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Abstract

In this paper, an analytical solution is provided for the nonlinear free vibration behavior of plates made
of functionally graded materials. The material properties of the functionally graded plates are assumed to
vary continuously through the thickness, according to a power-law distribution of the volume fraction of
the constituents. The fundamental equations for thin rectangular plates of functionally graded materials are
obtained using the von Karman theory for large transverse deflection, and the solution is obtained in terms
of mixed Fourier series. The effect of material properties, boundary conditions and thermal loading on the
dynamic behavior of the plates is determined and discussed. The results reveal that nonlinear coupling
effects play a major role in dictating the fundamental frequency of functionally graded plates.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of functionally graded materials (FGMs) was first introduced in 1984 as ultrahigh-
temperature-resistant materials for aircrafts, space vehicles, nuclear and other engineering
applications. Since then, FGMs have attracted much interest as heat-resistant materials.
Functionally graded materials are heterogeneous composite materials, in which the material
properties vary continuously from one interface to the other. This is achieved by gradually
see front matter r 2005 Elsevier Ltd. All rights reserved.
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varying the volume fraction of the constituent materials. The continuity of the material properties
reduces the influence of the presence of interfaces and avoids high interfacial stresses. The
outcome of this is that this class of materials can survive environments with high-temperature
gradients, while maintaining the desired structural integrity.
In view of these advantages, a number of investigations, dealing with thermal stresses and

deformation, had been published in the scientific literature. In recent years, Tanaka et al. [1]
studied an improved solution to thermoelastic material design in FGMs in order to reduce
thermal stresses. Ishikawa [2] analyzed the thermal deformation and thermal stresses of FGM
plates under steady graded temperature fields. Takezono et al. [3] formulated analytically and
numerically the thermal stress and deformation states for axisymmetrical shells of functionally
graded material subjected to thermal loading due to a fluid. Wetherhold et al. [4] considered the
use of functionally graded materials to eliminate or control thermal deformation in beams and
plates. Woo and Meguid [5] studied the nonlinear behavior of thin functionally graded plates and
shallow shells. Considerable research has also been performed on the analysis of thermal stresses
and deformation of functionally graded structures. For details and review of these studies of
functionally graded materials refer to Ichikawa’s works [6].
As for dynamic behavior of FGMs, Praveen and Reddy [7] investigated the response of

functionally graded ceramic-metal plates using a plate finite element that accounts for transverse
shear strains, rotary inertia and moderately large rotations in the von Karman sense. The static
and dynamic response of the functionally graded plates was investigated by varying the volume
fraction of the ceramic and metallic constituents using a simple power-law distribution. The effect
of the imposed temperature field on the response of the FGM plate was also discussed. Loy et al.
[8] studied the vibration of cylindrical shells of a functionally graded material made from stainless
steel and nickel. The objective was to investigate the influence of the constituents’ volume
fractions and the configuration of the constituent materials on the natural frequency. The analysis
was carried out with strain–displacement relations from Love’s thin shell theory, and the
eigenvalue equations were obtained using the Rayleigh–Ritz method without temperature effects.
However, studies concerning the more realistic nonlinear vibration of functionally graded

plates, to our knowledge, are not found in the literature. In this work, nonlinear free vibration of
functionally graded plates is studied. The governing equations for thin rectangular plates of
functionally graded materials are obtained using the von Karman theory, which considers
moderate deflections and small strains. The material properties of functionally graded shells are
assumed to vary continuously through the thickness of the shell, according to a power-law
distribution of the volume fraction of the constituents. A series solution is used to solve the
coupled governing equations under simply supported, clamped and mixed boundary conditions.
Numerical results are provided to show the influence of material properties, boundary conditions
and thermal loading on the fundamental frequency of the plates. The advantage of the developed
analysis is that the nonlinear partial differential equations can be solved directly with a semi-
analytical method assuming a mixed series solution. Therefore, it can be readily used to
investigate systematically the effect of various parameters including material properties, boundary
conditions and thermal loading.
Following this brief introduction, we develop the fundamental equations in Section 2. The

solution of the governing equations is provided in Section 3 and this is followed by numerical
results and discussion of the findings in Section 4. In Section 5, we conclude this paper.
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2. Fundamental equations

A rectangular plate made of FGM is considered in the present analysis. Let the xy plane of the
xyz Cartesian coordinates overlap the rectangular plane area of the plate. For thin plates, the
displacements are assumed to take the following form:

u�ðx; y; z; tÞ ¼ uðx; y; tÞ � zwðx; y; tÞ;x,

v�ðx; y; z; tÞ ¼ vðx; y; tÞ � zwðx; y; tÞ;y,

w�ðx; y; z; tÞ ¼ wðx; y; tÞ, ð1Þ

where u�, v� and w� are the total displacements, and u; v and w are the middle plane displacements
in the x, y and z directions, respectively.
The von Karman theory for moderately large deflections and small strains makes use of the

nonlinear strain–displacement relations, in which quadratic terms in the slopes w;x and w;y are
retained, while all other nonlinear terms are neglected. Therefore, the strains can be expressed as

f�g ¼

�x

�y

gxy

8><
>:

9>=
>; ¼

�0x þ zkx

�0y þ zky

g0xy þ zkxy

8>><
>>:

9>>=
>>; (2)

in which the middle plane strain vector f�0g is given by

f�0g ¼

�0x
�0y

g0xy

8>><
>>:

9>>=
>>; ¼

u;x þ 1=2w2
;x

v;y þ 1=2w2
;y

u;y þ v;x þ w;xw;y

8>><
>>:

9>>=
>>; (3)

while the curvature fkg is given by

fkg ¼

kx

ky

kxy

8><
>:

9>=
>; ¼

�w;xx

�w;yy

�2w;xy

8><
>:

9>=
>;. (4)

The plates of the FGM are assumed to be of uniform thickness h. The material properties P of
the functionally graded shells are also assumed to vary through the thickness of the plate, as a
function of the volume fraction and properties of the constituent materials. These properties can
be expressed as

P ¼
Xk

j¼1

PjVj, (5)

where Pj and Vj are the respective material property and volume fraction of the constituent
material j. The volume fraction of all the constituent materials should add up to one, such that

Xk

j¼1

Vj ¼ 1. (6)
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For a plate with a uniform thickness h and a reference plane at its middle plane, the volume
fraction can be written as

Vj ¼
2zþ h

2h

� �n

, (7)

where n is the power-law exponent, 0pnp1. For a functionally graded solid with two
constituent materials, the property variation P can be expressed as

PðzÞ ¼ ðPu � PlÞ
2zþ h

2h

� �n

þ Pl, (8)

where Pu and Pl are the corresponding properties of the upper and lower planes. This power-law
assumption, which is widely accepted, reflects a simple rule of mixtures used to obtain the effective
properties of functionally graded materials [7]. Therefore, the material properties along the
thickness of the shells, such as Young’s modulus EðzÞ, Poisson’s ratio nðzÞ, coefficient of thermal
expansion aðzÞ, and mass density rðzÞ can be determined according to Eq. (8). With the help of
these material properties, the stresses can be determined as

fsg ¼

sx

sy

txy

8>><
>>:

9>>=
>>; ¼

EðzÞ

1� n2ðzÞ

1 nðzÞ 0

nðzÞ 1 0

0 0 ð1� nðzÞÞ=2

2
664

3
775

�x

�y

gxy

8>><
>>:

9>>=
>>;�

EðzÞ

1� nðzÞ
aðzÞDTðx; y; zÞ

EðzÞ

1� nðzÞ
aðzÞDTðx; y; zÞ

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ ½Q�f�g �

EðzÞ

1� nðzÞ
aðzÞDTðx; y; zÞ

EðzÞ

1� nðzÞ
aðzxÞDTðx; y; zÞ

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, ð9Þ

where EðzÞ, nðzÞ, aðzÞ and DTðx; y; zÞ are Young’s modulus, Poisson’s ratio, coefficient of linear
thermal expansion and temperature referenced to the stress free state, respectively.
The axial force N and moment M can be calculated using the following expression:

ðNab;MabÞ ¼

Z h=2

�h=2
ð1; zÞsab dz, (10)

where a and b stand for x and y. Hence, we have

fNg ¼ ½A�f�0g þ ½B�fkg � fNTg,

fMg ¼ ½B�f�0g þ ½D�fkg � fMTg, ð11Þ
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in which ½A�; ½B� and ½D� are the respective in-plane, bending–stretching coupling and bending
stiffness, and are given by

ð½A�; ½B�; ½D�Þ ¼

Z h=2

�h=2
ð1; z; z2Þ½Q�dz (12)

and the thermal force NT and thermal moment MT are given by

fNT g ¼

NT
x

NT
y

0

8><
>:

9>=
>; ¼

R h=2
�h=2

E
1�n aDT dzR h=2

�h=2
E

1�n aDT dz

0

8>><
>>:

9>>=
>>;; fM

Tg ¼

MT
x

MT
y

0

8><
>:

9>=
>; ¼

R h=2
�h=2

E
1�n aDTzdzR h=2

�h=2
E

1�n aDTzdz

0

8>><
>>:

9>>=
>>;. (13)

If Airy’s stress function j is introduced such that

Nx ¼ j;yy; Ny ¼ j;xx; Nxy ¼ �j;xy (14)

and the unit area density of the plate is

r0 ¼
Z h=2

�h=2
rðzÞdz, (15)

then the governing vibration equations of the plate can be reduced to

a22j;xxxx þ ð2a12 þ a33Þj;xxyy þ a11j;yyyy ¼ f 1 þ f 01 � f T
1 ,

d11w;xxxx þ ð2d12 þ d33Þw;xxyy þ d22w;yyyy ¼ q� r0w;tt þ f 2 þ f 02 � f T
2 ,

f 1 ¼ w2
;xy � w;xxw;yy,

f 01 ¼ �½b12w;xxxx þ ðb11 þ b22 � 2b33Þw;xxyy þ b12w;yyyy�,

f T
1 ¼ a12N

T
x;xx þ a11N

T
x;yy þ a22N

T
y;xx þ a12N

T
y;yy,

f 2 ¼ j;yyw;xx þ j;xxw;yy � 2j;xyw;xy,

f 02 ¼ c12j;xxxx þ ðc11 þ c22 � 2c33Þj;xxyy þ c12j;yyyy,

f T
2 ¼MT

x;xx þMT
y;yy,

½a� ¼ ½A��1,

½b� ¼ ½A��1½B�,

½c� ¼ ½B�½A��1,

½d� ¼ ½D� � ½B�½A��1½B�, ð16Þ

where f 1 and f 2 represent the effects of the von Karman nonlinear theory. The functions f 01 and f 02
represent the effect of membrane-bending coupling due to unsymmetrical material property
distribution along the thickness, and f T

1 and f T
2 represent thermal loads. Only the transverse

inertia force, rw;tt, is considered here.
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Consider now the case of a simply supported plate. In this case, the boundary conditions are

x ¼ 0; a : Nx ¼ j;yy ¼ 0; Nxy ¼ �j;xy ¼ 0; w ¼ 0; Mx ¼ 0;

y ¼ 0; b : Ny ¼ j;xx ¼ 0; Nxy ¼ �j;xy ¼ 0; w ¼ 0; My ¼ 0. ð17Þ

While in the clamped case, the boundary conditions are represented by

x ¼ 0; a : Nx ¼ j;yy ¼ N0
x; Nxy ¼ �j;xy ¼ 0; w ¼ 0; w;x ¼ 0;

y ¼ 0; b : Ny ¼ j;xx ¼ N0
y; Nxy ¼ �j;xy ¼ 0; w ¼ 0; w;y ¼ 0. ð18Þ

Let us now introduce the following dimensionless variables:

l ¼ a=b; z ¼ x=a; Z ¼ y=b,

t ¼ ½d11=ðr0a
4Þ�1=2t,

W ¼ w=h,

F ¼ j=d11 þ PðZ2 þ rpl
2z2Þ=ð2l2Þ; P ¼ �a2N0

x=d11; rp ¼ N0
y=N0

x,

Q ¼ a4q=ðd11hÞ,

MT
z ¼ a2MT

x =ðd11hÞ; MT
Z ¼ a2MT

y =ðd11hÞ; NT
z ¼ a2NT

x =ðd11hÞ,

NT
Z ¼ a2NT

y =ðd11hÞ,

ud ¼ ðd12 þ 2d33Þ=d11; ua ¼ ða12 þ 2a33Þ=a11; ub ¼ ðb11 � b33Þ=b12,

�b ¼ b11=h; �a ¼ h2=ða11d11Þ,

db12 ¼ b12=b11; db33 ¼ b33=b11; da12 ¼ a12=a11. ð19Þ

With the help of these dimensionless variables, the governing equations and boundary conditions
become

F;zzzz þ 2val
2F;zzZZ þ l4F;ZZZZ ¼ �aðF1 � �bF 01Þ �QN ,

W ;zzzz þ 2vdl
2W ;zzZZ þ l4W ;ZZZZ ¼ Q�W ;tt þ F2 þ �bF 02 �QM ,

F1 ¼ l2W 2
;zZ � l2W ;zzW ;ZZ,

F 01 ¼ db12ðW ;zzzz þ 2ubl
2W ;zzZZ þ l4W ;ZZZZÞ,

QN ¼ da12N
T
z;zz þ l2NT

z;ZZ þNT
Z;zz þ da12N

T
Z;ZZ,

F2 ¼ l2ðF;ZZW ;zz þ F;zzW ;zz � 2F;zZW ;zZÞ,

F 02 ¼ db12ðF;zzzz þ 2ubl
2F;zzZZ þ l4F;ZZZZÞ,

QM ¼MT
z;zz þ l2MT

Z;ZZ, ð20Þ

z ¼ 0; 1 : F;ZZ ¼ 0; F;zZ ¼ 0; W ¼ 0,

W ;zz ¼ �b½�Pð1þ db12rÞ þ db12F;zz þNT
z þ db12N

T
Z � �MT

z , ð21aÞ
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Z ¼ 0; 1 : F;zz ¼ 0; F;zZ ¼ 0; W ¼ 0,

W ;ZZ ¼ f�b½�Pðdb12 þ rÞ þ db12l
2F;zz þ db12N

T
z þNT

Z � �MT
Z g=l

2
ð21bÞ

or

z ¼ 0; 1 : F;ZZ ¼ 0; F;zZ ¼ 0; W ¼ 0; W ;z ¼ 0, (22a)

Z ¼ 0; 1 : F;zz ¼ 0; F;zZ ¼ 0; W ¼ 0; W ;Z ¼ 0, (22b)

which are treated in the next section.
Let us now consider the influence of a temperature field on the behavior of the composite FGM.

It is assumed that one value of the temperature is imposed on the upper surface and the other
value on the lower surface. This one-dimensional temperature field is assumed to be constant in
the plane of the plate. In this case, the temperature distribution along the thickness can be
obtained by solving a simple steady-state heat transfer equation through the thickness of the plate.
The equation for the temperature through the thickness is given by

�ðkðzÞT 0ðzÞÞ0 ¼ 0, (23)

where T ¼ Tu at z ¼ h=2 and T ¼ Tl at z ¼ �h=2. The thermal conductivity kðzÞ is also assumed
to vary according to Eq. (8). The solution to Eq. (23) is

TðzÞ ¼ Tu �
Tu � TlR h=2
�h=2

dz
kðzÞ

Z z

�h=2

dz

kðzÞ
. (24)

This equation does not take into consideration the temperature dependence of the material
properties. As indicated in the work by Miyamoto [9], this will not have a significant effect on
results. The thermal force NT and thermal moment MT can be calculated using Eq. (13) after the
temperature field distribution has been obtained by integrating Eq. (24).
3. Solution of governing equations

Assume that a solution of W and F can be expressed in the following form [10]:

W ðz; Z; tÞ ¼
XI0
i¼0

W ðiÞðz; ZÞ cos oit,

Fðz; Z; tÞ ¼
XJ0

j¼0

FðjÞðz; ZÞ cos ojt, ð25Þ

where W ðiÞðz; ZÞ and FðjÞðz; ZÞ are unknown functions of z and Z.
Substituting Eq. (25) into Eq. (20), we obtain

FðjÞ;zzzz þ 2val
2FðjÞ;zzZZ þ l4FðjÞ;ZZZZ ¼ �aðF

ðjÞ
1 � �bF

0ðjÞ
1 Þ �Q

ðjÞ
N ,

W
ðiÞ
;zzzz þ 2vdl

2W
ðiÞ
;zzZZ þ l4W ðiÞ

;ZZZZ ¼ o2
i W ðiÞ þ F

ðiÞ
2 þ �bF

0ðiÞ
2 �Q

ðiÞ
M ,
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F
ðjÞ
1 ¼

l2

2

Xj

k¼0

ðW
ðkÞ
;zZW

ðj�kÞ
;zZ �W

ðkÞ
;zzW ðj�kÞ

;ZZ Þ

"
þ
XI

k¼jþ1

ðW
ðkÞ
;zZW

ðj�kÞ
;zZ �W

ðkÞ
;zzW ðj�kÞ

;ZZ Þ

þ
XI

k¼0

ðW
ðkÞ
;zZW

ðjþkÞ
;zZ �W

ðkÞ
;zzW ðjþkÞ

;ZZ Þ

#
,

F
0ðjÞ
1 ¼ db12ðW

ðjÞ
;zzzz þ 2vbl

2W
ðjÞ
;zzZZ þ l4W ðjÞ

;ZZZZÞ,

Q
ðjÞ
N ¼ da12N

TðjÞ
z;zz þ l2NTðjÞ

z;ZZ þN
TðjÞ
Z;zz þ da12N

TðjÞ
Z;ZZ,

F
ðiÞ
2 ¼

l2

2

Xi

k¼0

ðFðkÞ;ZZW
ði�kÞ
;zz þ FðkÞ;zzW ði�kÞ

;ZZ � 2FðkÞ;zZW
ði�kÞ
;zZ Þ

"

þ
XJ

k¼iþ1

ðFðkÞ;ZZW
ði�kÞ
;zz þ FðkÞ;zzW ði�kÞ

;ZZ � 2FðkÞ;zZW
ði�kÞ
;zZ Þ

þ
XJ

k¼0

ðFðkÞ;ZZW
ðiþkÞ
;zz þ FðkÞ;zzW ðiþkÞ

;ZZ � 2FðkÞ;zZW
ðiþkÞ
;zZ Þ

#

F
0ðiÞ
2 ¼ db12ðF

ðiÞ
;zzzz þ 2ubl

2FðiÞ;zzZZ þ l4FðiÞ;ZZZZÞ,

Q
ðiÞ
M ¼M

TðiÞ
z;zz þ l2MTðiÞ

Z;ZZ. ð26Þ

Then assume that a solution of W ðiÞ and FðjÞ can be expressed in terms of the following series
combinations:

W ðiÞ ¼
X1
n¼1

W
ðiÞ
znðzÞ sin npZþ

X1
m¼1

W ðiÞ
ZmðZÞ sin mpzþ

X1
m¼1

X1
n¼1

W ðiÞn
mn sin mpz sin npZ,

FðjÞ ¼
X1
n¼1

FðjÞznðzÞ sin npZþ
X1
m¼1

FðjÞZmðZÞ sin mpzþ
X1
m¼1

X1
n¼1

FðjÞnmn sin mpz sin npZ, ð27Þ

where W
ðiÞ
znðzÞ, W ðiÞ

ZmðZÞ, FðjÞznðzÞ, FðjÞZmðZÞ are unknown functions, and WnðiÞ
mn , FnðjÞ

mn are unknown
constants.
Substituting Eq. (27) into Eq. (26) and expressing Q

ðjÞ
N , Q

ðiÞ
M , F

ðjÞ
1 , F

0ðjÞ
1 , F

ðiÞ
2 and F

0ðiÞ
2 in the

following Fourier series form

Q
ðjÞ
N ¼

X1
m¼1

X1
n¼1

Q
ðjÞ
Nmn sin mpz sin npZ,

Q
ðiÞ
M ¼

X1
m¼1

X1
n¼1

Q
ðiÞ
Mmn sin mpz sin npZ,

F
ðjÞ
1 ¼

X1
m¼1

X1
n¼1

F
ðjÞ
1mn sin mpz sin npZ,
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F
0ðjÞ
1 ¼

X1
m¼1

X1
n¼1

F
0ðjÞ
1mn sin mpz sin npZ,

F
ðiÞ
2 ¼

X1
m¼1

X1
n¼1

F
ðiÞ
2mn sin mpz sin npZ,

F
0ðiÞ
2 ¼

X1
m¼1

X1
n¼1

F
0ðiÞ
2mn sin mpz sin npZ, ð28Þ

we obtain ordinary differential equations in W
ðiÞ
znðzÞ, W ðiÞ

ZmðZÞ, FðjÞznðzÞ, FðjÞZmðZÞ and algebraic
equations in FnðjÞ

mn , WnðiÞ
mn :

d4W
ðiÞ
znðzÞ

d4z
� 2vdðlnpÞ2

d2W
ðiÞ
znðzÞ

d2z
þ ½ðlnpÞ4 � o2

i �W
ðiÞ
znðzÞ ¼ 0,

l4
d4WðiÞZmðZÞ

d4Z
� 2vdðlmpÞ2

d2WðiÞZmðZÞ

d2Z
þ ½ðmpÞ4 � o2

i �W
ðiÞ
ZmðZÞ ¼ 0,

½ðm2 þ l2n2Þ2p4 � o2
i �W

nðiÞ
mn ¼ F

ðiÞ
2mn þ �bF

0ðiÞ
2mn �Q

ðiÞ
Mmn,

d4FðjÞznðzÞ

d4z
� 2vaðlnpÞ2

d2FðjÞznðzÞ

d2z
þ ðlnpÞ4FðjÞznðzÞ ¼ 0,

l4
d4FðjÞZmðZÞ

d4Z
� 2vaðlmpÞ2

d2FðjÞZmðZÞ

d2Z
þ ðmpÞ4FðjÞZmðZÞ ¼ 0,

ðm2 þ l2n2Þ
2p4FnðjÞ

mn ¼ �aðF
ðjÞ
1mn � �bF

0ðjÞ
1mnÞ �Q

ðjÞ
Nmn. ð29Þ

The solution to Eq. (29), in conjunction with some boundary conditions, can be obtained

without much difficulty. If F
ðjÞ
1mn, F

0ðjÞ
1mn, F

ðiÞ
2mn and F 0

ðiÞ
2mn are taken as constants, the solution to

Eq. (29) can be obtained immediately. Once these functions as well as the constants in Eq. (27) are

determined, the functions W ðiÞ and FðjÞ can be readily determined.

The problem is that F
ðjÞ
1mn, F 0

ðjÞ
1mn, F

ðiÞ
2mn and F 0

ðiÞ
2mn are functions of W and F. However, if the

coefficients oi, F
ðiÞ
2mn and F

0ðiÞ
2mn are given, the function W ðiÞ can be obtained by the aforementioned

method. Once F
ðjÞ
1mn and F 0

ðjÞ
1mn are determined, then FðjÞ can be obtained. The thermal loads Q

ðjÞ
N

and Q
ðiÞ
M are determined for a case involving transverse loads and one-dimensional temperature

field. In this case, the coefficients Q
ðjÞ
Nmn and Q

ðiÞ
Mmn defined by expression (28) are determined.

At first, an initial value W ðiÞ½0� is assigned to W ðiÞ, then the functions F
ðjÞ
1 and F

0ðjÞ
1 in Eq. (26) can

be obtained and coefficients F
ðjÞ
1mn and F

0ðjÞ
1mn in Eq. (28) are obtained. This leads to the first

approximate value FðjÞ½1� of FðjÞ. When W ðiÞ½0� and FðjÞ½1� are determined, functions F
ðjÞ
2 and F

0ðjÞ
2 in

Eq. (26) can be obtained, and then the first approximate value W ðiÞ½1� of W ðiÞ can be determined.
This is continued until we develop a series of approximate solutions for W ðiÞ½1�, FðjÞ½1�; W ðiÞ½2�,
FðjÞ½2�; . . . ;W ðiÞ½n�1�, FðjÞ½n�1�Þ; W ðiÞ½n�, FðjÞ½1� by the nth iteration. If the difference between the
solutions of the ðn� 1Þth and nth is within an assumed tolerance of 10�4, we accept the values of
W ðiÞ and FðjÞ as the solution.
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When the plate vibrates at the frequency oi that is approaching the natural frequency of the
plate, resonance will occur. Under such circumstances, the equations given by Eq. (29) become
singular. In order to obtain the frequency–amplitude relations in this case, we prescribe one of the
coefficients W �ðiÞ

mn of the function W ðiÞ first; then, the other coefficients W �ðiÞ
mn and the frequency oi

can thus be determined. The particular W �ðiÞ
mn whose value is prescribed is chosen in accordance

with the vibration mode of the plates. In the case of simply supported or clamped square plates
that vibrate into one half-wave in both z and Z directions, the coefficient W

�ðiÞ
11 is dominant. For a

very small value of W
�ðiÞ
11 , for example of W

�ðiÞ
11 ¼ 10�5, the corresponding value of oi may be

taken to be the natural frequency of the plate. Once these functions and constants are determined,
the solution to the nonlinear equations (26) that govern the plate vibration can be obtained.
4. Numerical results and discussion

The number of I0 and J0 terms in series expansion in cos oit is tried to obtain an appropriate
solution. For the cases of I0 ¼ 1, J0 ¼ 2 and I0 ¼ 2, J0 ¼ 4, the difference of results is negligible.
Therefore, for the sake of convenience, we select I0 ¼ 1, J0 ¼ 2 in our analysis.
The solution of Eq. (26) was carried out using M0 and N0 terms in the Fourier series. The number

of terms M0 and N0 needed for convergence was carefully examined (Fig. 1) for a simply supported
square aluminum–zirconia plate ðn ¼ 1Þ. The maximum difference between M0 ¼ N0 ¼ 5 and M0 ¼

N0 ¼ 7 is 0.4%, and between M0 ¼ N0 ¼ 7 and M0 ¼ N0 ¼ 9 is less than 0.1%. Therefore, M0 ¼

N0 ¼ 7 was used for all subsequent analyses. This is also in agreement with our earlier work [5].
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Fig. 1. Convergence of o with M0 and N0 terms in the Fourier series for a simply supported square aluminum–zirconia

plate ðn ¼ 1Þ :�, M0 ¼ N0 ¼ 1; n, M0 ¼ N0 ¼ 3; þ; M0 ¼ N0 ¼ 5; �; M0 ¼ N0 ¼ 7; ,, M0 ¼ N0 ¼ 9.
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The analytic results are presented in terms of dimensionless deflection and frequency. The
dimensionless parameters used are as follows:
Center deflection W ¼ w=h,
Load parameter P ¼ �N0

xa2=ðEmh3
Þ,

Thickness coordinate Z ¼ z=h,
Time t ¼ fEmh3=½12ð1� n2mÞrma4�g1=2t,

where Em, nm, rm are Young’s modulus, Poisson’s ratio and density of the metal used in the
functionally graded material, respectively. N0

x is a uniformly distributed axial load acting along
the edges x ¼ 0 and x ¼ a, a is the length of the plate and h is the thickness of that plate. The
analysis was performed on a square plate of side a ¼ b ¼ 0:2m and thickness h ¼ 0:01m.
Four cases of boundary conditions are examined, as summarized in Table 1.
The analysis of the FG plates was conducted for two types of ceramic and metal combinations.

The first set of materials considered was zirconia and aluminum. The second one was a
combination of alumina and aluminum. Table 2 details the material properties. In all cases, the
lower surface of the shell is assumed to be metal (aluminum) rich and the upper surface is assumed
to be pure ceramic (alumina or zirconia). In this analysis, only nonlinear elastic behavior of the
FG plates was considered.
Fig. 2 shows the relation of the central amplitude of vibration and fundamental frequency for

four simply supported square aluminum–zirconia plates. It is noted that the fundamental
frequency of the plate increases with the amplitude of vibration. This is due to the fact that the in-
plane axial force in the plate contributes to the lateral stiffness resulting from nonlinear coupling.
Table 1

Four cases of boundary conditions under investigation

Case Boundary z ¼ 0 z ¼ 1 Z ¼ 0 Z ¼ 1

I All edges clamped W ¼W ;z ¼ 0 W ¼W ;z ¼ 0 W ¼W ;Z ¼ 0 W ¼W ;Z ¼ 0

II All edges simply supported W ¼Mz ¼ 0 W ¼Mz ¼ 0 W ¼MZ ¼ 0 W ¼MZ ¼ 0

III Two opposite edges simply W ¼Mz ¼ 0 W ¼Mz ¼ 0 W ¼W ;Z ¼ 0 W ¼W ;Z ¼ 0

supported and others clamped

IV Two adjoining edges simply W ¼Mz ¼ 0 W ¼W ;z ¼ 0 W ¼MZ ¼ 0 W ¼W ;Z ¼ 0

supported and others clamped

Table 2

Material properties

Materials Young’s Poisson’s Density Thermal Coefficient of

modulus ratio ðkg=m3Þ conductivity thermal expansion

(GPa) (W/mK) ð�10�6=�CÞ

Aluminum 70 0.3 2707 204 23.0

Alumina 380 0.3 3800 10.4 7.4

Zirconia 151 0.3 3000 2.09 10.0
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Fig. 2. The central amplitude of vibration versus fundamental frequency for four simply supported square

aluminum–zirconia plates: �, zirconia; n; n ¼ 0:5; ,; n ¼ 2:0; �, aluminum.

J. Woo et al. / Journal of Sound and Vibration 289 (2006) 595–611606
This indicates that the fundamental frequency depends upon the amplitude of vibration, which is
significantly different from the linear dynamic response.
Let us now consider the influence of a temperature field on the behavior of the functionally

graded composite. In the present analysis, we assume the plate is subjected to a one-dimensional
temperature field, where the lower surface was held at a prescribed temperature of 20 �C and the
upper surface at 600 �C, so the temperature difference ðDTÞ between the top and bottom surface is
580 �C. The initial stress-free state is assumed to exist at a temperature of T0 ¼ 0 �C. Fig. 3 shows
the temperature distribution through the thickness of the aluminum–zirconia plates for various
values of the volume fraction exponent n. Now that the temperature field distribution is obtained,
the thermal force NT and thermal moment MT can be calculated using Eq. (13). The solution of
the coupled equations governing the vibration behavior of the FGM plate given by Eq. (20) under
a temperature field can also be obtained using the aforementioned method.
The relation of the central amplitude of vibration and fundamental frequency for four simply

supported square aluminum–zirconia plates subjected to the prescribed temperature field is shown
in Fig. 4. The existence of the temperature increases the fundamental frequency of the plates. This
is due to thermal deflection of the plates. However, the influence of this deflection decreases rapidly
with the increase in the amplitude of vibration. The effect of the temperature field on the
fundamental frequency of the pure aluminum and zirconia plates is more pronounced than that of
the aluminum–zirconia plates. As can be seen in Fig. 4, the maximum variation of the fundamental
frequency due to the temperature field for FG plates was found to be only 0.8%. As such, it can be
argued that the existence of the temperature field does not play a major role in such a situation.
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Fig. 3. Temperature field through the thickness of the FGM plates (aluminum–zirconia): �, zirconia; n; n ¼ 0:5;
,; n ¼ 2:0; �, aluminum.
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Fig. 5 shows the variation of the normalized central amplitude of vibration and the
fundamental frequency for four simply supported square aluminum–alumina plates. The higher
fundamental frequency exhibited by the plates in this case is due to the higher Young’s modulus E

of the alumina.
Fig. 6 shows the variation of the central amplitude of vibration and fundamental frequency for

square aluminum–zirconia plates with the two opposite edges being simply supported and the
other edges being clamped (case III). Fig. 7 shows the variation of the central amplitude of
vibration and fundamental frequency for square aluminum–zirconia plates with two adjoining
edges simply supported and the other edges clamped (case IV). In these two cases, we find that the
temperature field plays an insignificant role in the fundamental frequency of the plates.
Fig. 8 depicts the variation of the central amplitude of vibration and the fundamental frequency for

four clamped square aluminum–zirconia plates. It is worth noting that the existence of the
temperature field does not affect the fundamental frequency of the plates at all, since the clamped
boundary condition (case I) does not exhibit lateral thermal deflection. Under such a circumstance,
the central amplitude of vibration and fundamental frequency are unaffected by the temperature field.
Fig. 9 shows the relation of the central amplitude of vibration and fundamental frequency for a

clamped square aluminum–zirconia plate ðn ¼ 1Þ with different levels of edge compression ðþPÞ
or tension ð�PÞ. Note that P is the critical compression under which the plate will buckle without
vibration. The existence of a compressive edge loading reduces the fundamental frequency of the
plate due to the weakening effect of the pre-stress. Conversely, a tensile edge load (such as �0:5PÞ
increases the fundamental frequency due to the stiffening effect.
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Fig. 6. The central amplitude of vibration versus fundamental frequency for square aluminum–zirconia plates with two

opposite edges simply supported and the other edges clamped (case III):�, zirconia; n; n ¼ 0:5; ,; n ¼ 2:0; �, aluminum.
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Fig. 7. The central amplitude of vibration versus fundamental frequency for square aluminum–zirconia plates with two

adjoining edges simply supported and the other edges clamped (case IV):�, zirconia; n; n ¼ 0:5; ,; n ¼ 2:0; �, aluminum.
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Fig. 8. The central amplitude of vibration versus fundamental frequency for four clamped square aluminum–zirconia

plates: �, zirconia; n; n ¼ 0:5; ,; n ¼ 2:0; �, aluminum.
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5. Conclusion

The nonlinear free vibration behavior of plates made of functionally graded materials is
studied. The fundamental equations for plates made of FGM have been obtained using the von
Karman theory for large transverse deflections. The material properties of FGM shells are
assumed to vary continuously through the thickness of the shell, and were graded according to a
power-law distribution of the volume fraction of the constituents. The advantage of the developed
analysis is that the nonlinear partial differential equations can be solved directly with a semi-
analytical method assuming a mixed series solution. Therefore, it can be readily used to
investigate systematically the effect of various parameters including material properties, boundary
conditions and thermal loading on the behavior of the plate due to this advantage. The results
reveal that nonlinear coupling effects play a major role in dictating the response of the
functionally graded plates. Specifically, the results reveal that
(a)
 the fundamental frequency increases with the amplitude of vibration of the FGM plates due to
nonlinear coupling between bending and in-plane stretching,
(b)
 the existence of the temperature field increases the fundamental frequency of the FGM plates
with simply supported edges, but the temperature field does not affect the fundamental
frequency of the plates with all edges being clamped, and
(c)
 the existence of the temperature field does not play a major role in increasing the fundamental
frequency of the FGM plates.
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