 ; dJðJþ1Þ
1 ; dJðJþ1Þ

2 gT.

For the surface of laminate, they are defined as

a1 ¼ fa121 ; a122 gT, (35)

d1 ¼ fd12
1 ; d12

2 gT, (36)

am ¼ fa
mðm�1Þ
1 ; amðm�1Þ

2 gT, (37)

dm ¼ fd
mðm�1Þ
1 ; dmðm�1Þ

2 gT. (38)

ĝ
J
¼ f0; 0; 0;�F̂ ðpÞ=2pgT is a source vector, and for the surface of laminate, it is denoted as

ĝ
J
¼ f0;�F̂ðpÞ=2pgT.

Solving dJ in terms of unknown vector aJ and a given source vector ĝJ in Eq. (34) leads to

dJ ¼ SJaJ þ sJ , (39)

where SJ ¼ �ðDJÞ
�1AJ is called the scattering matrix at Jth interface, and sJ ¼ �ðDJÞ

�1ĝ
J is

called the source wave vector at Jth interface.
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5. Reverberation matrix

In the global coordinate system, we construct a system of equations for the laminate in compact
notation

d ¼ Saþ s, (40)

where the global arriving wave amplitude vector a ¼ fa1; a2; . . . ; aNgT represents all waves arriving
at all interfaces, and the global departing wave amplitude vector d ¼ fd1; d2; . . . ; dNgT represents
all waves departing from all interfaces. The square matrix S is called the global scattering matrix.
The vector ŝ is called the global source wave vector.
Since both vectors a and d are unknown quantities, we need an additional equation related to a

and d: Consider a wave arriving at the interface J in the local coordinate ðr; zÞJðJþ1Þ; which is
expressed as

Û
JðJþ1Þ

¼ AJ
uðx; z

JðJþ1Þ; pÞâJðJþ1Þ. (41)

But in the local coordinate ðr; zÞðJþ1ÞJ ; the above wave is also considered to be the wave departing
from the other surface of the same layer, which is denoted as

Û
ðJþ1ÞJ

¼ DðJþ1ÞJ
u ðx; zðJþ1ÞJ ; pÞd̂

ðJþ1ÞJ
. (42)

Substituting Eqs. (41) and (42) into Eqs. (2) and (3) yields

â
JðJþ1Þ

¼ PJðJþ1Þd̂
ðJþ1ÞJ

, (43)

where

PJðJþ1Þ ¼
e�s1hJðJþ1Þ

0

0 �e�s2hJðJþ1Þ

" #

is the local phase matrix.
For interface J, we stack Eq. (43) into

aJ ¼ PJ ~d
J
, (44)

where

PJ ¼
PJðJ�1Þ

PJðJþ1Þ

" #
; and ~d

J
¼ fdðJ�1ÞJ ; dðJþ1ÞJgT.

In the global coordinate system, we obtain

a ¼ P~d, (45)
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where d ¼ f½d1�T; ½d2�T; . . . ; ½dn�TgT; and

P ¼

P1

P2

. .
.

Pn

2
66664

3
77775

is called global phase matrix.
The global vectors ~d and d contain the same elements but sequenced in different order. We may

express this equivalence through a permutation matrix H;

~d ¼ Hd, (46)

where U is a 4m 	 4m matrix composed of only one element whose value is one in each line and
each row and others are all zero. For example, in matrix d; if dJK

i and dKJ
i are in the positions p

and q, respectively, then the elements Hpq and Hqp in the matrix H have the same value one.
Substituting Eqs. (46) into (45) deduces

a ¼ PHd. (47)

Solving Eqs. (47) and (40) leads to

d ¼ ½I� R��1s, (48)

a ¼ PH½I� R��1s, (49)

where I is an identity matrix, and R ¼ SPH is called reverberation matrix.
6. Transient waves in the laminate

Once the vectors d and a are known from Eqs. (48) and (49), the complete list of displacements
in frequency domain will be denoted as

Û ¼ ðAuPHþDuÞðI� RÞ�1s. (50)

Applying the inverse Laplace transform and the inverse Hankel transform, the transient responses
are expressed as

Uðr; z; tÞ ¼
1

2pi

Z 1

0

Z
Br

Ûðk; z; pÞeptJvðkrÞk dpdk. (51)

In order to simplify the numerical computation, the inverse of the matrix ½I� R� in the
integrand of the double integral is replaced by the power series ½Iþ Rþ R2 þ � � � þ RN þ � � ��

through the Neumann expansion, and the original double integral that is singular at the poles of
det½I� R� ¼ 0 is then converted into a series of double integrals, known as the ray-integrals. So
Eq. (51) is rewritten as

Uðr; z; tÞ ¼
X1
K¼0

1

2pi

Z 1

0

Z
Br

½AuPHþDu�R
KsJvðkrÞkept dpdk. (52)
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Here, each term in the above integral containing RK can be defined as a group of rays, which
represents the set of K times reflections and transmissions of the source waves arriving at receivers
at ðr; zÞ in the laminate. When K ¼ 0; the group of rays shows the waves from sources to the
receivers directly, it is called as source wave. Here, every group of rays contains a series of
generalized rays [19], and the number of generalized rays increases exponentially when the number
of layer or K is increased. The inverse Laplace transform and Hankel transform of Eq. (52) are
computed numerically by a fast algorithm based on fast Fourier transform (FFT) [20].
7. Numerical examples

7.1. Five-layer transversely isotropic laminate with equal-thickness layers

Firstly, we consider a laminate including five transversely isotropic layers with the same
thickness shown in Fig. 2. This laminate consists of two kinds of material (materials A and B),
whose lay-up is [ABABA]. The elastic constants are listed, respectively:

A:C11=C55 ¼ 159:4=38:9; C12=C55 ¼ C13=C55 ¼ 73:9=38:9; C33=C55 ¼ 126:1=38:9, (53)

B:C11=C55 ¼ 318:8=38:9; C12=C55 ¼ C13=C55 ¼ 147:8=38:9; C33=C55 ¼ 252:2=38:9. (54)

A vertical force, �F0HðtÞ; acts at a point of the top surface, r ¼ 0 and z ¼ 0: Two receivers
are set at points C ð2:39h; 0:05hÞ and D ð2:39h; 4:95hÞ; respectively. In the subsequent analysis,
the normalized vertical displacement Uz and the normalized time t are defined as
Fig. 2. Position of two receivers in the five-layered transversely isotropic laminate.
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Fig. 3. The vertical displacement at receiver C in the five-layered transversely isotropic laminate. (a) The first ray group,

(b) the second ray group, (c) the third ray group, (d) the fourth ray group, (e) the fifth ray group, (f) the sum of the first

20 ray groups.
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Uz ¼ uz=ðF0=ðC55hÞÞ and t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C11=r

p
t=h; respectively. The wave velocity is normalized by c2s ¼

C55=r; where cs is the velocity of S-wave in the isotropic material.
The first ray group arrived at point C is shown in Fig. 3(a). For isotropic material, the elastic

waves are decoupled into P- and S-wave, but for transversely isotropic material, the velocity of
elastic wave is determined by the direction of wave propagation, and P- and S-wave are coupled
with each other, which is called quasi-P-wave and quasi-S-wave. The quasi-P-wave and the quasi-
S-wave arrive at point A at t 
 1:18 and 2.28, and the surface wave arrives at t 
 2:48; all of
which are close to the theoretical analysis. The second ray group, the third ray group, the fourth
ray group, the fifth ray group, and the sum of first 20 ray groups of the vertical displacement at
receiver C are given in Fig. 3(b)–(f), respectively.
The normalized vertical displacement at the receiver D is shown in Fig. 4. Because the first four

ray groups do not arrive at receiver D, the fifth ray group shown in Fig. 4(a), will generate the
response at receiver D firstly. For the complexity of elastic wave in transversely isotropic material,
we cannot obtain the exact time of the quasi-P-wave arriving at the receiver. By using theoretical
method, the approximate time is t 
 2:5; which is the same as that shown in this figure. The sum
of the first 20 ray groups of the vertical displacement at receiver D is given in Fig. 4(b).
7.2. Five-layer transversely isotropic laminate with different thickness and elastic constants of layers

Secondly, in order to discuss the influence of elastic constants and thickness of the layers, we
take two five-layer laminates for example similar to the first case. Each laminate consists of five
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Fig. 4. The vertical displacement at receiver D in the five-layered transversely isotropic laminate. (a) The fifth ray

group, (b) the sum of the first 20 ray groups.

Fig. 5. Position of the three receivers in the five-layered transversely isotropic laminate with different thickness and

elastic constants.
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layers of transversely isotropic lamina; in the odd layers, the thickness is h1 ¼ h; the density is r1;
and the elastic constants are C11=C55 ¼ 159:4=38:9; C12=C55 ¼ C13=C55 ¼ 73:9=38:9; and
C33=C55 ¼ 126:1=38:9; the thickness of the even layers is h2 ¼ Zh1 ¼ Zh; the density is r2 ¼ r1;
and x is expressed as the ratio of the elastic constants of the even layers to that of the odd layers.
Being similar to the first example, a vertical force, �F0HðtÞ; acts at the central point of the top
surface, r ¼ 0 and z ¼ 0: Three receivers are set at points E ð2:39h; 0:05hÞ in the first layer, F
ð2:39h; 1:05hÞ in the second layer, and G ð2:39h; 2:05hÞ in the third layer, respectively, as shown in
Fig. 5.
Fig. 6 shows the comparison of the vertical displacement aroused by the first ray group at

receiver E. We conclude from the four cases shown in Fig. 6 that the thickness and elastic
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Fig. 6. The vertical displacement of the first ray group at receiver E. (a) Z ¼ 1; (b) Z ¼ 1
10
:

Fig. 7. The vertical displacement of the second ray group at receiver F. (a) Z ¼ 1; (b) Z ¼ 1
10
:
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constants of the even layers have little influence on the wave propagation for the source wave. Due
to the transversely isotropic material, there are also quasi-P-wave and quasi-S-wave in the
laminate. Using the theoretical analysis [8], we deduce the velocities of quasi-P-wave and quasi-S-
wave to be approximately equal to 2.02 and 1, so quasi-P-wave and quasi-S-wave will arrive at
receiver E at tp 
 1:29 and ts 
 2:61; respectively, which are consistent with those shown in the
figures.
Fig. 7 shows the comparison of the vertical displacement caused by the second ray group at

receiver F. We notice the influence of the elastic constants in the even layers. However the
thickness of even layers does not affect the wave propagation because this ray group cannot arrive
at the bottom of the second layer, so there is no distinction between two parts of the figure. We
can compute the wave velocity and the arriving time in these cases by using the theoretical analysis
[8]. In the case of x ¼ 1:5; the velocity of quasi-P-wave and quasi-S-wave are Cp 
 2:47 and
Cs 
 1:22; in the case of x ¼ 0:5; they are Cp 
 1:43 and Cs 
 0:71; respectively. In the two cases,
the fastest wave, P–P wave arrives at t 
 1:28 and 1.32 wave, respectively, and that of the slowest
wave, S–S wave at t 
 2:59 and 2.66, respectively. We notice from the figures that the peaks
appear when the S–S waves arrive, which are similar to the theoretical analysis.
Fig. 8 shows the comparison of the vertical displacements caused by the third ray group at

receiver G. Here, the thickness and elastic constants of the even layers affect the wave propagation
more complicatedly, so the two figures are obviously different. In the case that the thickness of



ARTICLE IN PRESS

Fig. 8. The vertical displacement of the third ray group at receiver G. (a) Z ¼ 1; (b) Z ¼ 1
10
:

Fig. 9. The vertical displacement of the sum of the first ten ray groups at receiver G. (a) Z ¼ 1; (b) Z ¼ 1
10 :
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even layers is 1
10
of that of the odd ones, the delay caused by the decrease of the elastic constants of

the interlayer is not obvious. On the contrary, in the other case the delay is more obvious, which
cannot be ignored.
Fig. 9 shows the comparison of the vertical displacement aroused by the sum of the first ten ray

groups at receiver G with two kinds of thickness (Z ¼ 1; 1
10) and four kinds of elastic constants

(x ¼ 1; 1:5; 0:5; 0:1). We note that when the thickness of interlayer is comparatively small enough
(such as 1

10
of the thickness of the other layers), the change of its elastic constants affects less on the

wave propagation so that it can be omitted in these instances. This is important for wave
propagation in binding layer or dope layer in the laminate. If we approximately omit the effects of
the folium, we will save the more computing time. But the data of x ¼ 0:1 give some limits of the
theory. If the elastic constants of the interlayer are extraordinarily small, just like interspaces,
bugs and cracks in the layer, the effect is comparatively distinct so that we must consider their
influences.
8. Conclusions

The method of reverberation-ray matrix is extended to investigate elastic waves in the
transversely isotropic laminate. The axisymmetric waves in the time and spatial field are expressed
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via the Fourier–Hankel transform and the method of reverberation-ray matrix. With the advance
of digital computer and numerical method, the ray-integrals, double integral in frequency and
wave number, are evaluated numerically by applying an algorithm in fast Hankel transform and
fast Fourier transform.
In the example of a five-layered laminate, the summation of the first eight ray groups containing

more than 10 000 rays, can be obtained by this method in only one procedure. It would be
unthinkable to handle such a large number of generalized-ray integral by applying the Cagniard’s
de-Hoop method. So this method is more efficient to reduce the workload of numerical evaluation
than the classical generalized-ray method.
Using this theory, we have also discussed the effects aroused by the change of thickness and

elastic constants in the layers. The results show that when the thickness of interlayer is
comparatively small enough, the change of its elastic constants, if in the same magnitude, barely
affects the wave propagation and can be omitted in some instances. But if the material constant of
the interlayer is extraordinarily small, the effect is comparatively distinct, which cannot be
ignored.
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