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Abstract

The elastodynamics of 1D periodic materials and finite structures comprising these materials are studied
with particular emphasis on correlating their frequency-dependent characteristics and on elucidating their
pass-band and stop-band behaviors. Dispersion relations are derived for periodic materials and are
employed in a novel manner for computing both pass-band and stop-band complex mode shapes. Through
simulations of harmonically induced wave motion within a finite number of unit cells, conformity of the
frequency band structure between infinite and finite periodic systems is shown. In particular, only one or
two unit cells of a periodic material could be sufficient for ‘‘frequency bandedness’’ to carry over from the
infinite periodic case, and only three to four unit cells are necessary for the decay in normalized
transmission within a stop band to practically saturate with an increase in the number of cells. Dominant
speeds in the scattered wave field within the same finite set of unit cells are observed to match those of phase
and group velocities of the infinite periodic material within the most active pass band. Dynamic response
due to impulse excitation also is shown to capture the infinite periodic material dynamical characteristics.
Finally, steady-state vibration analyses are conducted on a finite fully periodic structure revealing a
conformity in the natural frequency spread to the frequency band layout of the infinite periodic material.
The steady-state forced response is observed to exhibit mode localization patterns that resemble those of
the infinite periodic medium, and it is shown that the maximum localized response under stop-band
conditions could be significantly less than in an equivalent homogenous structure and the converse is true
for pass-band conditions.
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1. Introduction

An important class of composite materials is one in which the individual constituents are
geometrically laid out in a periodic fashion, where each repeated unit is referred to as a unit cell.

This importance stems from the fact that there are several practically promising dynamical
characteristics that periodic composite materials (henceforth referred to as periodic materials)
possess. This arises from their frequency-dependent wave propagation characteristics described by
the frequency spectra, that is, mappings between temporal frequency and wavenumber.
Due to their dispersive nature, some periodic materials may exhibit distinct frequency ranges in

which effective wave propagation is not permitted to take place. These frequency ranges are
commonly referred to as band gaps or stop bands. The remaining frequency ranges are called pass
bands, where, as the terminology implies, waves are allowed to ‘‘pass’’ or propagate through the
medium. The location of these bands in the frequency domain, and the form of the dispersion
relation within these bands, make up the frequency band structure of the periodic material.
A promising technological development revolves around employing periodic materials in

forming engineering structures. The term structure here is distinguished from the term material. A
structure has definite size and boundaries, and can be mechanically loaded (e.g., by application of
force), whereas a material has indefinite size, typically modeled or expressed pointwise, and does
not permit any form of loading. Recognizing that the dynamic behavior in both stop-band and
pass-band frequencies is exploitable motivates the use, hereafter, of the phrases ‘‘banded
materials/structures’’ as opposed to ‘‘band-gap materials/structures’’.
A brief chronological literature survey (not exhaustive) is now presented. The study of wave

propagation in periodic media was effectively pioneered by Floquet in 1883 [1] when he studied a
1D Mathieu’s equation involving temporal, rather than spatial, periodicity. Subsequently,
Rayleigh [2] arrived at a form of Floquet’s theorem through his derivation of a solution for waves
in 1D periodic media. His findings revealed the notion of a band gap. Bloch [3] presented a
theorem generalizing Floquet’s results to spatial periodicity in three dimensions showing that the
wave field in a periodic medium is also periodic up to a phase multiplier. A rigorous geometric
interpretation of wave diffractions was provided by Brillouin [4]. In the 1950s, a substantial
number of theoretical investigations in solid state physics focused on band structures of solids. By
the late 1960s, band theory gained considerable credibility once theorists and experimentalists
correlated their results (see Ref. [5] for band theory in solid state physics).
In the field of elasticity, several studies were conducted on wave propagation in stratified solid

media in the early 1950s, e.g., Thomson’s [6] use of matrices to study plane elastic waves in such
media and Haskell’s [7] employment of the same approach for surface waves. In 1973, Lee and
Yang [8] used Floquet’s theorem in their treatment of 1D wave propagation in elastic periodic
composites. They generated periodic displacement profiles and interpreted properties of Floquet
waves in terms of normal modes. The band-gap feature and properties at band ends were among
the focal points of their work.
The existence of a band gap in a realistic 3D crystal was ‘‘suggested’’ in the seminal papers of

Yablonovitch [9] and John [10]. Shortly after, Ho et al. [11] developed a plane-wave expansion
method and used it to demonstrate a full photonic (electromagnetic) band gap for dielectric
spheres arranged in the diamond structure. At that stage it was established that some crystalline
microstructures are indeed capable of forbidding the transmission of waves, be they electronic,
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photonic, or phononic (vibrational), at band-gap frequency ranges. A large number of papers
have since appeared in this area (see, e.g., Refs. [12,13], and Ref. [14] for a review). Substantial
research has also been conducted on a similar class of problems, that is, homogenous structures
with periodic boundary conditions (see, e.g., Refs. [15–17]).
Returning to 1D periodically layered media, the case where more than two sub-layers, of two or

more constituent materials, are present in a periodic material’s unit cell was the focus of the work
presented by Esquivel-Sirvent and Cocoletzi [18] and Shen and Cao [19]. They combined the
transfer matrix method with Floquet’s theorem to predict the dispersion curves across a specified
frequency range. Martinsson and Movchan [20] studied band gaps in the context of infinite lattice
structures with continuous elements. They correlated characteristics of oscillators within the unit
cell with those of the periodic system as a whole.
The above studies focused primarily on infinite domains. Research has also been conducted on

finite models of periodic systems, which is of practical importance. Schemes were proposed in
which the transfer matrix method is used to predict the frequency-dependent vibration
transmission across a 1D finite periodic structure embedded in a base material [21,22]. These
schemes, however, are limited to a plane wave solution and do not permit the consideration of
realistic loading and boundary conditions. Substantial coverage of wave propagation in 1D
periodic structures, infinite and finite, is available in Ref. [23] in which the method of
characteristics was used. No attention was given, however, to the effects that the number of unit
cells in a finite structure has on the wave propagation characteristics, and there was no
consideration of the spatial behavior.
The most elaborate studies to date in which the effects of the number of unit cells on the

dynamics of a bounded structure were considered are those of Jensen [24] and Hussein et al. [25]. In
the former, these effects on the steady-state forced response were considered in the context of fully
periodic spring-mass systems. Also considered were the effects of boundaries, viscous damping and
imperfections. In the latter, a brief analysis was provided on the effects of the numbers of cells
forming a periodic waveguide wall on the overall guide performance. Some preliminary results on
the effects of ‘‘finiteness’’ in 1D periodic structures for both transient and steady-state dynamics
was presented in Refs. [26,27]. A comprehensive and frequently updated list of articles on topics
involving sonic, as well as photonic, band gaps is compiled by Dowling, et al. [28].
The goal of this paper is to provide additional analysis and understanding of the pass-band/

stop-band dispersive behavior of linear elastic periodic materials and structures with a perspective
on not only the frequency domain but also the temporal and spatial domains, including speeds of
wave propagation. Furthermore, this paper focuses on correlating the dynamic response of the
respective infinite and finite systems. More specifically, the dynamical characteristics (frequency
bands and mode shapes) of a periodic material are correlated with the dynamic response of a
structure that is composed of a finite number of unit cells of the same periodic material. An aim of
this correlation is the establishment of conditions on the number of periodic unit cells required for
a qualitative similarity in behavior to take place. Steady-state vibration analyses of fully bounded
(i.e., more realistic) periodic structures are also considered in order to provide a modal analysis
perspective on banded structures. Here, total wave reflections take place at the periodic domain
boundaries. Particular emphasis is placed on the behavior of the closest unit cell from the location
of excitation because a seemingly high degree of possibly damaging mode localization takes place
near the loading point.
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Attention is focused on 1D models since they provide a platform for rigorous analysis of the
fundamental dynamical processes that pertain to periodically heterogeneous materials and
structures without indulging in the complexities associated with multiple directionality.
Furthermore, from a practical perspective, 1D models may be realized as layered materials and
structures, which are fairly economical to manufacture.
In the next section, the governing equations for linear elastodynamics are presented for a

heterogeneous solid. In Section 3, a solution method for the infinite periodic material problem is
described and an algorithm is given in the Appendix for predicting spatial profiles (mode shapes)
across an arbitrary number of unit cells. Section 4 outlines solutions methods for the finite periodic
structure problem. Numerical examples are provided in Section 5. Analyses are conducted on an
arbitrarily chosen periodic layered material, and subsequently on structures composed of this
composite material. The degree to which the size and location of frequency bands (i.e., frequency
‘‘bandedness’’) carry through from material to structure is investigated, and the effect of
‘‘finiteness’’ on wave attenuation is studied. Furthermore, observable velocities of wave
propagation in a periodic structure are correlated with corresponding phase and group velocity
values from the periodic material’s dispersion curves. In addition to cases involving harmonic
excitations, the dynamics resulting from the application of a general transient pulse load are also
studied. Finally, free and steady-state forced vibration analyses of a finite periodic structure are
carried out in order to compare the modal distribution, and mode localization patterns, with those
associated with the infinite periodic material. Conclusions are drawn in Section 6.
2. Governing equation for linear elastodynamics

The governing equation of motion for longitudinal wave propagation in a 1D heterogeneous
solid is

r €u ¼ s;x þ f , (1)

where r ¼ rðxÞ, f ¼ f ðx; tÞ, s ¼ sðx; tÞ, and u ¼ uðx; tÞ denote density, external force, stress, and
displacement, respectively. The position coordinate and time are respectively denoted by x and t.
A superscript ð�Þ;x denotes differentiation with respect to position, while a superposed dot denotes
differentiation with respect to time. Assuming linear elastic material,

s ¼ Eu;x, (2)

where E ¼ EðxÞ is the elastic modulus. The following subsections include the statements for the
various problems considered in this work. It should be noted that while only longitudinal wave
propagation is considered, the given problem statements (and subsequent analysis procedures) are
easily extendable to transverse wave motion.

2.1. Infinite periodic layered materials

A periodically layered composite material is described by the configuration of an infinitely
repeated unit cell that consists of sublayers of different constituent material properties and
thicknesses. Hence, analysis of a periodic material requires consideration of a solution domain
that consists only of a single unit cell. A schematic of a unit cell is presented in Fig. 1 where an
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Fig. 1. Unit cell consisting of n layers. The layer number is indicated in parenthesis. A material property of a layer ð jÞ is

denoted ð:Þð jÞ. The boundaries of each layer are identified by an index as shown. For example, the right boundary of

layer 1 is identified as 1R, or 2L since it is also the left boundary of layer 2.
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arbitrary layer j is shown to be positioned between an adjacent layer j � 1 at its left and an
adjacent layer j þ 1 at its right. The unit cell has length d. The jth layer has thickness d ð jÞ, density

rð jÞ, elastic modulus Eð jÞ, and longitudinal velocity cð jÞ, where cð jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð jÞ=rð jÞ

q
. The boundary

conditions that must be satisfied at the layer interfaces are (i) continuity of the displacement u and
(ii) continuity of the stress s. Furthermore, no external forces are permitted, i.e., f ¼ 0 in Eq. (1).
The solution u ¼ uðx; tÞ in the jth layer is written as a superposition of forward and backward

traveling waves with harmonic time dependence:

uðx; tÞ ¼ ½Að jÞþ eik
ð jÞx þ Að jÞ� e�ik

ð jÞx� � e�iot, (3)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, kð jÞ ¼ o=cð jÞ and o is the temporal frequency. The stress component is given by
Eq. (2). The objective is to compute the frequency spectrum and displacement profiles (mode
shapes) that characterize the dispersive dynamics of a given unit cell (hence that of the periodic
material as a whole).

2.2. Finite periodic or partially periodic layered structures

For finite structures, two types of problems are considered. The first focuses on a bounded
partially periodic structure with a time-varying load applied at one end. This is an initial
boundary value problem defined by Eq. (1) and an appropriate set of initial and boundary
conditions. Two loading configurations in the form of prescribed displacements are considered:
harmonic displacement, and a transient pulse (prescribed displacement loading implies that f ¼ 0
in Eq. (1)). Direct time integration is performed to obtain the solution. The objective here is two-
fold: (i) to investigate the effects of ‘‘finiteness’’ and the number of cells on the dynamic response,
and (ii) to analyze the dispersive wave propagation (including wave velocities) in the periodic
region of the structure. The periodic region is located at the end where the load is applied, and the
remaining part (which is sufficiently long) consists of a homogenous material to absorb waves
exiting from the periodic region. This layout facilitates carrying out both the above studies
without allowing wave reflects from external boundaries to interfere in the analysis.
The second type of problem considered is that of classical vibration analysis of a finite fully

periodic structure subjected to harmonic forcing. The governing equation again follows exactly
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the form given in Eq. (1), but now it is assumed that the applied force is harmonic at frequency o�,
that is,

f ðx; tÞ ¼ F ðx;o�Þeio
�t, (4)

and the forced vibration response is

uðx; tÞ ¼ Uðx;o�Þeio
�t, (5)

where F and U are generally a complex coefficient carrying frequency-dependent magnitude and
phase information. Substituting Eqs. (4)–(5) into Eqs. (1)–(2) gives

�o2rU ¼ ðEU ;xÞ;x þ F . (6)

With an appropriate set of boundary conditions, Eq. (6) forms a boundary value problem. The
natural frequencies and modes shapes of the same bounded finite structure can be obtained by
setting f ¼ 0, and solving the following eigen problem:

�o2rU ¼ ðEU ;xÞ;x þ Boundary Conditions. (7)

In addition to incorporating the effects of the external boundaries, this problem setup provides
information on the steady-state dynamics of the structure. At steady state, the dispersion
phenomenon across the periodic unit cells is no longer evolving, and hence a more representative
picture of the overall behavior of the structure is given.
3. Solution methods

In this section, solution methods are described for both the problem of an infinite periodic
material and the problem of a finite periodic, or partially periodic, structure.
3.1. Material problem

3.1.1. Transfer matrix method for a multi-layered unit cell

The transfer matrix method [18] is used to model the mechanical behavior of a 1D multi-layered
unit cell. Eqs. (1)–(2) can be written in matrix form as (e�iot omitted)

uðxÞ

sðxÞ

" #
¼

1 1

iZð jÞ �iZð jÞ

� �
A
ð jÞ
þ eik

ð jÞx

Að jÞ� e�ik
ð jÞx

2
4

3
5 ¼ Bj

A
ð jÞ
þ eik

ð jÞx

Að jÞ� e�ik
ð jÞx

2
4

3
5, (8)

where Zð jÞ ¼ rð jÞcð jÞ
2

kð jÞ. Let x jL and x jR denote the position along the x-axis of the left and right
boundaries of layer j, respectively. Using Eq. (8) and the relation x jR ¼ x jL þ dð jÞ, the values of
the displacement u and traction (stress) s at x jL are related to those at x jR:

uðx jRÞ

sðx jRÞ

" #
¼ Bj

eik
ð jÞd ð jÞ

0

0 e�ik
ð jÞd ð jÞ

" #
A
ð jÞ
þ eik

ð jÞx jL

Að jÞ� e�ik
ð jÞx jL

2
4

3
5. (9)



ARTICLE IN PRESS

M.I. Hussein et al. / Journal of Sound and Vibration 289 (2006) 779–806 785
Setting Djðd
ð jÞ
Þ ¼ diag½expðikð jÞdð jÞÞ; expð�ikð jÞdð jÞÞ�; and using Eq. (8), Eq. (9) is rewritten as

uðx jRÞ

sðx jRÞ

" #
¼ BjDjðd

ð jÞ
ÞB�1j

uðx jLÞ

sðx jLÞ

" #
¼ Tj

uðx jLÞ

sðx jLÞ

" #
, (10)

where Tj is a 2� 2 transfer matrix for layer j, and is defined as

Tj ¼ BjDjðd
ð jÞ
ÞB�1j . (11)

Upon expanding Eq. (11), Tj has the following form:

Tj ¼
cosðkð jÞdð jÞÞ ð1=Zð jÞÞ sinðkð jÞd ð jÞÞ

�Zð jÞ sinðkð jÞd ð jÞÞ cosðkð jÞd ð jÞÞ

" #
. (12)

Since the construction of the transfer matrix Tj is valid for any layer, the result presented in
Eq. (10) can be extended recursively to relate the displacements and the stresses across several
layers. Consider a complete unit cell consisting of n layers as shown in Fig. 1. Defining

yðxÞ ¼
uðxÞ

sðxÞ

" #
, (13)

then the transfer matrix mapping across all n layers can be written compactly as

yðx1R
1 Þ ¼ T1yðx

1L
1 Þ,

..

.

yðxnR
1 Þ ¼ TnTn�1 � � �T1yðx

1L
1 Þ. (14)

The last line in Eq. (14) shows that the displacement and traction at the left boundary of the first
layer in a unit cell are related to those at the right boundary of the nth layer by

u

s

� �
xnR

¼ T
u

s

� �
x1L

, (15)

where

T ¼ TnTn�1 � � �T1. (16)

T will be referred to as the cumulative transfer matrix.

3.1.2. Calculation of dispersion curves

Consider a multi-layered material composed of a repetition of a single n-layered unit cell. The
length, d, of the unit cell defines the material’s periodicity:

d ¼ dð1Þ þ d ð2Þ þ � � � þ d ðnÞ. (17)

Floquet’s theorem relates the time harmonic response at a given point in a unit cell to the
corresponding point in an adjacent unit cell. This relation is given by

yðxþ dÞ ¼ eikdyðxÞ, (18)



ARTICLE IN PRESS

M.I. Hussein et al. / Journal of Sound and Vibration 289 (2006) 779–806786
where k is a wavenumber that corresponds to the global ‘‘effective’’ wave field across the periodic
medium. Setting x ¼ x jL allows equating Eqs. (15) and (18) which leads to the following eigen
problem:

½T� Ieikd �yðx1LÞÞ ¼ 0. (19)

Eq. (19) can be rewritten as

TðoÞyðx1LÞ ¼ lyðx1LÞ, (20)

where l ¼ expðikdÞ is a complex eigenvalue and yðx1LÞ is a complex eigenvector. The solution of
Eq. (20), which appears in complex conjugate pairs, provides dispersion curves (plots of o versus
k) for longitudinal wave propagation in the infinite periodic material characterized by the
cumulative transfer matrix T.

3.1.3. Characteristics of the dispersion relation

Wavenumbers computed from Eq. (20) are real and positive in certain frequency ranges and
strictly imaginary at other ranges. In general, the wavenumber can be written as

k ¼ kreal � ikimaginary, (21)

where kreal and kimaginary are real numbers. The sign in Eq. (20) could alternatively be selected as
positive, i.e., k ¼ kreal þ ikimaginary. The choice of definition of k and the choice of the eigenvalue in
Eq. (20) (among the two complex conjugate pairs) together should result in an attenuating
solution within stop bands. The displacement and stress components of y in Eq. (20) are also
complex to account for both magnitude and spatial phase. Following the definition of Eq. (21),
consider the two classes of frequency ranges outlined above:

Class 1: k ¼ kreal, kreal40.
From Eq. (18),

yðxþ dÞ ¼ eikdyðxÞ,

yðxþ dÞ ¼ eijkrealjdyðxÞ. (22)

Eq. (22) indicates that the displacement and stress at positions x and xþ d (i.e., corresponding
locations in adjacent unit cells) differ only by a phase factor eijkrealjd . This indicates that waves are
effectively ‘‘allowed’’ to travel at the ranges of frequencies belonging to this class, forming
frequency pass bands.

Class 2: k ¼ �ikimaginary, kimaginaryo0.
From Eq. (18),

yðxþ dÞ ¼ eikdyðxÞ,

yðxþ dÞ ¼ e�jkimaginaryjdyðxÞ. (23)

Eq. (23) indicates that the displacement and stress at positions x1 and x1 þ d do not have a phase
difference, and furthermore, there is a spatial exponential attenuation in magnitude of strength
proportional to jkimaginaryj. Thus, waves in these frequency ranges are effectively ‘‘forbidden’’ from
traveling, forming frequency stop bands.
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3.1.4. Mode shapes

In this section, the displacement and stress mode shapes associated with both pass-band and
stop-band wave motion in the 1D infinite periodic layered material are considered. The
eigenvalues and eigenvectors of Eq. (20) determine these time-dependent mode shapes.
For a given pair of complex amplitudes A

ð jÞ
þ and Að jÞ� , the displacement and stress within each

unit cell layer can be computed using Eq. (8). Within adjacent unit cells, these quantities can be
computed using Floquet’s theorem, Eq. (18), which is restated for a series of unit cells as

yðxþ rdÞlþr ¼ eikrdyðxÞl ; l; r integer, (24)

where the subscripts ð�Þl and ð�Þlþr refer to the lth and ðl þ rÞth unit cell, respectively. An algorithm
is presented in the Appendix for computing the mode shapes.

3.2. Structure problem

Using a standard finite element method, Eq. (1) leads to the following algebraic equation:

M €Dþ KD ¼ F, (25)

where the M and K matrices are the stiffness and mass matrices, respectively, and D and F are the
nodal displacement and force vectors, respectively. In this study, Eq. (25) is time integrated using
a standard explicit central difference scheme. In the integration process, an exact solution is
obtained if the discrete time step (denoted Dt) is chosen such that the Courant–Friedricks–Levy
(CFL) number lies at the stability limit, i.e., Dt ¼ Dhe=cð jÞ (where Dhe is the element size). If the
time step is chosen such that DtoDhe=cð jÞ, some accuracy is compromised but stability is still
guaranteed.
The boundary value problem whose governing equation is Eq. (6) is also discretized using the

finite element method leading to the following algebraic equation:

ð�o2Mþ KÞD ¼ F. (26)

The solution of Eq. (26) is the particular solution, or the frequency-dependent steady-state forced
vibration response. Similarly, Eq. (7) is discretized to give

KD ¼ lMD, (27)

where D is now the eigenvector.
4. Analysis: Examples of layered materials and structures

In this section, the dynamics of periodic layered materials and structures with an arbitrarily
chosen unit cell configuration is considered as an example case. The unit cell is composed of two
layers of stiff (fiber) and compliant (matrix) materials, as shown in the left inset in Fig. 2. Using ‘f ’
and ‘m’ to denote fiber and matrix, respectively, the dimensions are df =d ¼ 0:8, and the material
property ratios are rf =rm ¼ 3 and Ef =Em ¼ 12. Note that the dispersive characteristics of a
periodic composite is determined by the ratios of material properties, and not the absolute
properties of the individual constituents.
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4.1. Material problem

4.1.1. Frequency spectra and mode shapes

Using the transfer matrix method and Floquet’s theorem, the frequency spectrum in the
considered infinite periodic material is shown in Fig. 2. The plot spans a frequency range of
0pOp50, where O ¼ od=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em=rm

p
is a non-dimensional frequency. This frequency range was

discretized into 1001 sample points. The abscissa is given by the non-dimensional wave number
x ¼ k � d. The value x ¼ p represents the limit of what is known as the first Brillouin zone
(see Ref. [4]). Beyond this value, non-dimensional frequency repeats every p multiples of x. The
existence of multiple branches in the frequency spectrum is noticeable. Physically, each ‘‘higher’’
branch represents frequency values at higher wavenumbers. For example, the second branch
spans ppxp2p.
The nonlinearity of the curves indicates that the medium is dispersive. Frequencies

corresponding to real-valued wavenumbers are associated with pass-band modes, and frequencies
matching complex or pure imaginary wavenumbers are associated with stop-band modes. The
formation of such a banded frequency spectrum is a manifestation of mechanisms of wave
interference that take place due to wave scatter and dispersion. Within the interior (as well as the
surface) space of the periodic material, waves scatter (i.e., transmit and reflect) across constituent
material interfaces, and subsequently disperse into more waves which in turn effectively interfere
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in a constructive (i.e., adding up) or destructive (i.e., canceling) manner. The former process
occurs at the pass-band frequencies, and the latter at the stop-band frequencies. For purposes of
comparison, a homogeneous medium having statically equivalent averaged elastic modulus, Eavg

and density, ravg of the heterogeneous unit cell is considered (see right inset in Fig. 2), and its
spectrum is computed and superimposed in Fig. 2. The averaging is carried out using the rule of
mixtures (see Eq. (28) for Eavg and Eq. (29) for ravg).

Eavg ¼
df

d

1

Ef

þ
dm

d

1

Em

� ��1
, (28)

ravg ¼
1

d
ðdf rf þ dm f mÞ. (29)

It is clear that the homogeneous material is non-dispersive, and is therefore not frequency-banded.
Two points, P and S, are marked in Fig. 2. Point P lies at a pass-band frequency ðO ¼ 13:6Þ

while Point S lies at a stop-band frequency ðO ¼ 12:6Þ. Using the scheme presented in the
Appendix, the mode shapes corresponding to these points were computed over a range of five unit
cells and over a period. Note that as given in Eq. (A.1) in the Appendix, the displacement at the
reference spatial location ðx ¼ 0Þ is given as a time harmonic function. Fig. 3 shows two ‘‘snap
shots’’ of the response separated by a time phase of T=8, where T ¼ 2p=o. It is observed that the
pass-band effective wave is traveling (note the phase difference) and non-attenuating across the
unit cells (Fig. 3a), whereas that of the stop band is standing and attenuating (Fig. 3b). The results
shown agree with Floquet’s theorem. Recall that the full modes may not span the length of an
integer number of unit cells since the periodicity of the response is eikd and not d. The
corresponding modes shapes for an equivalent homogenous medium are superimposed in
the respective graphs. Note the differences in spatial profile, as well as phase, compared to the
dispersed fields.

4.2. Structure problem

From a practical point of view, it is important to examine the relevance of the computed
dispersion curves and mode shapes of a periodic material to the dynamic properties of a structure
composed of a finite number of periodic unit cells. To explore the dynamic effects pertaining to
finite periodicity, a bounded structure is considered that consists of a finite number, NCell, of the
heterogeneous unit cell shown in Fig. 2. In Sections 4.2.1 and 4.2.2, wave propagation analyses are
presented for cases involving (i) harmonic excitation, and (ii) impulse excitation, respectively. In
Section 4.2.3, free and steady-state forced vibration analyses are performed.

4.2.1. Wave motion analysis: harmonic excitation
For wave motion analysis, the finite structure is chosen to consist of NCell periodic unit cells, but

also to have a substantially large portion composed of a homogenous material (e.g., the same stiff
material of the periodic portion) and located adjacent to the right (receiving) end of the periodic
region as depicted in Fig. 4a. A prescribed harmonic displacement at a specified frequency is
applied at the left end, uð0; tÞ ¼ eiot, tX0, and a time simulation of the wave motion is generated
by solving the initial boundary value (whose discretized equation of motion is Eq. (25)) using the
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numerical integration technique referred to in Section 3.2. The size of the homogenous portion of
the structure is chosen to be large enough so that waves are not reflected back to the periodic
region from the right end of the homogenous portion during the prescribed simulation time. In



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40 45 50
0

2

4
 (a)  1 Cell

0 5 10 15 20 25 30 35 40 45 50
0

2

4
 (b)  2 Cells

0 5 10 15 20 25 30 35 40 45 50
0

2

4

M
ax

. D
is

pl
ac

em
en

t a
t R

ec
ei

vi
ng

 E
nd

,  
u

m
ax

(N
C

el
ld

)

 (c)  5 Cells

0 5 10 15 20 25 30 35 40 45 50
0

2

4

Frequency, Ω*

 (d)  10 Cells

Fig. 5. Transmissibility, defined as umax
1 ðNCelldÞ, of finite periodic portion of structure shown in Fig. 4a as a function of

excitation frequency. The number of unit cells, NCell, composing the periodic portion is (a) 1, (b) 2, (c) 5 and (d) 10. Stop

bands for corresponding infinite periodic medium are shaded.

M.I. Hussein et al. / Journal of Sound and Vibration 289 (2006) 779–806 791
this manner, external boundary effects at the right end are removed from the analysis. The
periodic portion of the model is divided into 150 piecewise linear finite elements, with lengths
satisfying the condition Dhe

f ¼ 2Dhe
m. This number of finite elements achieves convergence for all

the analyses presented in Sections 4.2.1 and 4.2.2. A time step of Dt ¼ Dhe=c ¼ 0:01 s is used. The
analysis is repeated over the frequency range 0pO�p50, the same range covered in Section 4.1.

4.2.1.1. Effects of ‘‘finiteness’’. Conducting analyses for different values of NCell provides
information on the effects of ‘‘finiteness’’ on (i) the frequency band layout, that is, how well the
frequency bands match those of the infinite periodic material, and (ii) the degree of wave
attenuation that takes place within stop bands. The maximum displacement at the end of the
NCellth unit cell over a total simulation duration of TTot seconds (i.e., jumaxðNCelldÞj, where
umax ¼ maxtðuÞ) is chosen to represent the transmissibility of the periodic region. In Fig. 5, this
quantity is plotted versus excitation frequency for the range 0pOp50, TTot ¼ 10, and for
NCell ¼ 1; 2; 5; 10. The value of TTot ¼ 10 is sufficient for considerable scattering and dispersion to
take place so that the effects of the frequency bands are apparent (but not sufficiently long for
wave reflects from the right end to occur). The stop-band frequency ranges for the infinite periodic
material are shaded in Fig. 5 to facilitate comparison. First, it observed that the response of finite
periodic structures is frequency-banded and generally conforms with the band layout of the
infinite periodic material (i.e., high at pass bands and low at stop bands). This result means that
finite periodicity in itself does not destroy the frequency-banded nature of the dynamic response.
It also implies that the wave interference mechanisms that take place within periodic unit cells
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(and that are responsible for creating stop bands and pass bands) are achieved within a confined
periodic region. Second, it is apparent that more cells lead to sharper frequency bands and higher
conformity with the band layout of the infinite periodic material. However, note that with only
one unit cell of the periodic material (for the case considered), the transmission peaks within the
pass-band frequency ranges, especially the narrow ones. With only two unit cells, the transmission
follows closely the frequency band layout of the periodic material (i.e., there is a clear jump in
amplitude within pass bands).
It is of practical interest to arrive at some general trend for the relationship between

transmission and number of unit cells within a finite structure. In the following analysis, a total of
six different unit cell designs are considered. The three cell geometric layouts (labeled A, B and C)
shown in the inset of Fig. 6 are used with two different density ratios (rf =rm ¼ 3 and rf =rm ¼ 15)
considered for each, hence a total of six designs. The ratio of elastic moduli is kept constant for all
designs, e.g., Ef =Em ¼ 12. Let nSB denote the stop-band number. The same time simulations are
conducted on each of these designs as in Fig. 5. In post-processing the data, the minimum value of
transmission over the frequency range of the lowest ðnSB ¼ 1Þ stop band, i.e., minOðu

maxðNCelldÞÞ,
is normalized by multiplying with the exponent of the minimum value of the wavenumber at that
same stop band ðexpðxnSB

min), where nSB ¼ 1). In Fig. 6 this total quantity is plotted versus the
number of unit cells for NCell ¼ 1; 2; . . . ; 10 and for the six unit cell designs. The average of these
six plots is calculated and the exponent of that average is curve fitted (in a least-squares sense)
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using a 5th degree polynomial, that is,

minOðu
maxðNCelldÞÞ expðx

nSB
minÞ ¼ expðp1N

5
Cell þ p2N

4
Cell þ p3N

3
Cell þ p4N

2
Cell þ p5NCell þ p6Þ, (30)

where p1; p2; . . . ; p6 are coefficients. For the above analysis, p1 ¼ �0:0000816, p2 ¼ 0:0027863,
p3 ¼ �0:0375660, p4 ¼ 0:2516875, p5 ¼ �0:87107493, p6 ¼ 1:0251557. It should be noted that
these numbers will vary with different designs, number of designs considered, and value of nSB.
However, the overall trend shown by the fitted curve in Fig. 6 is expected to approximately hold
for a large number of different designs, especially for nSB ¼ 1. It is observed that for all the
reduction in normalized minimum transmission that 10 unit cells can cause, nearly 83% or 90% of
it can be achieved when only 3 or 4 unit cells are available, respectively.
These results show that with knowledge of the minimum attenuation constant corresponding to

a stop-band excitation frequency, xnSB
min, the strength of attenuation in the finite structure could be

approximately predicted as a function of the number of cells employed using

minOðu
maxðNCelldÞÞ ¼ expðp1N

5
Cell þ p2N

4
Cell þ p3N

3
Cell þ p4N

2
Cell þ p5NCell þ p6 � xnSB

minÞ. (31)

4.2.1.2. Temporal, frequency and spatial response. A partially periodic structure of the
configuration shown in Fig. 4a is chosen with NCell ¼ 5. It is excited at a pass-band frequency
of O� ¼ 13:6 (Point P in Fig. 2), and at a stop-band frequency of O� ¼ 12:6 (Point S in Fig. 2). The
loading point is again at the left end and TTot ¼ 10. With this 10 s total simulation duration, the
observed fastest speed of wave propagation in the periodic portion corresponds to a total distance
traveled that is approximately 43, and 40, times the wavelength for O� ¼ 13:6, and O� ¼ 12:6,
respectively. These values suggest that considerable scattering and dispersion take place.
To examine the transmission characteristics across the 5 unit cells, both the time and frequency

responses are computed at the left end (the input point) and at the end of the fifth unit cell (the
output point). The frequency content is obtained by performing a fast Fourier transform (FFT)
on the time signal spanning the 10 s duration. This is implemented using MATLAB [29]. Fig. 7
shows the input and output signals, in both the time and frequency domains, corresponding to
excitation frequency O� ¼ 13:6, and Fig. 8 shows the same information for O� ¼ 12:6. It is
observed that the output signal’s maximum value is 72% of the input signal’s amplitude for the
pass-band case, and 18% for the stop-band case. Curves for the statically equivalent homogenous
structure are superimposed.
The basic physical phenomena that are responsible for the creation of a banded frequency

response can be also interpreted in terms of resonances. When the excitation frequency falls within
a pass band, the input force (for the studied case of prescribed input displacement) is larger than
that of stop-band cases due to impedance matching. The larger input force leads to larger
structural response. Hence, the dynamics in the pass-band case exhibit the conditions of structural
resonance. Note that the resonance conditions referred to here are local in the sense that they
pertain to the periodic region only and not to the structure as whole.
Figs. 7 and 8 also show that the output response, for both the pass-band and stop-band cases,

conforms to the frequency band structure of the corresponding infinite periodic medium. It is
noteworthy that due to dispersion, the input energy spreads in the frequency spectrum and ends
up at the receiving end with a content concentrated in all the pass bands within the frequency
range considered. However, most of the transmission takes place through the closest pass bands
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(whose modes get excited most). The same computational simulations are conducted on the
equivalent homogenous structure, shown in Fig. 4b, and the results are superimposed in Figs. 7
and 8. Obviously, no frequency filtering takes place within homogenous structures.
The spatial response at the end of the simulation (t ¼ 10 s) for the same pass-band and stop-

band cases is shown in Figs. 9a and b, respectively. It is noticeable that the spatial profiles for both
cases resemble the corresponding mode shapes within the infinite medium (see Fig. 3). This
observation is importance because it demonstrates that the Floquet result approximately holds for
a finite number of cells. This in turn suggests that the spatial profile in a bounded periodic
structure (consisting possibly of a very large number of cells) can be predicted by analysis of only
a single unit cell. The corresponding responses of the equivalent homogenous structure are
superimposed in the same figures. It is clear that in the pass-band case, displacements are
significantly larger—a characteristic of a resonant response—and no localizations occur across the
periodic region. In the stop-band case, the peak displacement is within the first unit cell (closest to
the loading point) and the profile rapidly attenuates across the remaining cells.

4.2.1.3. Wave speeds. Another feature of the dynamic response that can be studied via solution
of the initial boundary-value elastodynamics problem are the dominant speeds of wave
propagation. The finite partially periodic structure of Fig. 4a again is considered, but with
NCell ¼ 10. The structure is subjected to a time harmonic excitation load at the left end at a
frequency of O� ¼ 5:5, noting that this value is close to the center of the periodic material’s first
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stop band. The ‘‘input’’ (at x ¼ 0) and ‘‘output’’ (at x ¼ 10) time and frequency signals are
computed, and shown in Fig. 10. It is observed that most of the energy exits the ten-cell long
periodic portion at a frequency range spanning the periodic material’s second pass band. The
time-evolving displacement field in the entire periodic region is plotted in Fig. 11. From this
contour plot, two distinct wave fronts are observed: a fast traveling wave, and a slower higher
amplitude wave. Note that theoretically there is a multitude of individual phase and group waves
propagating in the structure because of dispersion. It is determined that the fast wave has a
velocity of a1 ¼ 3:2 unit lengths per second, and the slower wave has a velocity of a2 ¼ 1:3 unit
lengths per second.
The dispersion curves of the unit cell are shown in Fig. 12 in several forms. In Figs. 12c and d,

the non-dimensional phase velocity, b ¼ cp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em=rm

p
, cp ¼ o=k, and the non-dimensional group

velocity,

bg ¼
dO
dx

, (32)

are respectively computed and plotted as a function of frequency. Upon studying these curves, it is
realized that at the dominant propagation frequency range (i.e., around the center of the second
pass band as shown in Fig. 10), the values of the phase ðc ¼ 3:3Þ and group ðcg ¼ 1:4Þ velocities are
almost identical to the corresponding observed values for wave propagation in the periodic region
of the finite structure (i.e., a1 ¼ 3:2 and a2 ¼ 1:3, respectively). Hence, among the two most
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Fig. 11. Time–space displacement contour plot of wave field within structure shown in Fig. 4a. The vertical bar on the

right provides a color index for values of displacement. The excitation frequency is O� ¼ 5:5 (within first stop band).

Two observable wave propagation ‘‘characteristic lines’’ are marked and the corresponding measured velocities are

a1 ¼ 3:2 and a2 ¼ 1:3, respectively.
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observable waves in the finite banded structure, the fastest one could be considered a phase wave,
and the most intense one (which corresponds to energy propagation) could be considered a group
wave. This result implies that the mapping of dynamical properties/characteristics from the
infinite to the finite periodic structures also extends to speeds of wave propagation including the
rate of energy propagation.

4.2.2. Wave motion analysis: impulse excitation

In this section, the finite partially periodic structure of Fig. 4a is subjected to a general impulse
excitation. The spatial and temporal discretizations and the simulation duration are as in Section
4.2.1. The excitation is again applied as a prescribed displacement at the left end, and is chosen to
have a double-Gaussian form, that is

f DGðtÞ ¼ e�aðt�bÞ2 � e�aðt�cÞ2 , (33)

where a, b and c are parameters. In order to synthesize a f DG signal with a frequency content that
approximately spans the range of interest 0pO�p50, the parameters are chosen as follows:

a ¼ 450; b ¼ 0:25; c ¼ 0:26. (34)

Recall that this frequency range of interest spans the first six stop bands of the infinite periodic
material. The results of the simulation are shown in the form of time and frequency responses in
Fig. 13a and b, respectively, and in the form of a spatial response at t ¼ 10 and a time envelope of
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that response (i.e., maximum spatial response attained during the 10 s simulation duration) in
Figs. 14a and b, respectively.
Fig. 13a shows that the ‘‘output’’ signal at the end of the fifth unit cell has been significantly

suppressed (a maximum displacement that is 23% of the input displacement amplitude during the
10 s simulation time). Furthermore, the frequency content of the response (shown in Fig. 13b) at
the same ‘‘output’’ position conforms very well to the band structure of the periodic material. In
the equivalent homogenous structure, the shock load travels undisturbed as expected.
Fig. 14a indicates that after 10 s total simulation time, energy is still trapped within the periodic

portion of the finite structure (i.e., motion is observed). For the equivalent homogenous structure,
no motion is observed at that time instant because the waves have already passed the periodic
portion as well as the homogenous region depicted in the figure. Fig. 14b suggests that a moderate
level of localization of the maxima takes place within the first unit cell closest to the loading point.

4.2.3. Steady-state vibration analysis
In the previous section, waves are allowed to escape from the finite periodic region into the

homogenous portion. In this section, a fully periodic structure is considered (see Fig. 15a). The
structure is chosen to be composed of five unit cells of the same periodic material used in the
previous sections. It is restrained from motion at the right end and is free to vibrate at the left end.
Unlike the structure of Fig. 4a, the existence of a fixed boundary condition at the receiving end
(i.e., the end of the fifth unit cell) causes all the transmitted waves to reflect back into the five
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periodic cells—which essentially constitute the entire structure. The finite element model of the
structure consists of 600 piecewise linear elements, with lengths again following the condition
Dhe

f ¼ 2Dhe
m. A finer mesh is chosen in this section in order to accurately capture the high-

frequency modes within the range 0pOp50.

4.2.3.1. Modal distribution. The natural frequencies of the structure are computed by solving the
eigenproblem given in Eq. (27) and are plotted in Fig. 16. It is observed that these natural
frequencies appear in clusters only in the pass bands in conformity with the frequency band layout
of the corresponding infinite periodic medium (as depicted by the overlaying shaded stop band
frequency ranges). For comparison purposes, the natural frequencies, On, of an equivalent
homogenous structure (shown in Fig. 15b) with the same total mass and effective static stiffness
are computed and also plotted in Fig. 16. Clearly, the non-dispersive homogenous structure is not
frequency-banded. It can be observed that an increase in modal density for the periodic structure
arises within the pass-band frequency ranges (to off-set the lack of modes within the adjacent stop
bands). For example, within the fourth pass band, which spans the frequency range
22:8pOp24:3; the banded periodic structure has 5 modes compared to 2 for the equivalent
homogenous structure. Another observation pertains to the overall dynamic stiffness of the two
structures. With increase in frequency, the periodic structure’s natural frequencies, on average, are
increasingly larger than those of the equivalent homogenous structure. This indicates that the
periodic structure is ‘‘dynamically’’ stiffer than its statically homogenized counterpart.
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The same banded and homogenous structures of Fig. 15 are subjected to a load in the form of a
prescribed harmonic forcing at the left end. The loading function is allowed to vary in frequency
to cover the entire range, 0pO�p50, considered in the previous analyses. The steady-state forced
response is computed from the boundary-value problem whose discretized governing equation is
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Eq. (26). As a measure of the overall vibratory response, the root-mean-square value of all finite
element nodal displacements is plotted in Fig. 17, and the maximum displacement values within
the first and fifth unit cells are plotted in Fig. 18. The frequency sampling rate in these figures is
DO ¼ 0:1, and all displacement values are normalized with respect to d ¼ 5Fd=Eavg, the static
deflection of the equivalent homogenous structure. The infinite periodic material’s stop-band
frequency ranges are shaded in both these figures. Once again, the dynamic behavior of the finite
periodic structure conforms to the infinite periodic material’s frequency bands—and since as
many as five unit cells are available, the attenuation at stop-band frequencies is significant (see
Section 4.2.1.1). The reduced response within the stop bands indicates a form of anti-resonance
taking place at these frequencies. When compared to the response of the equivalent homogenous
structure (which is superimposed in Figs. 17 and 18), the banded structure is seen to vibrate at
significantly lower values within most of the frequency range of each stop band. Note that in
Fig. 18 it is shown that this is the case not only for vibrations at the receiving end but also within
the first unit cell where localization is highest. These results indicate that introduction of material
periodicity enhances the anti-resonance properties through a reduction in response throughout
the entire structure at stop-band frequencies, therefore providing a means of non-conventional,
non-dissipative frequency-dependent vibration suppression.
It should be noted that a particular harmonic loading force can lead to an excitation of

surrounding, possibly out-of-band, modes (because of non-zero values of modal force
corresponding to these surrounding modes). Since modes are numerous within pass bands and
non-existing within stop bands, as shown in Fig. 16, an excitation within a pass band is likely to
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significantly excite more modes than an excitation within a stop band. This is a ‘‘modal analysis’’
explanation for the reason the response shown in Figs. 17 and 18 is high within pass bands and
low within stop bands. It also explains why the response can be relatively large at the boundaries
of stop bands (due to neighboring pass-band frequencies). Furthermore, wide pass bands
generally exhibit a larger response, compared to narrow pass bands, because the number of modes
is greater in the wide pass bands. Since the modal distribution of the equivalent homogenous
structure is relatively uniform, the corresponding forced response tends to be lower than the
periodic structure’s response within pass bands, and higher within stop bands.

4.2.3.2. Mode localization. To examine the spatial behavior of the considered finite periodic
structure when excited at the pass-band and stop-band frequencies, the maximum displacements
are plotted as a function of position. These results are presented in Fig. 19. It is seen that in the
case of the pass-band frequency excitation, the response of the banded structure is high at more
than one location and is non-decaying along the length of the structure. In contrast, the stop-band
response is severely attenuated in space. The responses for the equivalent homogenous structure
are superimposed to facilitate comparison of the spatial profile. Fig. 18 is to be referred to for
comparison of frequency-dependent response amplitudes.
Finally, it is observed that like the responses shown in Fig. 9, the spatial displacement profiles in

Fig. 19 have patterns that also resemble those of the infinite periodic medium which are presented
in Fig. 3.
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Fig. 19. Vibration response as a function of position in finite periodic structure for excitation at (a) O� ¼ 13:6 (within

third pass band), and (b) O� ¼ 12:6 (within second stop band). Vertical, dotted lines represent boundaries of unit cells.
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5. Conclusions

This paper focused on the analysis of the elastodynamics of infinite periodic materials and finite
periodic structures. Using the transfer matrix method and Floquet’s theorem, dispersion curves of
a periodic medium with a multi-layered unit cell were computed, and a novel scheme was
presented for obtaining both pass-band and stop-band mode shapes. A structure partially
composed of a finite number of unit cells was then analyzed. A measure of wave transmission was
computed as a function of frequency and for different numbers of unit cells. Conformity of the
frequency band layout between infinite and finite periodic systems was analyzed. It is concluded
that only one or two unit cells of a periodic material could be sufficient for ‘‘frequency
bandedness’’ to carry over to a finite structure, and that no more than three or four unit cells are
necessary for the decay in normalized transmission within a stop band to practically saturate with
an increase in the number of cells. This congruence of response was demonstrated in the temporal,
frequency and spatial domains for two transient (harmonic and impulse) loading cases as well as
for steady-state vibrations. The analyses elucidated the pass-band and stop-band behaviors in
finite structures. Match-up of velocities of wave propagation in the infinite and finite periodic
domains was demonstrated as well. Furthermore, it was shown that even in regions of extreme
mode localization, displacements of a periodic structure within stop bands can be significantly less
than in an equivalent homogenous structure (and the converse is true for pass bands). These wave
attenuation phenomena for periodic materials and structures can be exploited in structural design,
which is the focus of a future paper.
Appendix

The following is an algorithm for calculating the displacement and stress mode shapes
associated with both pass-band and stop-band wave motion in the 1D infinite periodic layered
material.

Step 1: For a given o, solve Eq. (20) for the eigenvalues l ¼ expðikdÞ and the eigenvectors
yðx1LÞ. The eigensolution will appear in complex conjugate pairs. Select the appropriate solution
considering the definition stated in Eq. (21).

Step 2: The eigenvector corresponds to the displacement and stress at the left boundary of an
arbitrary unit cell l. To have a fixed frame of reference, the position x of this boundary will be set
to zero, i.e., x ¼ 0. Using Eq. (8), the eigenvector is expressed in the following form:

yðx1LÞ ¼ B1

A
ð1Þ
þ eik

ð1Þx1L

Að1Þ� e�ik
ð1Þx1L

2
4

3
5. (A.1)

Defining aj ¼ ½A
ð jÞ
þ Að jÞ� �

T, and Cjðx
jLÞ ¼ diag½eik

ð jÞx jL

; e�ik
ð jÞx jL

�, Eq. (A.1) alternatively is written
as

yðx1LÞ ¼ B1C1ðx
1LÞa1. (A.2)

With the chosen reference frame, x1L ¼ 0, and C1ðx
1LÞ ¼ diag½1; 1� ¼ I , hence

yðx1LÞ ¼ B1a1. (A.3)
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Solve for a1 using Eq. (A.3)

a1 ¼ B�11 yðx1LÞ.

Step 3: For x ¼ x2L,

yðx2LÞ ¼ B2C2ðx
2LÞa2, (A.4)

and from Eq. (14),

yðx2LÞ ¼ T1yðx
1LÞ. (A.5)

Equate Eqs. (A.4) and (A.5)

T1yðx
1LÞ ¼ B2C2ðx

2LÞa2. (A.6)

Solve for the vector a2 using Eq. (A.2)

a2 ¼ C2ðx
2LÞ
�1B�12 T1B1a1. (A.7)

Solve for the remaining vectors aj (i.e., a3; . . . ; anÞ in a similar manner

aj ¼ Cjðx
jLÞ
�1B�1j Tj . . .T2T1B1a1. (A.8)

Step 4: The portion of the displacement and stress mode shapes within each layer in the first
unit cell is computed from

yðxÞ ¼ BjCjðxÞaj. (A.9)

Step 5: Use Eq. (24) to compute the displacement and stress mode shapes over as many
subsequent unit cells as desired. A full mode shape is realized when the displacement/stress profile
spans a wavelength, 2p=k, noting that the periodicity of the wave mode shape is related to the
periodicity of the medium through the phase multiplier eikd . The magnitudes of the displacement
and stress could be normalized using their respectively maximum values within a wavelength.
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