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Abstract

This paper presents a mesh-free Galerkin method for the free vibration and stability analyses of stiffened
plates via the first-order shear deformable theory (FSDT). The model of a stiffened plate is formed by (1)
regarding the plate and the stiffener separately, (2) imposing displacement compatible conditions between
the plate and the stiffener so that displacement fields of the stiffener can be expressed in terms of the mid-
surface displacement of the plate, and (3) superimposing the strain energy of plate and stiffener. Because
there are no meshes used in this method, the stiffeners can be placed anywhere on the plate and need not be
placed along the mesh lines. Several numerical examples are computed by this method to show its accuracy
and convergence. The present results demonstrate good agreement with the existing solutions given by
other researchers and the ANSYS. Influences of support size and order of the complete basis functions on
the numerical accuracy are also investigated.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A plate stiffened by ribs can achieve greater strength with relatively less material, which
improves the strength/weight ratio and makes the structure cost efficient. Eccentrically stiffened
plates have been widely used in all kinds of circumstances such as bridges, ship hulls or decks,
see front matter r 2005 Elsevier Ltd. All rights reserved.
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aircraft structures, etc. To make full use of the stiffness provided by stiffeners, they are often
attached to plates along the main load-carrying directions.
Many researches have been carried out for the analysis of stiffened plates. The early researchers

converted the stiffened plate to a single plate of constant thickness. The stiffeners are turned to an
addition layer attached to the original plate. This is the so-called orthotropic model [1]. Another
early model is the grillage models [2]. These models were simple in formulation but did not achieve
satisfying results in solving generalized stiffened plate problems. To improve it, subsequent
researchers tended to consider the stiffened plate as a composite structure, which combines the
plate and stiffeners by imposing the displacement compatible conditions.
In stability analysis of stiffened plates, Bryan [3] first used energy criteria to study the stability

of stiffened plates under uniform compression. Timoshenko and Gere [4] studied the rectangular
plates stiffened by longitudinal and transverse ribs and gave the numerical tables of buckling
loads. To keep the stiffened plate from local buckling, Klitchieff [5] found an expression to
determine the minimum size of longitudinal stiffeners. Along with the development of computer
techniques, numerical methods such as the finite strip method and the finite element method are
introduced into the stability analysis. Turvey [6] first employed the finite strip method for stability
analysis of stiffened plates. Yoshida and Maegawa [7], and Cheung and Delcourt [8] also used the
finite strip method to study elastic stability and vibrations of stiffened plates. Buckling analysis of
plates was also studied using the Ritz or Rayleigh–Ritz method [9–13]. In application of the finite
element method to stability analysis stiffened plates, Mukhopadhyay and Mukherjee [14], Guo
and Harik [15], Rikards et al. [16], and Barik and Mukhopadhyay [17] had made their own
contributions.
A review paper on thick plate vibration that has summarized most of the stiffened plate

vibration till 1994 [18] was published. In vibration analysis of stiffened plates, researchers have
proposed many methods including the methods based on the early orthotropic model [19] and the
grillage models [20], the Ritz or Rayleigh–Ritz method [21–24], the matrix method [25], the finite
difference method [26–28], and the finite element method [15,29].
Due to the advances of computers in the past decades, the numerical methods, especially the

finite element methods (FEM), are applied extensively in industry. The FEMs are convenient and
can be used to solve large, complex structures with all kinds of boundary conditions. Nevertheless,
in the analysis of stiffened plates, the FEMs have disadvantages. In early FEMs for stiffened
plates, the discretization of the plate must make the mesh lines coincide with the stiffeners, which
limit the position of the stiffeners. Once the stiffener position is changed, the plate will need
remeshing. Although later improvements in FEMs have wiped off this restriction and stiffeners
need not be placed along the mesh lines, there is still one limit the FEM cannot overcome—the
element. The inherent characteristic of the FEMs may become disadvantageous under some
circumstances.
In recent years, some powerful computational methods, namely meshless or meshfree methods,

have emerged [31–53]. Unlike the FEMs, which base their solutions on the elements, the meshless
methods construct the approximation solution completely in terms of a set of orderly or scattered
points that discretize the problem domain. This makes the meshless methods more applicable than
the FEMs in many instances, such as moving boundary problem, cracks growth with arbitrary
and complex paths, and phase transformation problem. In these cases, the FEMs inevitably have
difficulties in dealing with the discontinuities at every stage of the evolution because these
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discontinuities do not coincide with the original mesh lines. Obviously, remeshing will be needed
in each step of the solution procedures, which can result in decline of accuracy and complexity in
programming. Meshless methods base their approximation solution entirely on a set of nodes
distributed in the problem domain. Without the meshes, the meshless methods avoid the above
difficulties that FEM encountered.
The objectives of this paper are to propose an FSDT mesh-free method for buckling and free

vibration analyses of rectangular stiffened plates and compare the present results with other
numerical methods.
2. The mesh-free Galerkin method

Using a moving least-squares approximation, a function uðxÞ defined in a domain O can be
approximated by ubðxÞ in the sub-domain Ox. ubðxÞ is defined as

ubðxÞ ¼
Xm

j¼1

pjðxÞajðxÞ ¼ pTðxÞaðxÞ, (1)

where pjðxÞ are monomial basis functions, ajðxÞ are their coefficients, b is a dilation factor that
measures the size of the support of nodes, and m is the number of the basis functions. The
commonly used basis is linear basis:

pT ¼ ½1;x� in 1D; m ¼ 2, (2)

pT ¼ ½1; x; y� in 2D; m ¼ 3 (3)

or quadratic basis:

pT ¼ ½1; x; x2� in 1D; m ¼ 3, (4)

pT ¼ ½1; x; y; x2;xy; y2� in 2D; m ¼ 6. (5)

The unknown coefficients ajðxÞ can be determined by minimizing a weighted discrete L2 norm

J ¼
Xn

I¼1

$ðx� xI Þ½pðxI Þ
TaðxÞ � uI �

2, (6)

where $ðx� xI Þ or $I ðxÞ is the weight function associated with node I , n is the number of nodes
in Ox, which make the weight function $I ðxÞ40, and uI are the nodal parameters. Minimizing J
in Eq. (6) with respect to aðxÞ leads to a set of linear

AðxÞaðxÞ ¼ BðxÞu, (7)

where

AðxÞ ¼
Xn

I¼1

$ðx� xI ÞpðxI Þp
TðxI Þ, (8)

BðxÞ ¼ ½$ðx� x1Þpðx1Þ; . . . ;$ðx� xnÞpðxnÞ�. (9)
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The coefficients aðxÞ are then obtained from Eq. (7):

aðxÞ ¼ A�1ðxÞBðxÞu. (10)

Substituting Eq. (10) into Eq. (1), the approximation ubðxÞ can then be expressed in a standard
form as

ubðxÞ ¼
Xn

I¼1

NI ðxÞuI , (11)

where the shape function NI ðxÞ is given by

NI ðxÞ ¼ pTðxÞA�1ðxÞBI ðxÞ. (12)

From Eq. (9), we can obtain

BI ðxÞ ¼ $ðx� xI ÞpðxI Þ. (13)

Thus, Eq. (12) can be rewritten as

NI ðxÞ ¼ pTðxÞA�1ðxÞpðxI Þ$ðx� xI Þ. (14)

3. Formulation for stiffened plate

The mesh-free model of a stiffened plate, shown in Fig. 1, is composed of a plate and two
beams. The plate and the beams are discretized by a set of nodes. The degree of freedom (dof) of
every node of plate is ðwp;jpx;jpyÞ. The dofs of every node of x-stiffener and y-stiffener are
ðwsx;jsxÞ and ðwsy;jsyÞ, respectively. In our study, we neglect the in-plane bending of the
stiffeners, and they have negligible torsional stiffness.

3.1. Displacements approximation

The displacements of the plate used in the mesh-free method can be approximated by

upðx; y; zÞ ¼ �zjpx ¼ �z
Xn

I¼1

NI ðx; yÞjpxI , (15)
Fig. 1. Meshless model of a stiffened plate.
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vpðx; y; zÞ ¼ �zjpy ¼ �z
Xn

I¼1

NI ðx; yÞjpyI , (16)

wpðx; yÞ ¼
Xn

I¼1

NI ðx; yÞwpI , (17)

where jpxI , jpyx and wpI are the nodal parameters of plate. n is the number of nodes of the plate.
The displacement field of the x-stiffener is

usxðx; zÞ ¼ �zjsx ¼ �z
XN

I¼1

FxI ðxÞjsxI , (18)

wsxðxÞ ¼
XN

I¼1

FxI ðxÞwsxI , (19)

where jsxI and wsxI are the nodal parameters of the x-stiffener. N is the number of nodes of the
stiffener. The displacement field of the y-stiffener is

vsyðy; zÞ ¼ �zjsy ¼ �z
XN

I¼1

FyI ðyÞjsyI , (20)

wsyðyÞ ¼
XN

I¼1

FyI ðyÞwsyI , (21)

where jsyI and wsyI are the nodal parameters of the y-stiffener. The shape functions NI ðx; yÞ,
FxI ðxÞ, and FyI ðyÞ are obtained from Eq. (14). A cubic spline function

$ðsÞ ¼

2
3
� 4s2 þ 4s3; sp1

2
;

4
3
� 4sþ 4s2 � 4

3
s3; 1

2
osp1;

0; s41

8><
>: (22)

is used as the weight function. Quadratic basis pT is employed to compute the shape functions.

3.2. Transformation equations

As shown in Fig. 2, at every point along the connection line between the plate and the
x-stiffener, we have

½jpx� ¼ ½jsx�, (23)

½wp� ¼ ½wsx�. (24)

From Eqs. (23) and (24), it can be deduced that

½jpx�i ¼ ½jsx�i, (25)

½wp�i ¼ ½wsx�i ði ¼ 1; . . . ;NÞ (26)
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or

jpxðxi; yiÞ ¼ jsxðxi; yiÞ, (27)

wpðxi; yiÞ ¼ wsxðxi; yiÞ ði ¼ 1; . . . ;NÞ, (28)

where N is the number of nodes of the x-stiffener. Remark: ðxi; yiÞ can be any point on the
plate that corresponds to the node ðxi; yiÞ of the x-stiffeners. According to the mesh-free
technique, Eqs. (27) and (28) are rewritten as

Xn

I¼1

NI ðxi; yiÞjpxI ¼
XN

J¼1

FxJðxiÞjsxJ , (29)

Xn

I¼1

NI ðxi; yiÞwpI ¼
XN

J¼1

FxJðxiÞwsxJ ði ¼ 1; . . . ;NÞ (30)

or in the matrix form

Tpxjdpxj ¼ Tsxjdsxj, (31)

where

Tpxj ¼

N1ðx1; y1Þ N2ðx1; y1Þ � � � Nnðx1; y1Þ

..

. ..
. . .

. ..
.

N1ðxN ; yNÞ N2ðxN ; yNÞ � � � NnðxN ; yNÞ

2
664

3
775; dpxj ¼

jpx1

..

.

jpxn

2
6664

3
7775,

Tsxj ¼

Fx1ðx1Þ Fx2ðx1Þ � � � FxNðx1Þ

..

. ..
. . .

. ..
.

Fx1ðxNÞ Fx2ðxNÞ � � � FxNðxNÞ

2
664

3
775; dsxj ¼

jsx1

..

.

jsxN

2
664

3
775,
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Tpwdpw ¼ Tsxwdsxw, (32)

where

Tpw ¼

N1ðx1; y1Þ N2ðx1; y1Þ � � � Nnðx1; y1Þ

..

. ..
. . .

. ..
.

N1ðxN ; yNÞ N2ðxN ; yNÞ � � � NnðxN ; yNÞ

2
664

3
775; dpw ¼

wp1

..

.

wpn

2
664

3
775,

Tsxw ¼

Fx1ðx1Þ Fx2ðx1Þ � � � FxNðx1Þ

..

. ..
. . .

. ..
.

Fx1ðxNÞ Fx2ðxNÞ � � � FxNðxNÞ

2
664

3
775; dsxw ¼

wsx1

..

.

wsxN

2
664

3
775.

From Eqs. (31) and (32), we obtain

dsxj ¼ Tspxjdpxj, (33)

where

Tspxj ¼ T�1sxjTpxj,

dsxw ¼ Tspxwdpw (34)

where

Tspxw ¼ T�1sxwTpw. (35)

From the above Eqs. (33) and (34), we can form the transformation equation

dsx ¼ Tspxdp, (36)

where

dsx ¼

wsx1

jsx1

0

wsx2

jsx2

0

..

.

wsxN

jsxN

0

2
66666666666666666664

3
77777777777777777775

; dp ¼

wp1

jpx1

jpy1

wp2

jpx2

jpy2

..

.

wpn

jpxn

jpyn

2
666666666666666666664

3
777777777777777777775

and Tspx is the 3N � 3n matrix that transforms the nodal parameters of the x-stiffener to the nodal
parameters of the plate.
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Similarly, we can obtain the transformation equation

dsy ¼ Tspydp (37)

for the y-stiffener.
The transformation equations are the same for concentric stiffeners.
3.3. Stability analysis of stiffened plates

The stiffened plate in Fig. 1 is applied to the in-plane forces (Fig. 3). The potential energy of the
plate can be expressed as

Pp ¼
1

2

ZZ
O

eTpDep dxdy�
1

2

ZZ
O

bTRbdxdy

þ

ZZ
O

Ghp

2k

qwp

qx
� jpx

� �2

þ
qwp

qy
� jpy

� �2
" #

dxdy, ð38Þ

where

D ¼
Eh3

p

12ð1� m3Þ

1 m 0

m 1 0

0 0
1� m
2

2
6664

3
7775; b ¼

qwp

qx
qwp

qy

2
664

3
775, (39)
Rx

Rxy

Ry

Rx
x-stiffener

plate

y-stiffener

Ry

Rxy

Fig. 3. Stiffened plate under in-plane compression.
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and the in-plane load

R ¼
Rx Rxy

Rxy Ry

" #
; (40)

k ¼ 5=6 is the shear correction factor and hp is the thickness of the plate.
The potential energy of the x-stiffener is

Psx ¼

Z
l

1

2
EsxIsx �

djsx

dx

� �2

dx�
1

2

Z
l

RxAsx

hp

dwsx

dx

� �2

dx

þ

Z
l

1

2

GsxAsx

k

dwsx

dx
� jsx

� �2

dx, ð41Þ

where Asx is the area of the cross section of the x-stiffener.
The potential energy of the y-stiffener is

Psy ¼

Z
l

1

2
EsyIsy �

djsy

dy

� �2

dy�
1

2

Z
l

RyAsy

hp

dwsy

dy

� �2

dy

þ

Z
l

1

2

GsyAsy

k

dwsy

dy
� jsy

� �2

dy, ð42Þ

where Asy is the area of the cross section of the stiffener.
Therefore, the potential energy of the stiffened plate is

P ¼ Pp þPsx þPsy. (43)

Substituting Eqs. (15)–(21) into Eq. (43), we obtain

P ¼ 1
2 dTpKpdp �

1
2 dTpGpdp þ

1
2 dTsxKsxdsx �

1
2 dTsxGsxdsx

þ 1
2
dTsyKsydsy �

1
2
dTsyGsydsy, ð44Þ

where

½Kp�ij ¼

ZZ
O

ðBT
biDBbj þ aBT

siBsjÞdxdy,

½Ksx�ij ¼

Z
l

ðBT
sxiEsxIsxBsxj þ asxB

T
sxsiBsxsjÞdx,

½Ksy�ij ¼

Z
l

ðBT
syiEsyI syBsyj þ asyB

T
sysiBsysjÞdy

and

Bbi ¼

0 �Ni;x 0

0 0 �Ni;y

0 �Ni;y �Ni;x

2
64

3
75; Bsi ¼

Ni;x �Ni 0

Ni;y 0 �Ni

" #
,
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Bsxi ¼ 0 � Fxi;x 0
� �

; Bsxsi ¼ Fxi;x � Fxi 0
� �

,

Bsyi ¼ 0 0 � Fyi;y

� �
; Bsysi ¼ Fyi;y 0 � Fyi

� �
,

a ¼ Ghp=k; asx ¼ GsxAsx=k; asy ¼ GsyAsy=k,

½Gp�ij ¼

ZZ
O

R 0 0

0 0 0

0 0 0

2
64

3
75dxdy, (45)

R ¼ RxNi;xNj;x þ RyNi;yNj;y þ RxyðNi;xNj;y þNi;yNj;xÞ,

½Gsx�ij ¼
RxAsx

hp

Z
l

Fxi;xFxj;x 0

0 0

� �
dx, (46)

½Gsy�ij ¼
RyAsy

hp

Z
l

Fyi;yFyj;y 0

0 0

� �
dy. (47)

Substituting Eqs. (36) and (37) into Eq. (44), we have

P ¼ 1
2
dTpKpdp þ

1
2
dTpT

T
spxKsxTspxdp þ

1
2
dTpT

T
spyKsyTspydp

� 1
2
dTpGpdp �

1
2
dTpT

T
spxGsxTspxdp �

1
2
dTpT

T
spyGsyTspydp ð48Þ

or

P ¼ 1
2
dTpKdp �

1
2
dTpGdp, (49)

where

K ¼ Kp þ TT
spxKsxTspx þ TT

spyKsyTspy,

G ¼ Gp þ TT
spxGsxTspx þ TT

spyGsyTspy.

Invoking dP ¼ 0 results in the following equation:

ðK�GÞdp ¼ 0. (50)

Assume

Rx ¼ a1Ry and Rx ¼ a2Rxy.

a1 and a2 are constants. Extracting Rx from G, we obtain

ðK� RxG
0
Þdp ¼ 0. (51)

Solving this eigenvalue problem, the buckling load Rcr will be obtained. The critical value of the
compressive stress is therefore given by

scr ¼
Rcr

hp

, (52)

where hp is the thickness of the plate.



ARTICLE IN PRESS

L.X. Peng et al. / Journal of Sound and Vibration 289 (2006) 421–449 431
3.4. Free vibration analysis of stiffened plates

The displacement field of the plate is

upðx; y; z; tÞ ¼ �zjpxðtÞ ¼ �z
Xn

I¼1

NI ðx; yÞjpxI ðtÞ, (53)

vpðx; y; z; tÞ ¼ �zjpyðtÞ ¼ �z
Xn

I¼1

NI ðx; yÞjpyI ðtÞ, (54)

wpðx; y; tÞ ¼
Xn

I¼1

NI ðx; yÞwpI ðtÞ. (55)

The displacement field of the x-stiffener is

usxðx; z; tÞ ¼ �zjsx ¼ �z
XN

I¼1

FxI ðxÞjsxI ðtÞ, (56)

wsxðx; tÞ ¼
XN

I¼1

FxI ðxÞwsxI ðtÞ. (57)

The displacement field of the y-stiffener is

vsyðy; z; tÞ ¼ �zjsyðtÞ ¼ �z
XN

I¼1

FyI ðyÞjsyI ðtÞ, (58)

wsyðy; tÞ ¼
XN

I¼1

FyI ðyÞwsyI ðtÞ. (59)

The potential energy of the plate can be expressed as

Pp ¼
1

2

ZZ
O

eTpDep dxdyþ
1

2

ZZ
O

Z hp=2

�hp=2
Upr €Up dzdxdy

þ

ZZ
O

Ghp

2k

qwp

qx
� jpx

� �2

þ
qwp

qy
� jpy

� �2
" #

dxdy, ð60Þ

where

ep ¼

�
qjpx

qx

�
qjpy

qy

�
qjpx

qy
þ

qjpy

qx

� �

2
66666664

3
77777775
¼
Xn

I¼1

0 �NI ;x 0

0 0 �NI ;y

0 �NI ;y �NI ;x

2
64

3
75

wpI ðtÞ

jpxI ðtÞ

jpyI ðtÞ

2
64

3
75, (61)
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D ¼
Eh3

p

12ð1� m3Þ

1 m 0

m 1 0

0 0
1� m
2

2
6664

3
7775,

Up ¼

wp

up

vp

2
64

3
75 ¼Xn

I¼1

NI ðx; yÞ 0 0

0 �zNI ðx; yÞ 0

0 0 �zNI ðx; yÞ

2
64

3
75

wpI ðtÞ

jpxI ðtÞ

jpyI ðtÞ

2
64

3
75, (62)

€Up ¼

€wp

€up

€vp

2
64

3
75 ¼Xn

I¼1

NI ðx; yÞ 0 0

0 �zNI ðx; yÞ 0

0 0 �zNI ðx; yÞ

2
64

3
75

€wpI ðtÞ

€jpxI ðtÞ

€jpyI ðtÞ

2
64

3
75 (63)

and r is the density of the plate.
The potential energy of the x-stiffener is

Psx ¼

Z
l

1

2
EsxIsx �

djsx

dx

� �2

dxþ
1

2

Z
l

Z hsx=2

�hsx=2
Usxrsx

€UsxW sx dzdx

þ

Z
l

1

2

GsxAsx

k

dwsx

dx
� jsx

� �2

dx, ð64Þ

where

Usx ¼
wsx

usx

" #
¼
XN

J¼1

FxJðxÞ 0

0 �zFxJðxÞ

" #
wsxJðtÞ

jsxJðtÞ

" #
, (65)

€Usx ¼
€wsx

€usx

" #
¼
XN

J¼1

FxJðxÞ 0

0 �zFxJðxÞ

" #
€wsxJðtÞ

€jsxJðtÞ

" #
(66)

and rsx is the density; W sx is the width of the cross section; hsx is the depth.
The potential energy of the y-stiffener is

Psy ¼

Z
l

1

2
EsyIsy �

djsy

dy

� �2

dyþ
1

2

Z
l

Z hsy=2

�hsy=2
Usyrsy

€UsyW sy dzdy

þ

Z
l

1

2

GsyAsy

k

dwsy

dy
� jsy

� �2

dy, ð67Þ

where

Usy ¼
wsy

usy

" #
¼
XN

J¼1

FyJðyÞ 0

0 �zFyJðyÞ

" #
wsyJðtÞ

jsyJðtÞ

" #
, (68)
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€Usy ¼
€wsy

€usy

" #
¼
XN

J¼1

FyJðyÞ 0

0 �zFyJðyÞ

" #
€wsyJðtÞ

€jsyJðtÞ

" #
(69)

and rsy is the density; W sy is the width of the cross section; hsx is the depth.
Therefore, the potential energy of the stiffened plate is

P ¼ Pp þPsx þPsy. (70)

Substituting Eqs. (53)–(59), (63), (66), and (69) into Eq. (70), we obtain

P ¼ 1
2
dTpKpdp þ

1
2
dTpMp

€dp þ
1
2
dTsxKsxdsx þ

1
2
dTsxMsx

€dsx

þ 1
2
dTsyKsydsy þ

1
2
dTsyMsy

€dsy, ð71Þ

where

½Mp�ij ¼

ZZ
O

rhpNiNj 0 0

0
rh3

p

12
NiNj 0

0 0
rh3p

12
NiNj

2
6666664

3
7777775
dxdy, (72)

½Msx�ij ¼

Z
l

rsx

AsxFxiFxj 0

0 IsxFxiFxj

" #
dx, (73)

½Msy�ij ¼

Z
l

rsy

AsyFyiFyj 0

0 IsyFyiFyj

" #
dy, (74)

and Kp, Ksx, and Ksy are the same as those in Eq. (44).
From Eq. (36), we obtain

€dsx ¼ Tspx
€dp. (75)

Similarly, we have

€dsy ¼ Tspy
€dp. (76)

Substituting Eqs. (75) and (76) into Eq. (71), we have

P ¼ 1
2
dTpKdp þ

1
2
dTpM€dp, (77)

where

K ¼ Kp þ TT
spxKsxTspx þ TT

spyKsyTspy (78)

and

M ¼Mp þ TT
spxMsxTspx þ TT

spyMsyTspy. (79)
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Invoking dP ¼ 0 results in the following linear equation:

Kdp þM€dp ¼ 0. (80)

Solving the corresponding eigenvalue problem

ðK� o2MÞd0 ¼ 0, (81)

we will obtain the frequencies of the stiffened plate free vibration.

3.5. Enforcement of essential boundary conditions

Due to lack of the Kronecker delta properties in meshless shape functions, imposition of the
essential boundary conditions is usually a difficulty in the meshless method. Here, we use the full
transformation method introduced by Ren and Liew [39] to enforce the essential boundary
conditions.
4. Results and discussion

4.1. Validation studies

Free vibration of a simply supported rectangular stiffened plate with one central stiffener
(Fig. 4) is considered. Young’s modulus and Poisson’s ratio of the plate and stiffener are 211GPa
and 0.3, respectively. The density is 7830 kg=m3. Frequencies obtained by the authors are
compared with those given by other researchers in Table 1. The agreement is good.
The fundamental frequency obtained under different scaling factor dmax and different

completeness order of basis function Nc is shown in Fig. 5, compared with the result given by
Aksu [27]. The meshless scheme is chosen to be 13� 13 nodes for the plate and 13 nodes for
stiffener.
For circular support, the scaling factor dmax is defined as

dmax ¼
r

hm

, (82)

where r is the radius of the support of the node and hm is the distance between two neighbouring
nodes. Here, we use rectangular support; so the scaling factors dx

max and dy
max are defined as

dx
max ¼

lx

hmx

and dy
max ¼

ly

hmy

, (83)

where lx and ly are the lengths of the rectangular support in x and y directions, respectively; hmx

and hmy are the distances between two neighbouring nodes in x and y directions, respectively. For
convenience, we choose dx

max ¼ dy
max.

From Fig. 5, one can find that larger support size (denoted by dmax for certain number of nodes)
gives relatively more accurate results if the completeness orders are the same. Higher completeness
order (denoted by Nc) basis function needs larger support to obtain better results.
The study of convergence is introduced by increasing the nodes that discretize the stiffened

plate and the scaling factor dmax under different completeness order of basis function Nc.
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Fig. 4. Simply supported stiffened plate with single central stiffener.

Table 1

Frequencies (Hz) of the simply supported stiffened plate with single stiffener (Fig. 4)

Mode Ref. [27] Ref. [29] Ref. [30] Ref. [55] Present results

1 254.94 257.05 253.59 250.27 254.45

2 269.46 272.10 282.02 274.49 265.86

3 511.64 524.70 513.50 517.77 520.14
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Fig. 5. Fundamental frequency variation of eccentrically stiffened plate under different dmax and Nc.
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Figs. 6–9 show the variation of the fundamental frequency of the eccentrically stiffened plate
with different nodes and dmax under different Nc. The solution given by Aksu [27] is also shown in
the figures for comparison. We noted from the existing literature that dmax ranges from 2 to 4 and
Nc ¼ 2 can furnish satisfactory results for most plate problems.
It is noted in Figs. 6–9 that for a certain dmax, the solution converges when the number of nodes

increases. Higher completeness order needs larger support size to make the solution converge.
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Fig. 6. Variation of the fundamental frequency of the eccentrically stiffened plate, Nc ¼ 2.
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Fig. 7. Variation of the fundamental frequency of the eccentrically stiffened plate, Nc ¼ 3.
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Fig. 8. Variation of the fundamental frequency of the eccentrically stiffened plate, Nc ¼ 4.
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Fig. 9. Variation of the fundamental frequency of the eccentrically stiffened plate, Nc ¼ 5.
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Moreover, higher completeness order of basis function can achieve better convergence
characteristic than the lower order of basis functions.
By analyzing the convergence figures, we found that the basis function of Nc ¼ 2 can help us

obtain results good enough compared to the solution given by Ref. [27] at the lowest cost of
computation. This result well coincides with the existing solutions. Therefore, all the following
examples are computed using the basis function of Nc ¼ 2 and dmax ¼ 3:5 for the stiffened plate
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problems considered, and Nc ¼ 2 and dmax ranges from 2 to 4 are also the recommended values
for stiffened plate problems.

4.2. Free vibration of a fully clamped square stiffened plate

Free vibration of a fully clamped square plate stiffened by a single stiffener (Fig. 10) is
examined. Young’s modulus and Poisson’s ratio of the plate and stiffener are 68.7GPa
and 0.3, respectively. The density is 2820 kg=m3. The frequencies of 10 modes are listed in
Table 2, compared with the experimental results given by Olson et al. [54] and the ANSYS
results. In order to use ANSYS in our modelling, we considered the stiffened plate as a
composite structure that combines the plate and stiffeners by imposing the displacement
compatible conditions. We have used Shell 63 element to model the plate and Beam 4 element to
model the stiffeners.
0.2032 m 

0.2032 m 

0.0127 m 

0.00635 m 

0.00137 m 1

1

Section 1-1 

Fig. 10. Clamped stiffened square plate with single central stiffener.

Table 2

Experimental and numerical frequencies (Hz) of the clamped stiffened plate with single stiffener (Fig. 10)

Mode Experimental

results (Ref. [54])

Present

results

Relative errors to

experimental results (%)

ANSYS

1 689 574.11 16.675 573.537

2 725 754.35 �4.048 755.03

3 961 846.55 11.909 838.306

4 986 993.47 �0.758 980.143

5 1376 1293.8 5.974 1272.27

6 1413 1402.8 0.722 1372.97

7 1512 1650.3 �9.147 1641.67

8 1770 1805.1 �1.983 1861.87

9 1995 1897.2 4.902 1869.84

10 2069 1904.4 7.956 1873.52
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4.3. Free vibration of a simply supported rectangular stiffened plate with two stiffeners

Free vibration of a simply supported rectangular plate stiffened eccentrically by two stiffeners
(Fig. 11) is considered. Both plate and stiffener are made of the same material with the elastic
modulus ¼ 3� 107 Pa and Poisson’s ratio ¼ 0:3. The density is 2820 kg=m3. The authors’ solution
is compared with the results from ANSYS in Table 3. The same ANSYS model used in Section 4.2
is employed in this case.
The frequencies obtained by the authors when the thickness of the plate increases to 1.5m,

which means the thickness-to-length ratio of the plate is increased to 0.05, are listed in Table 4
compared to the ANSYS results. The frequencies obtained by the authors when the thickness of
the plate increases to 3.0m, are listed in Table 5 compared to the ANSYS results.
 30 m 
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1

1

2 2

y

x
0.5 m 

Section 2-2 

0.3 m 

0.5 m 

5.0 m 

Section 1-1 

0.3 m 

3.0 m 

Fig. 11. The stiffened rectangular plate with two stiffeners.

Table 3

Frequencies (Hz) of the simply supported stiffened plate with two stiffeners (Fig. 11)

Mode ANSYS results Present results Relative errors to

ANSYS results (%)

1 0.0812595 0.081653 �0.48

2 0.0849575 0.085652 �0.82

3 0.103598 0.10003 3.44

4 0.109025 0.1028 5.71

5 0.129271 0.13118 �1.48

6 0.14064 0.14371 �2.18

7 0.153224 0.15411 �0.58

8 0.160818 0.16036 0.28

9 0.20927 0.19835 5.22

10 0.219804 0.20333 7.49
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Table 4

Frequencies (Hz) of the simply supported stiffened plate with two stiffeners (Fig. 11, the thickness of the plate increases

to 1.5m)

Mode ANSYS results Present results Relative errors to

ANSYS results (%)

1 0.162099 0.15888 1.99

2 0.189169 0.19288 �1.96

3 0.366667 0.36777 �0.30

4 0.406298 0.39956 1.66

5 0.417314 0.40905 1.98

6 0.535777 0.55299 �3.21

7 0.646354 0.63174 2.26

8 0.664218 0.63615 4.23

9 0.77137 0.75698 1.87

10 0.773718 0.76585 1.02

Table 5

Frequencies (Hz) of the simply supported stiffened plate with two stiffeners (Fig. 11, the thickness of the plate increases

to 3.0m)

Mode ANSYS results Present results Relative errors to

ANSYS results (%)

1 0.232308 0.22562 2.88

2 0.335349 0.32612 2.75

3 0.569531 0.54419 4.45

4 0.787483 0.75287 4.40

5 0.812595 0.82956 �2.09

6 0.886328 0.99366 �12.11

7 1.12514 1.1556 �2.71

8 1.28193 1.1679 8.90

9 1.29271 1.3781 �6.61

10 1.59458 1.3882 12.94
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4.4. Simply supported stiffened plate under in-plane compression

Buckling behaviors of a series of simply supported stiffened rectangular plate under uniaxial in-
plane compression (Fig. 12) have been studied. A stiffener is placed along the centre line of the
plate. Both the plate and the stiffener are made of the same material with Poisson’s ratio m ¼ 0:3.
The ratio of plate thickness to length is assumed to be 0.01. The buckling coefficient

k ¼ scrW 2hp=ðp2DÞ (84)

is computed for different plate aspect ratio L=W . scr is the critical stress. The buckling coefficient
obtained by the authors is compared with Timoshenko and Gere’s derivation [4] in Figs. 13–17,
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Fig. 12. A simply supported stiffened plate under in-plane compression.

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
0

3

6

9

12

15

18

B
uc

kl
in

g 
C

oe
ffi

ci
en

t k

Plate Aspect Ratio L/W

 Timoshenko and Gere [4]1

 Present results
1

Fig. 13. Buckling coefficient of stiffened plates of different aspect ratio ðg ¼ 5; d ¼ 0:05Þ.
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where

g ¼ EIsx=ðWDÞ and d ¼W shsx=ðWhpÞ. (85)

It can be observed that most of the results are very close to those given by Timoshenko
and Gere except when the plate aspect ratio is bigger than 2.8 or 3.2. Only a slight difference
occurs.
4.5. Simply supported stiffened plate with two stiffeners under in-plane compression

This example is the same as in Section 4.4 except that the plate is stiffened by two stiffeners
which divide the width of the plate into three equal parts (Fig. 18). The buckling coefficient
obtained by the authors is compared with Timoshenko and Gere’s derivation [4] in Figs. 19–22.
The agreement of the two results is very good.
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Fig. 14. Buckling coefficient of stiffened plates of different aspect ratio ðg ¼ 10; d ¼ 0:05Þ.
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Fig. 15. Buckling coefficient of stiffened plates of different aspect ratio ðg ¼ 15; d ¼ 0:05Þ.
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4.6. Clamped stiffened square plate with one stiffener under in-plane compression

This example is the same as in Section 4.4 except that the plate is a clamped plate of the
following non-dimensional parameters: L=W ¼ 1, g ¼ 0:2, d ¼ 20, hs ¼ 10:483hp, hs=W s ¼ 2:75,
and L=hp ¼ 200. The buckling coefficients k obtained by the authors Rikards et al. [16] and
Mukhopadhyay [28] are listed in Table 6.
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Fig. 16. Buckling coefficient of stiffened plates of different aspect ratio ðg ¼ 20; d ¼ 0:05Þ.
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Fig. 17. Buckling coefficient of stiffened plates of different aspect ratio ðg ¼ 25; d ¼ 0:05Þ.
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4.7. Simply supported rectangular stiffened plate with two stiffeners under in-plane compressions

The stiffened rectangular plate in Section 4.3 under two direction in-plane compressions—Rx,
Ry, is considered (Fig. 23). Rx is equal to Ry. The critical stress obtained by the authors is
13.71 kPa. For comparison, the authors also calculated the problem using ANSYS. The result
given by ANSYS is 13.43 kPa. The same ANSYS model as in Sections 4.2 and 4.3 is used.
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Fig. 18. A simply supported stiffened plate with two stiffeners under in-plane compression.
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Fig. 19. Buckling coefficient of different aspect ratio plate stiffened by 2 stiffeners ðg ¼ 10=3; d ¼ 0:05Þ.
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The critical stress obtained by the authors is 193.11 kPa when the plate thickness is increased to
1.5m. The result given by ANSYS is 196.59 kPa. When the thickness of the plate is increased to
3.0m, the critical stress obtained by the authors is 427.8 kPa. The result given by ANSYS is
456.7 kPa.
5. Conclusions

An FSDT mesh-free method for stability and free vibration analyses of the eccentrically
stiffened plate is proposed in this paper. The stiffened plate is regarded as a combination of plate
and stiffeners. By employing the displacement compatible conditions in the contact surface
between the plate and the stiffener, the displacement field of the stiffener is expressed in terms of
the displacements of the plate. Thus, the stiffness matrix of the stiffened plate can be derived by
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Fig. 20. Buckling coefficient of different aspect ratio plate stiffened by 2 stiffeners ðg ¼ 5; d ¼ 0:05Þ.
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Fig. 21. Buckling coefficient of different aspect ratio plate stiffened by 2 stiffeners ðg ¼ 20=3; d ¼ 0:05Þ.
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superposing the strain energy of the plate and the stiffeners. Because there is no mesh in the
meshless model of the plate, the stiffeners can be placed anywhere in the plates other than along
the mesh lines and any changes of their positions will not lead to remeshing of the plate. The
proposed method is checked by computing several examples. The results show good agreement
with existing solutions.
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Fig. 22. Buckling coefficient of different aspect ratio stiffened by 2 stiffeners ðg ¼ 10; d ¼ 0:05Þ.

Table 6

Buckling coefficient of the clamped stiffened plate with single stiffener

Buckling coefficient Ref. [16] Ref. [16] (ANSYS) Ref. [28] Present result

k 24.85 23.44 25.46 25.33

RxRx

Ry

Ry

Fig. 23. The rectangular stiffened under two direction in-plane compressions.
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