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Abstract

This paper details the prediction of flexural receptances for nested components with common neutral
axes using a multiple-point receptance coupling approach. Numerical validation is included for different
numbers of coupling coordinates, equal and unequal coordinate spacing, rigid and finite stiffness
component connections, and component interface damping. Additionally, the sensitivity of the assembly
response to noise in the component receptances is evaluated and it is shown that some data smoothing may
be required if measured receptances are to be used to represent the individual components, rather than the
analytic expressions provided here.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Substructure analysis, or component mode synthesis, methods have been used for several
decades to predict the dynamic response of complicated assemblies using measurements and/or
models of the individual components, or substructures. These components can be represented by
spatial mass, stiffness, and damping data, modal data, or receptances (i.e., frequency response
functions) [1–13]. The latter representation may be preferred in situations where the assembly
receptances are the desired analysis output. Prior receptance coupling studies have considered, for
see front matter r 2005 Elsevier Ltd. All rights reserved.
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example, plates with various supports [14–18], shells [19,20], plate-shell structures [21–23], mass
loaded plates and shells [24], and machine tool structures [25–30].
In this work, the analytic receptance coupling method developed by Bishop and Johnson [1] is

extended to the prediction of flexural (lateral vibration) receptances for assemblies composed of
nested components with common neutral axes. The approach described here incorporates both
translational and rotational degrees of freedom and can accommodate: (1) any number of
connection coordinates with equal or unequal spacing; (2) non-uniform cross-sectional
component geometries along the neutral axis, z, including asymmetry in the x and y directions;
(3) non-rigid contact interfaces between components (including both stiffness and damping
considerations); (4) variable stiffness and damping at different connection coordinates; (5)
nonlinear interface stiffnesses [31,32]; and (6) viscous or hysteretic damping models.
2. Background and notation

Bishop and Johnson [1] presented closed-form receptance functions for the analysis of flexural
vibrations of uniform Euler–Bernoulli beams with free, fixed, sliding, and pinned boundary
conditions. For example, the direct receptances for the free–free beam shown in Fig. 1 due to
externally applied harmonic forces f 1ðtÞ and f 2ðtÞ, applied at coordinates x1ðtÞ and x2ðtÞ,
respectively, and moments m1ðtÞ and m2ðtÞ, applied at y1ðtÞ and y2ðtÞ, respectively, are

x1 ¼ h11 f 1; x1 ¼ l11m1; x2 ¼ h22 f 2; x2 ¼ l22m2, (1)

y1 ¼ n11 f 1; y1 ¼ p11m1; y2 ¼ n22 f 2; y2 ¼ p22m2.

The corresponding cross receptances are

x1 ¼ h12 f 2; x1 ¼ l12m2; x2 ¼ h21 f 1; x2 ¼ l21m1,

y1 ¼ n12 f 2; y1 ¼ p12m2; y2 ¼ n21 f 1; y2 ¼ p21m1. ð2Þ

Eqs. (1) and (2) can be written in matrix form and compactly represented using the notation
shown as follows

x1

y1

( )
¼

h11 l11

n11 p11

" #
f 1

m1

( )
or fu1g ¼ ½R11�fq1g,
x1(t) x2(t) 

�1(t) �2(t)

Fig. 1. Free–free beam coordinates.
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x2

y2

( )
¼

h221 l22

n22 p22

" #
f 2

m2

( )
or fu2g ¼ ½R22�fq2g,

x1

y1

( )
¼

h12 l12

n12 p12

" #
f 2

m2

( )
or fu1g ¼ ½R12�fq2g,

x2

y2

( )
¼

h21 l21

n21 p21

" #
f 1

m1

( )
or fu2g ¼ ½R21�fq1g, ð3Þ

where Rij is the generalized receptance matrix that describes both translational and rotational

component behavior [29]. The reader may note that R11 and R22 are symmetric and the R12 and

R21 matrices are related by R21 ¼
h12
l12

n12
p12

h i
. The individual entries in these matrices depend on the

boundary conditions and include contributions from both the rigid body (if applicable) and
flexural modes. For example, at the left end of the free–free beam in Fig. 1, the R11 matrix
terms are

h11ðoÞ ¼
x1

f 1

¼
�ðcos lL sinh lL� sin lL cosh lLÞ

EIð1þ ZÞl3ðcos lL cosh lL� 1Þ
,

l11ðoÞ ¼
x1

f 1

¼
�ðsin lL sinh lLÞ

EIð1þ ZÞl2ðcos lL cosh lL� 1Þ
,

n11ðoÞ ¼
y1
f 1

¼
�ðsin lL sinh lLÞ

EIð1þ ZÞl2ðcos lL cosh lL� 1Þ
,

p11ðoÞ ¼
y1
m1
¼
ðcos lL sinh lLþ sin lL cosh lLÞ

EIð1þ ZÞlðcos lL cosh lL� 1Þ
, ð4Þ

where l ¼ mo2

LEIð1þiZÞ

� �1=4
, m is the beam mass (kg), o is the frequency (rad/s), L is the beam length

(m), E is the elastic modulus (N/m2), I is the second area moment of inertia (m4), and Z is the
structural damping factor1 (unitless). These receptances can be used to couple components at their
end points in order to determine assembly dynamics. For example, a free–free beam with diameter
d1 can be coupled to a second free–free beam with larger diameter d2 to synthesize the receptances
for a stepped shaft (see Fig. 2). The assembly flexural receptances, shown in Eq. (5) (the upper
case variables denote assembly coordinates, forces, moments, and receptances), are determined by
first writing the component displacements/rotations (see Eq. (6)).

U1

U2

U3

8><
>:

9>=
>; ¼

G11 G12 G13

G21 G22 G23

G31 G32 G33

2
64

3
75

Q1

Q2

Q3

8><
>:

9>=
>; whereU1 ¼

X i

Yi

( )
, (5)

Gij ¼
Hij Lij

Nij Pij

" #
and Qi ¼

Fi

Mi

( )
,

1Damping was not included in Ref. [1], but has been added as part of this analysis.
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U1 U2  U3

d1

d2

u1  u2 u2b  u3

q1  q2

q2b  q3

Assembly Components

Fig. 2. Stepped shaft assembly and components. Diameters d1 and d2 are identified in the assembly schematic.
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u1 ¼ R11q1 þ R12q2; u2 ¼ R21q1 þ R22q2,

u2b ¼ R2b2bq2b þ r2b3q3; u3 ¼ R32bq2b þ R33q3. (6)

For the stepped shaft example, a rigid connection is applied at the interface and the compatibility
conditions are written as

u2 � u2b ¼ 0 and ui ¼ Ui; i ¼ 1 to 3, (7)

where the latter expression specifies that the component and assembly coordinates are defined at
the same spatial positions. The equilibrium conditions vary with the external force/moment
location. To determine the first column of the assembly receptance matrix, Q1 is applied to
coordinate U1. In this case, the equilibrium conditions are

q2 þ q2b ¼ 0; q1 ¼ Q1 and q3 ¼ 0. (8)

Substitution of the component displacements/rotations and equilibrium conditions into the
compatibility conditions yields q2 (see Eq. (9)). The expression for G11 is then given by Eq. (10).
The other two first column receptances are determined in a similar manner. To find the
receptances in the second and third columns, Q2 must be applied to U2 and Q3 to U3, respectively.

q2 ¼ �ðR22 þ R2b2bÞ
�1R21Q1, (9)

G11 ¼
U1

Q1

¼
u1

Q1

¼
R11q1 þ R12q2

Q1

¼ R11 � R12ðR22 þ R2b2bÞ
�1R21 ¼

H11 L11

N11 P11

" #
. (10)
3. Concentric assembly coupling

In this paper, the end-to-end coupling described in the previous example is extended to multiple
point coupling for concentric assemblies. The analysis is limited to nested assemblies with
common neutral axes because only planar displacements in the lateral, or x and y, directions are
considered and the relative displacements between components along the z direction are not
modeled. If the component neutral axes are offset, the contact interface can experience sliding
during flexural vibrations (similar to the pages of a paperback book when rolled into a tubular
shape). This effect has been previously applied to increase damping during structural vibrations,
but is not modeled here [33,34].
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To demonstrate the coupling method, consider a rigid connection between a free–free internal
cylinder and free–free external tube, where the internal cylinder’s outer diameter is equal to the
inner diameter of the external tube. Here, it is not sufficient to couple the two components only at
their endpoints. The relative motions at coordinates along the assembly z-axis must also be
constrained. The case of n ¼ 3 connection coordinates, located at the assembly ends and at mid-
length, will now be demonstrated. This gives a total of six component coordinates—three each on
the internal cylinder and external tube (see Fig. 3).
The component displacement/rotations can be written as

u1 ¼ R11q1 þ R12q2 þ R13q3; u2 ¼ R21q1 þ R22q2 þ R23q3,

u3 ¼ R31q1 þ R32q2 þ R33q3; u4 ¼ R44q4 þ R45q5 þ R46q6,

u5 ¼ R54q4 þ R55q5 þ R56q6; u6 ¼ R64q4 þ R65q5 þ R66q6. ð11Þ

The compatibility conditions for the rigid connection are

u1 � u4 ¼ 0; u2 � u5 ¼ 0 and u3 � u6 ¼ 0 (12)

and the component and assembly coordinates are defined at the same spatial locations so that
ui ¼ Ui, i ¼ 1 to 6. If the assembly direct response at the left end, G11ðoÞ, is to be determined, Q1 is
applied to coordinate U1 of the assembly. The equilibrium conditions are then

q1 þ q4 ¼ Q1; q2 þ q5 ¼ 0 and q3 þ q6 ¼ 0. (13)

G11 is determined here using a matrix representation of the relevant equations. The first step
is to insert the component displacement/rotation expressions into the compatibility conditions
(see Eq. (14)).

R11q1 þ R12q2 þ R13q3 ¼ R44q4 þ R45q5 þ R46q6,

R21q1 þ R22q2 þ R23q3 ¼ R54q4 þ R55q5 þ R56q6,

R31q1 þ R32q2 þ R33q3 ¼ R64q4 þ R65q5 þ R66q6. ð14Þ

The next step is to substitute q4 ¼ Q1 � q1, q5 ¼ �q2, and q6 ¼ �q3 and rearrange to obtain

R11 þ R44 R12 þ R45 R13 þ R46

R21 þ R54 R22 þ R55 R23 þ R54

R31 þ R64 R33 þ R65 R33 þ R66

2
64

3
75

q1

q2

q3

8><
>:

9>=
>; ¼

R44

R54

R64

2
64

3
75

Q1

Q1

Q1

8><
>:

9>=
>;, (15)
U1, U4

u1  u2  u3

Assembly Components

U2, U5 U3, U6 u4  u5  u6

Fig. 3. Cylinder-in-tube assembly and components.
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which gives the relationship between the component forces/moments and externally applied force/
moment in matrix form. For this example, G11 can be expressed as

G11 ¼
U1

Q1

¼
u1

Q1

¼ R11
q1

Q1

þ R12
q2

Q1

þ R13
q3
Q1

, (16)

so the ratios q1=Q1, q2=Q1, and q3=Q1 are required. These can be determined by rearranging
Eq. (15) shown as follows

q1

q2

q3

8><
>:

9>=
>;

Q1

Q1

Q1

8><
>:

9>=
>;
�1

¼

R11 þ R44 R12 þ R45 R13 þ R46

R21 þ R54 R22 þ R55 R23 þ R54

R31 þ R64 R33 þ R65 R33 þ R66

2
64

3
75
�1

R44

R54

R64

2
64

3
75 ¼ ½A�, (17)

where [A] is a 6� 2, or 2n� 2�N matrix (N is the number of points in the frequency vector, o).
The reader may note that the matrix size is 6� 2 because Rij is a 2� 2 matrix. The matrix A is
partitioned as follows: the first two rows of A give q1=Q1; the second two rows provide q2=Q1;
and the final two rows give q3=Q1. The desired direct receptances can then be computed from
Eq. (16).
This three-point coupling example can be extended to n coupling points by recognizing the

recursive pattern in Eq. (17). If the same coordinate numbering scheme is observed (see Fig. 4),
the A matrix is given by Eq. (18).

½A� ¼

R11 þ Rnþ1;nþ1 R12 þ Rnþ1;nþ2 � � � R1n þ Rnþ1;2n

R21 þ Rnþ2;nþ1 R22 þ Rnþ2;nþ2 � � � R2n þ Rnþ2;2n

..

. ..
. . .

. ..
.

Rn1 þ R2n;nþ1 Rn2 þ R2n;nþ2 � � � Rnn þ R2n;2n

2
666664

3
777775

�1
Rnþ1;nþ1

Rnþ2;nþ1

..

.

R2n;nþ1

2
666664

3
777775. (18)

This matrix can again be partitioned to find q1=Q1, q2=Q1; . . . ; qn=Q1. The assembly receptances
G11 can then be found using G11 ¼ R11q1=Q1 þ R12q2=Q1 þ � � � þ R1nqn=Q1. The following
sections detail the development of the required receptances, Rij, for the inner cylinder and
outer tube.
u1  u2  u3

un+1  un+2

… un-1 un

… u2n-1  u2n

Fig. 4. Cylinder-in-tube component coordinates for n-point coupling.



ARTICLE IN PRESS

T.L. Schmitz, G.S. Duncan / Journal of Sound and Vibration 289 (2006) 1045–1065 1051
3.1. Inner cylinder receptances

The inner cylinder receptance matrix is composed of n2 Rij terms (i ¼ 1 to n and j ¼ 1 to n).
However, by observing the reciprocity relationships given in Section 2, it is only necessary to
determine the upper triangular portion of the square Rij matrix, or

Pn
i¼1i terms.

The corners of the upper triangular portion of the matrix, R11, R1n, and Rnn, are found using the
Bishop and Johnson [1] receptances directly, where the full beam length is used in these
computations. The remaining terms in the first row of the Rij matrix, R12;R13; . . . ;R1;n�1 are
determined next. To find R12, q2 is applied at coordinate u2 as shown in Fig. 5.
The cylinder component must now be sectioned at coordinate u2 into two elements with

generalized receptance matrices Eij and coordinates v1 to vn (see Fig. 5). For equally spaced
connection coordinates, the length of the left element is DL ¼ L=ðn� 1Þ, while the right element
length is L� DL. The element displacements/rotations can be written as

v1 ¼ E12s2; v2 ¼ E22s2 and v2b ¼ E2b2bs2b, (19)

where s1, s2, and s2b are the non-zero element forces. The compatibility conditions for the rigid
coupling between elements are given in Eq. (20). The associated equilibrium condition is provided
in Eq. (21).

v2 � v2b ¼ 0 and vi ¼ Vi; i ¼ 1 to n, (20)

s2 þ s2b ¼ q2. (21)

Similar to the previous results, substitution of the element displacement/rotations and equilibrium
condition into the compatibility conditions yields the following expression for R12:

R12 ¼ E12ðE22 þ E2b2bÞ
�1E2b2b. (22)

To find R13, q3 is applied at u3. The required left and right elements now have the lengths 2DL and
L� 2DL, respectively. The equation for R13 is

R13 ¼ E13ðE33 þ E3b3bÞ
�1E3b3b. (23)
u1  u2  u3 … un-1 un

v1  v2  v2b … vn-1 vn

q2

s2 s2b

v3

Elements 

Component 

Fig. 5. Inner cylinder R12 determination.
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The recursive pattern is immediately apparent so that R1j is defined by

R1j ¼ E1jðEjj þ EjbjbÞ
�1Ejbjb; where j ¼ 2 to n� 1 is the column number. (24)

Also, E1j describes the cross receptances for the left element (with a length of ð j � 1ÞDL), Eij

provides the direct receptances at the right end of the left element, and Ejbjb gives the direct
receptances at the left end of the right element (with a length of L� ð j � 1ÞDL).
The nth column of the Rij matrix is defined next. In this case, qn is applied to the coordinate un

at the right end of the cylinder component in order to find Rin, where i ¼ 2 to n� 1 is the row
number. The recursive form is

Rin ¼ EiiðEii þ EibibÞ
�1Eibn, (25)

where Eii and Eibib are defined in the same way as Ejj and Ejbjb, respectively. The Eibn cross
receptances for the right element are calculated using an element length of L� ði � 1ÞDL.
The next terms to describe are the on-diagonal receptances Rii, i ¼ 2 to n� 1. These can be

written as

Rii ¼ EiiðEii þ EibibÞ
�1 Eibib. (26)

Again, Eii, the direct receptances at the right end of the left element and Eibib, the direct
receptances at the left end of the right element, have the same definitions as previously provided.
The remaining receptances are those Rij terms above the on-diagonal, exclusive of the first row

and nth column. These receptances are determined column-by-column. For a particular column,
j ¼ 2 to n� 1, Rij is given by

Rij ¼ EijðEjj þ EjbjbÞ
�1 Ejbjb; i ¼ 2 to j � 1. (27)

In this equation, the left element (with direct receptances Ejj) has a length of ( j � 1ÞDL and the
right element (with direct receptances Ejbjb) has a length of L� ð j � 1ÞDL. However, the Eij

element receptances cannot be determined directly from the Bishop and Johnson formulation [1].
In this case, subelement receptances Sij must be defined. This is demonstrated by solving for R23.
To find R23, q3 is applied to coordinate u2. The cylinder component is then split at coordinate u3

to define two elements (see Fig. 6). The element displacements/rotations are given by

v2 ¼ E23s3; v3 ¼ E33s3; and v3b ¼ E3b3bs3b. (28)

The rigid connection compatibility conditions are shown in Eq. (29) and the equilibrium condition
in Eq. (30).

v3 � v3b ¼ 0 and vi ¼ ui; i ¼ 1 to n. (29)

s3 þ s3b ¼ q3. (30)

Using these equations, it is found that

R23 ¼ E23ðE33 þ E3b3bÞ
�1 E3bi3. (31)

As noted, E23, the cross receptances at coordinate v2 of the left element due to the application of s3
at coordinate v3, is determined by separating the left element (with a length of ð j � 1ÞDL), into two
subelements at coordinate v2 (see Fig. 6). The length of the left subelement is ði � 1ÞDL ¼ ð2� 1Þ
DL ¼ DL, while the length of the right subelement is ð j � iÞDL ¼ ð3� 2ÞDL ¼ DL.
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u1  u2  u3 … un-1 un

v1  v2 v3b
… vn-1 vn

q3

s3 s3b

 v3

Elements 

Component 

w2

t2

w1

t2b

w2b  w3

Subelements 

t3

Fig. 6. Inner cylinder R23 determination.
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Using the displacement/rotation, compatibility, and equilibrium equations, it is found that

E23 ¼ S22ðS22 þ S2b2bÞ
�1 S2b3, (32)

where S22 gives the direct receptances at the right end of the left subelement, S2b2b contains the
direct receptances at the left end of the right subelement, and S2b3 represents the cross receptances
for the right subelement. The recursive formulation for this equation is

Eij ¼ SiiðSii þ SibibÞ
�1Sibj; i ¼ 2 to j � 1 and j ¼ 2 to n� 1. (33)

All terms in the upper triangular portion of the Rij matrix for the inner cylinder have now been
determined. The lower triangular portion, excluding the on-diagonal terms, is found by observing
the symmetry rules given in Section 2 as demonstrated by the following pseudo-code.

for i ¼ 1 to n� 1
for j ¼ i þ 1 to n

Rij ¼
hij

nij

lij

pij

h i
next j

next i

3.2. Outer tube receptances

To find the Rij matrix for the outer tube, n is added to each coordinate number (i.e., the
coordinate number for left end of the tube is nþ 1 and the right end coordinate number is 2n) and
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the beam geometry and material properties are updated for the receptance computations. All
other definitions remain the same.

3.3. Numerical results

To verify the method, cylinder and tube geometries with dissimilar material properties were
chosen (see Table 1, where di and do are the inner and outer diameters, respectively, r is the
density, and n is Poisson’s ratio) and the assembly dynamics computed. A rigid coupling was
selected in this case so that (analytical) verification calculations could be made using a composite
beam approach.
To compute the composite beam frequency response, the equivalent modulus-area moment of

inertia product, EI eq, and mass, meq, values for the cylinder–tube assembly were calculated using
Eqs. (34) and (35), where the t and c subscripts refer to the tube and cylinder, respectively. Eq. (4)
was then used to calculate the free–free response at the left end of the assembly.

EI eq ¼
p
64
ðEtðd

4
0;t � d4

i;tÞ þ Ecd
4
o;cÞ, (34)

meq ¼
p
4

rt d2
o;t � d2

i;t

� �
þ rcd

2
o;c

� �
L. (35)

A comparison between the analytical composite beam and n ¼ 3 coupling results, as well as the
more accurate Timoshenko beam solution, is shown in Fig. 7 (for brevity, only the displacement-
to-force, or H11, assembly results are shown, although all four direct receptances are predicted). It
is seen that the 1000Hz simulation frequency range (0.1Hz resolution) captures the first three
bending modes at 173.3, 476.9, and 932.7Hz. For the long slender beam used in this numerical
study, the Euler–Bernoulli composite beam results agree reasonably well with the Timoshenko
beam solution (100 elements were used to represent the tube and cylinder as described in
Appendix A) with increasing divergence visible in the second and third modes (0.25% and 0.49%
errors, respectively). However, the three-point coupling result accurately predicts only the first
bending mode. This can be explained by considering the mode shapes, Fkðx=LÞ, for the first three
bending modes, k ¼ 1; 2, and 3, of a uniform free–free beam as shown in Fig. 8 [35]. It is seen that
the central connection coordinate lies on a node for the second mode and insufficient points are
Table 1

Cylinder and tube parameters

Inner cylinder Outer tube

L (m) 0.500 0.500

di (m) — 0.005

do (m) 0.005 0.010

r (kg/m3) 14380 7800

E (N/m2) 5:85� 1011 2:00� 1011

Z 0.005 0.005

n 0.22 0.29
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Fig. 7. Three-point coupling results (equal spacing). Results are shown for the three-point coupling of Euler–Bernoulli

tube and cylinder (dotted line), Euler–Bernoulli composite cylindrical beam (solid), and Timoshenko composite beam

(dashed).

Fig. 8. First three bending modes for uniform free–free beam: k ¼ 1 (triangles with solid line), k ¼ 2 (squares with

dotted line), and k ¼ 3 (circles with dot-dashed line).
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available to capture the third mode response. Using Shannon’s sampling theorem (i.e., the
Nyquist criterion) and these mode shapes, a general statement can be made about the number of
required coupling coordinates. Considering the second mode shape, for example, this odd
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function (about the beam midpoint) is similar in shape to a single period of a sine wave. To avoid
aliasing, two spatial sampling points are required. However, connection coordinates at the
assembly end points are also used by default, so the total required number of coordinates can be
taken to be n ¼ k þ 2, where k is the mode number. This requirement is demonstrated in Fig. 9,
where the coupling results for n ¼ 4 and n ¼ 5 are superimposed on the composite beam solution.
It is seen that the n ¼ 2þ 2 ¼ 4 result captures the second mode behavior, but not the third mode.
Similarly, the n ¼ 3þ 2 ¼ 5 result predicts all three modes with reasonable accuracy. Improved
accuracy is obtained as n increases; coupling results and residual error (relative to the composite
beam approach) for n ¼ 7 are shown in Fig. 10. The larger error seen in the third mode is not due
to a misrepresentation of the magnitude and phase curve shapes, but rather a shift in the predicted
resonant frequency of 1.9Hz to the left.

3.4. Unequal coordinate spacing

The coupling approach described here does not require equal spacing of the connection
coordinates. Any convenient spacing can be selected; the only necessary modification to the
procedure is that the derivation of the component receptances (described in Sections 3.1 and 3.2)
must now take into account the coordinate locations to calculate the element and subelement
lengths. Different criteria could be applied to select preferred coupling coordinate locations for
the cylinder-in-tube example. Here, connection coordinates have been placed at the local, or
relative, maxima and minima of the free–free beam mode shapes shown in Fig. 8, as well as at the
component ends (which leads to unequal coordinate spacing). The local maxima/minima were
identified by finding the zero crossings for the mode shape spatial derivatives, dFk=dx. The
dimensionless x=L locations for these points are shown in Table 2.
Fig. 9. Four- and five-point coupling results (equal spacing). Results are shown for Euler–Bernoulli composite beam

(solid line), n ¼ 4 (dotted), and n ¼ 5 (dot-dashed).
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Table 2

Locations for mode shape local maxima and minima

k x

L
for

dFk

dx
¼ 0

1 0.5000

2 0.3084

0.6916

3 0.2200

0.5000

0.7800

Fig. 10. Seven-point coupling result: (a) magnitudes for composite beam (solid line) and n ¼ 7 (dotted); (b)

corresponding phases; (c) residual error for n ¼ 7 (dotted) with composite beam response (solid); (d) phase error.
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Comparisons between equal and unequal coordinate spacing are provided in Fig. 11. The
dynamic response magnitudes and errors for n ¼ 4 are shown in the left column, while the n ¼ 5
results are given in the right column. For n ¼ 4, the k ¼ 2 connection coordinate locations were
selected from Table 2. For n ¼ 5, the k ¼ 3 locations were applied. Close inspection of the errors
between the unequal/equal coordinate spacing and composite beam receptances shows that the
unequal coordinate spacing approach offers improved accuracy for the mode used to define the
coordinate locations (i.e., the n ¼ 4 results show smaller mode 2 error for the unequal spacing
approach). However, the accuracy for lower-order modes tends to suffer (i.e., the n ¼ 4 results
show larger mode 1 error for the unequal spacing approach). In any case, since the mode shapes
for more complicated assemblies are generally not known a priori, the equal coordinate spacing
method may be the more practical choice.
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Fig. 11. Coupling results for equal and unequal connection coordinate spacing: (a) n ¼ 4, magnitudes for composite

beam (solid line), unequal (dotted), and equal spacing (dot-dashed); (b) n ¼ 5 magnitudes; (c) n ¼ 4 residual errors with

composite beam response (solid); (d) n ¼ 5 errors.
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4. Non-rigid coupling

In the case of finite stiffness and non-zero damping2 at the contact interface between the inner
and outer components, the compatibility conditions must be modified to reflect the new
coordinate displacement/rotation relationships. To demonstrate, the three-point free–free inner
cylinder–outer tube coupling described in Section 3 will again be considered. Eq. (12) is now
rewritten as

Kðu4 � u1Þ ¼ �q4; Kðu5 � u2Þ ¼ �q5 and Kðu6 � u3Þ ¼ �q6, (36)

where the complex stiffness matrix is defined as K ¼ Kxþiocx

0
0

kyþiocy

h i
for a viscous damping

model [36]. In this matrix, the translational stiffness and damping terms, kx and cx, respectively,
appear as constants; however, these terms may also be frequency-dependent and nonlinear [31,32].
The same is true for the rotational terms ky and cy. Additionally, although a single K matrix is
identified in Eq. (36), each coupling location could use a different set of stiffness and damping
values.
To find the direct receptances at the left end of the three-point coupled assembly, Q1 is again

applied to U1 (the corresponding equilibrium conditions are provided in Eq. (13)). After inserting
the component displacement/rotation expressions (Eq. (11)) and equilibrium conditions into
2The contact damping is generally thought to be the result of non-conservative asperity-level slip, or micro-slip, where

some, but not all, of the asperity-level contacts exhibit relative motion during vibration.
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Eq. (36) and rearranging, a modified version of Eq. (17) is obtained

q1

q2

q3

8>><
>>:

9>>=
>>;

Q1

Q1

Q1

8>><
>>:

9>>=
>>;
�1

¼

R11 þ R44 þ K�1 R12 þ R45 R13 þ R46

R21 þ R54 R22 þ R55 þ K�1 R23 þ R54

R31 þ R64 R32 þ R65 R33 þ R66 þ K�1

2
664

3
775
�1

R44 þ K�1

R54

R64

2
664

3
775

¼ ½A�, ð37Þ

where the only difference is that the inverted K matrix is now summed with the component direct
receptances. The solution procedure for the assembly receptances and derivation of the
component receptances remain the same.
As an example, the component geometries and material properties given in Table 1 were again

used, but the components were coupled through three non-rigid, damped connections. The stiffness
and damping values were modified using two scenarios: (A) variable stiffness, zero damping; and
(B) constant stiffness, variable damping. Additionally, it was verified that for very large stiffness
values, the predicted assembly receptance approached the rigid result shown in Fig. 7 and for very
small stiffness values, the predicted receptance approached the free–free cylinder result.

4.1. Case A: variable stiffness, zero damping

The first step in completing the assembly receptance predictions was to determine a working range
for the translational and rotational stiffness values. It was decided to set the nominal translational
spring constant equal to the first mode bending stiffness for the free–free inner cylinder and vary
about this point. From Ref. [35], the first mode stiffness for lateral vibration of a uniform, free–free
beam can be written as kx ¼ ð4:73004074Þ

4EI=L3. For the inner cylinder properties given in Table 1,
kx ¼ 71871:3N=mffi 7� 104 N=m. As an approximation, the rotational stiffness was taken to be
equal to the product of kx and the cylinder length, L. Fig. 12 shows the comparison between the
rigidly coupled result and three different stiffness values: kx ¼ f7� 105; 7� 104; and 7� 103gN=m.
The expected trend of reduced resonant frequency with decreasing stiffness is observed.

4.2. Case B: constant stiffness, variable damping

For these predictions, constant kx and ky values were applied (7� 104 N=m translational
stiffness case from Section 4.1). The cx and cy values were selected using a dimensionless damping
ratio, z, notation. The cx value was determined from cx ¼ 2z

ffiffiffiffiffiffiffiffiffi
kxm
p

, where m is the inner cylinder
mass. Similarly, the cy value was calculated using cy ¼ 2z

ffiffiffiffiffiffiffiffi
kyJ
p

, where J is the inner cylinder mass
moment of inertia, or mL2=12 for the long, slender cylinder used in this numerical study. Fig. 13
shows the results for z values of 0, 0.01, 0.1, and 0.5. As expected, increasing damping ratios lead
to decreased response amplitudes.
5. Noise effects

Because a primary use for receptance coupling methods is the direct joining of
measured frequency response functions, the previous analyses were repeated in the presence of
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Fig. 12. Three-point, finite stiffness coupling example (zero damping). Results are provided for the following

connection stiffness values: rigid (dotted line), 7� 105 N=m (dashed), 7� 104 N=m (solid), and 7� 103 N=m (dot-

dashed).

Fig. 13. Three-point coupling with non-zero damping (constant stiffness). Results are shown for damping ratios of:

zero (dotted line), 0.01 (dot-dashed), 0.1 (solid), and 0.5 (dashed).
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normally-distributed, 1% and 5% random noise. Fig. 14 compares the composite beam response
(no noise) with results for rigid coupling—no damping and finite stiffness coupling—10%
damping (kx ¼ 7� 104 N=m and z ¼ 0:1). The 1% noise level results are provided in the top panel
(a) and 5% results in the middle panel (b). For the 1% case, little assembly noise is seen for
both the rigid and finite stiffness/damped responses, although some noise is observed near the
anti-resonance (more than an order of magnitude smaller than the resonance peak). In the 5%
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Fig. 14. Effect of noise on assembly response: (a) magnitudes for 1% noise added to component receptances—

composite beam with no noise (solid line), rigid connection (dotted), and finite stiffness—10% damping (heavy dot-

dashed); (b) 5% noise; (c) filtered 5% noise—rigid connection (dotted).
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case, however, the predicted assembly response is virtually unusable with significant noise content
across the full frequency range. This sensitivity to component receptance noise is most likely due
to the required matrix inversion (see Eqs. (17), (18), and (37)). Practically, these results show that
data smoothing may be required if measured frequency responses, rather than the analytic
expressions applied here, are used as the component receptances. An example of data smoothing
using a Savitzky–Golay (polynomial) filter, which performs a local polynomial regression to
determine the smoothed value for each data point, is shown in the bottom panel (c). The
component receptances with 5% random noise were first filtered using a polynomial order of 3
and frame size of 125 samples and then coupled using a rigid connection. It is seen that the
assembly response noise has been strongly attenuated compared to the middle panel, rigid
coupling result (b).
6. Non-uniform component cross-sections

So far only components with uniform cross-sections have been considered. The n-point
coupling method can also be applied to join concentric components with continuously varying or
stepped cross-sections. Consider the inner stepped shaft-outer cone assembly shown in Fig. 15. In
this case, the inner stepped shaft can be synthesized as shown in Section 2. The cone is also
separated into multiple sections (shown schematically by the vertical dotted lines in Fig. 15),
similar to the finite element approach, and rigidly coupled. The sections lengths must be
sufficiently small to effectively capture the changing cross-sectional geometry; however, the
Bishop and Johnson closed-form expressions [1] include all mode shapes so it is not necessary to
approximate the actual response using a finite number of modes. Once the individual component
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Assembly 

Inner 
stepped shaft 

Outer cone 

Fig. 15. Example of non-uniform cross-section components. The component receptances are first determined by rigidly

coupling segments with different cross-sections. The assembly response is then found by joining the components using

n-point coupling.
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models are complete, they can then be joined using the n-point coupling approach described in the
previous sections. As a final note, if the component cross-sections are not symmetric, different
component models can be developed for the x and y directions, for example, and the coupling
procedure completed separately for each direction.
7. Conclusions

This paper describes the use of receptance coupling techniques to predict flexural receptances
for assemblies composed of nested components with common neutral axes. Through numerical
studies, the approach was validated for different numbers of coupling coordinates, equal and
unequal coordinate spacing, rigid and finite stiffness component connections, and component
interface damping. Additionally, the sensitivity to noise in the component receptances was
evaluated and it was found that some data smoothing may be required if measured receptances
are to be used to represent the individual components.
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Appendix A. Timoshenko beam solution

The Timoshenko beam model, which includes the effects of rotary inertia and shear, was
implemented using finite elements [37]. Each four-degree-of-freedom (rotation and displacement



ARTICLE IN PRESS

T.L. Schmitz, G.S. Duncan / Journal of Sound and Vibration 289 (2006) 1045–1065 1063
at both ends) free–free beam section was modeled using appropriate mass, M, and complex
stiffness, K, matrices [38]. The mass matrix was

M ¼
rAl

ð1þ fÞ2

13
35
þ

7f
10
þ

f2

3
11
210
þ

11f
120
þ

f2

24

� �
l 9

70
þ

3f
10
þ

f2

6
� 13

420
þ

3f
40
þ

f2

24

� �
l

1
105
þ

f
60
þ

f2

120

� �
l2 13

420
þ

3f
40
þ

f2

24

� �
l � 1

140
þ

f
60
þ

f2

120

� �
l2

13
35
þ

7f
10
þ

f2

3
� 11

210
þ

11f
120
þ

f2

24

� �
l

Symmetric 1
105
þ

f
60
þ

f2

120

� �
l2

2
66666666664

3
77777777775

þ
rAl

ð1þ fÞ2
rg

l

� �2
6
5

1
10
�

f
2

� �
l � 6

5
1
10
�

f
2

� �
l

2
15
þ

f
6
þ

f2

3

� �
l2 � 1

10
�

f
2

� �
l � 1

30
þ

f
6
þ

f2

6

� �
l2

6
5

� 1
10
�

f
2

� �
l

Symmetric 2
15
þ

f
6
þ

f2

3

� �
l2

2
66666666664

3
77777777775
,

where A is the cross-sectional area, l is the section length, rg is the radius of gyration, and f is a
shear deformation parameter given by f ¼ 12EIð1þ ZÞ=k0GAl2, where G ¼ E=2ð1þ nÞ is the
shear modulus and k0 is the shear coefficient which depends on the cross-section shape and n [39].
The composite beam properties were incorporated as shown in Eqs. (34) and (35). The complex
stiffness matrix (which included damping) was

K ¼
EIð1þ iZÞ

l3ð1þ fÞ2

12 6l �12 6l

ð4þ 2fþ f2
Þl2 �6l ð2� 2f� f2

Þl2

12 �6l

Symmetric ð4þ 2fþ f2
Þl2

2
666664

3
777775

þ
k0AGf2

4lð1þ fÞ2

4 2l �4 2l

l2 �2l l2

4 �2l

Symmetric l2

2
666664

3
777775.

The element M and K matrices were then collected into the global mass, M , and complex stiffness,
K , matrices using Guyan reduction [37] and the resulting equation of motion solved in the
frequency domain. See Eq. (A.1), where n elements have been applied.
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½�Mo2 þ K � �

x1

y1
x2

y2

..

.

xnþ1

ynþ1

2
6666666666664

3
7777777777775
¼

f 1

m1

f 2

m2

..

.

f nþ1

mnþ1

2
6666666666664

3
7777777777775
. (A.1)
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