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Abstract

We present a method to maximize the separation of two adjacent eigenfrequencies in structures with two
material components. The method is based on finite element analysis and topology optimization in which
an iterative algorithm is used to find the optimal distribution of the materials. Results are presented for
eigenvalue problems based on the 1D and 2D scalar wave equations. Two different objectives are used in
the optimization, the difference between two adjacent eigenfrequencies and the ratio between the squared
eigenfrequencies. In the 1D case, we use simple interpolation of material parameters but in the 2D case
the use of a more involved interpolation is needed, and results obtained with a new interpolation function
are shown. In the 2D case, the objective is reformulated into a double-bound formulation due to the
complication from multiple eigenfrequencies. It is shown that some general conclusions can be drawn that
relate the material parameters to the obtainable objective values and the optimized designs.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

One strategy for the passive vibration control of mechanical structures is to design the
structures so that eigenfrequencies lie as far away as possible from the excitation frequencies. This
paper exploits the possibility for using the method of topology optimization to maximize the
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separation of two adjacent eigenfrequencies in structures with two material components. This
study is restricted to 1D and 2D structures where the vibrations are governed by the scalar wave
equation.

The method of topology optimization [1] has been used to optimize a number of different
mechanical and physical systems [2]. The original formulation using a homogenization approach
was applied by Diaz and Kikuchi [3] for eigenfrequency optimization. The problem was
formulated as a reinforcement problem in which a given structure is reinforced in order to
maximize eigenfrequencies. Soto and Diaz [4] considered optimal design of plate structures and
they maximized higher-order eigenfrequencies and also two eigenfrequencies simultaneously. Ma
et al. [5] used the same formulation to maximize the sums of a number of the lowest
eigenfrequencies and also considered maximization of gaps between eigenfrequencies of low-order
modes for structures with concentrated masses. Topology optimization using interpolation
schemes (e.g. SIMP with penalization) or similar material interpolation models [6], was used by
Kosaka and Swan [7] to optimize the sum of low-order eigenfrequencies. In Ref. [8] topology
optimization was used to maximize eigenfrequencies of plates. Here, the problem was not
formulated as a reinforcement problem and emphasis was laid on the use of an interpolation
function different from SIMP. Recently, optimization of the lowest eigenfrequencies for plates
subjected to pre-stress has been considered [9].

The separation of adjacent eigenfrequencies is closely related to the existence of gaps in the
band structure characterizing wave propagation in periodic elastic materials [10], often referred to
as phononic band gaps. This is illustrated by the 1D example in Fig. 1, showing an elastic rod
subjected to time-harmonic longitudinal excitation. The rod is made from a periodic material with
two components PMMA and aluminum. It can be shown that there are large gaps in the band
structure corresponding to frequency ranges where longitudinal waves cannot propagate through
the compound material. The implication for the corresponding structure is that no
eigenfrequencies exist in these band gap frequency ranges, except possibly for localized modes
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Fig. 1. Longitudinal vibrations of a PMMA rod with 14 periodically placed aluminum inclusions subjected to time-
harmonic excitation at the left end. The bottom figure shows the velocity response at the right end versus the normalized
excitation frequency QL/(2nc), where L is the rod length and c is the wave speed in PMMA. Material properties are
prvma = 1200kg/m?, p,;, = 2700 kg/m?, Eppiva = 5.3 GPa and Eg, = 70 GPa.
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near the boundaries [11]. The resulting gaps between two adjacent eigenfrequencies may be large,
as seen from the frequency response curve in the figure, and the corresponding response in the
gaps when subjected to time-harmonic excitation may be very low.

Topology optimization and related methods have previously been applied to maximize the band
gaps in periodic materials for photonic band gaps, i.e. for electromagnetic waves [12,13] and by
Sigmund [14] for phononic band gaps. Minimizing the response for band gap structures, i.e.
creating a structure with a response as low as possible (cf. Fig. 1), was considered by Sigmund and
Jensen [15]. Other works have considered minimizing the vibrational response of structures, such
as Ma et al. [16] who used the homogenization approach for the optimal design of structures with
low response and in Ref. [17] where structures subjected to time-harmonic loading were optimized
with respect to dynamic compliance.

Osher and Santosa [18] used a level set method to study extremal eigenvalue problems for a
two-material drum, considering also the case of maximizing the gap between the first and second
eigenfrequencies. The present paper extends these results by considering the more general scalar
wave equation problem and by systematically considering separation of eigenfrequencies of
arbitrary order. We start by treating the simplest problem of structures for which the vibrations
are governed by the 1D wave equation and present results for maximizing the gap between two
eigenfrequencies and also for an alternative formulation that considers the ratio of adjacent
eigenfrequencies. Then we consider the more complicated problem of 2D structures and show
results for both optimization formulations. In the 2D case we introduce a new interpolation of the
material parameters in order to ensure a final 0—1 design, i.e. a design with a clear separation of
the use of the two materials. Additionally, we must treat multiple eigenfrequencies which are
present in the optimized designs. The treatment of multiple eigenfrequencies is primarily related to
the sensitivity calculation but we also reformulate the objective of the optimization into a double-
bound formulation which gives stable convergence. Finally, we present some conclusions.

2. The 1D scalar problem

First, we treat the simplest problem of separating eigenfrequencies for the 1D scalar problem.

2.1. Model

Consider the 1D scalar time-reduced wave equation (Helmholtz equation):
(AW + o*Bx)w = 0, (1

subjected to free—free boundary conditions at x =0 and x = L.

Eq. (1) governs eigenvibrations of different mechanical systems depending on the choice of the
coefficients 4 and B. For A = 1 and B = p/T we can interpret the problem as that of transverse
vibrations of a taut string with p(x) and T being the string mass per length and the tensile force,
respectively. For 4 = E and B = p we instead treat the problem of longitudinal vibrations of a
uniform rod. In this case, E(x) is Young’s modulus and p(x) is the density. Similarly, with another
set of coefficients we can treat the problem of torsional vibrations of a rod.
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To solve the wave equation with in-homogeneous coefficients we apply a standard Galerkin
finite element discretization of Eq. (1) and the boundary conditions, which lead to the discrete
eigenvalue problem:

K¢ = o’Mé, ()

which has (w;, ¢;) as the ith eigensolution (frequency and vector), and where M and K are system
matrices given by

N N
K= Z Ak, M= Z B.m,, 3)
e= e=

where the summations should be understood in the normal finite element sense, and k, and m, are
element matrices defined as
T

dN” dN dv, me:/ NINdV, 4)
y, dx dx v,
where N is the shape function vector for the chosen element type. In this work, we use simple
elements, i.e. a 2-node linear element for the 1D case and later a 4-node bilinear quadratic element
for the 2D case.

This finite element formulation for the problem is now the basis for the optimization procedure
presented in the following.

k, =

2.2. Optimization

The basis of topology optimization with a material interpolation scheme is to assign constant
material properties to each element in the finite element model and then associate these material
properties with continuous design variables [2]. We choose one design variable per element and let
it vary continuously between 0 and 1:

t,e R 0<t.<1, eell,N], (5)

where N is the number of finite elements in the model.

We now let the material properties in each element, 4. and B,, be a specified interpolation
function of this design variable. This is done so that the material properties for ¢, = 0 correspond
to material 1, i.e. 4| and By, and similarly for 7z, = 1 they take the values of material 2, 4, and B;.
We emphasize the fundamental difference between this approach in which we use a continuous
design variable that allows us to apply well-founded gradient-based optimization techniques, and
the use of discrete design variables that requires integer-type algorithms.

Since ¢, vary continuously between 0 and 1 we may expect that in the optimal design we can end
up with material properties that do not correspond to either of the two materials, but instead with
some intermediate values. In order to ensure a well-defined distribution of materials 1 and 2 in the
structure, referred to as a 0—1 design, we can manipulate the interpolation functions [6]. Especially
when dealing with eigenvalue problems the choice of the interpolation function is important [8].
However, for the 1D problem the choice is less critical and we choose the functions:

Ae(te) = Ay + 1(A2 — A1) = (1 + te(py — )AL, (6)
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B B

Be(te) = = — D
l—i—te(%— 1> I+ t(ug' — 1)

(7

which correspond to the homogenized density (B,) and stiffness (4.) of an “‘effective” 1D material
with two different material components. As will appear later this is sufficient to ensure the wanted
01 design. In Eqgs. (6)—(7) the coefficient contrast parameters p, = 4,/A; and pz = B,/B) have
been introduced.

We now define the difference between two adjacent eigenfrequencies w, and w,,; as our
objective for the optimization to maximize. This can be written as a standard optimization
problem as follows:

max J = w1 — o,
e

s.t. Kb = o’Mé 8)
0<t,<1, ee[l,N]

The maximization problem in Eq. (8) is solved using an iterative procedure involving the
following steps:

1. Choose n for the optimization problem.

2. Choose an initial design ¢,, typically chosen as a homogeneous material distribution (e.g.
t. = 0.5 for all elements).

3. Calculate the M lowest eigenfrequencies (M >n + 1) from Eq. (2) and compute the objective
function J.

4. Calculate the sensitivities dJ/dz,.

. Get a design update using an optimizing routine, ¢.g. MMA [19].

6. Repeat steps 3—5 until the design change between successive iterations is less than a specified
tolerance.

W

The sensitivity of the objective function is calculated analytically
dJ do,y  do,

= _ , 9
dz, dz, dz, 2
where the sensitivity of the nth eigenvalue is
dw, % Uela — (l)i % Ukin
= —, (10)
dt, 2w,

where we assume that only 4, and B, are functions of the design variable 7, on an element level. It
is also assumed that the eigenvectors have been normalized so that ¢'Md = 1, and that

Uiin = (§p)r Me(P,),» (11)
Ueta = (e)r Ke(P,),» (12)

are the element-specific kinetic and elastic energies for the given mode of order n.
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In the following section, we show results for a specific choice of the material coefficients. We
consider free—free boundary conditions and enumerate the rigid body mode as n = 0.

2.3. Results—the elastic rod

In the example, we use the values u, = 13.21 and ppz = 2.25. This corresponds to the ‘elastic
rod’ problem of longitudinal vibrations with PMMA and aluminum as the two materials to be
distributed. The objective of the optimization is to distribute the two materials in such a way that
the eigenfrequency gap w,,; — w, is maximized.

Results are shown in Fig. 2 for maximizing the gap for four different cases:n =1, n =2, n =9,
and n = 24. The figures on the left show the material distribution in the optimized designs with the
relative element position indicated along the abscissa. The figures on the right are the results of
subjecting the optimized structure to time-harmonic excitation at the left end and computing the
velocity response at the right end. The curves show the response versus the normalized excitation
frequency QL/(2nc), where L is the rod length and ¢ = \/A4;/B; is the wave speed in material 1.
From these curves the discrete eigenfrequencies of the structure are easily identified by the peaks.

The most important result is that the designs consist of alternating sections of 7, = 0 (material
1) and ¢, = 1 (material 2); thus the structures are well defined in terms of distribution of materials
1 and 2. Furthermore, there is a direct relation between the mode order » and the number of
sections with material 2 (inclusions) that appear. The inclusions also appear to have a uniform size
in the interior of the structure, and only near the rod ends the effect of the boundary conditions
may be seen as a local modification of the material distribution. For high-order mode separation
(n = 9 and 24) the optimized gap between mode n and n + 1 becomes significantly larger than the
gaps between other adjacent modes, and a low-velocity response is noted in the maximized gap.
For low-order modes (r = 1 and 2) the difference in gaps is smaller and the response drop in the
maximized gap is hardly distinguishable compared to the drop in response between the other
eigenfrequencies.

2.4. Maximizing the ratio of adjacent eigenfrequencies

Instead of maximizing the gap between two adjacent eigenfrequencies we now maximize the
ratio between the two eigenfrequencies (or rather the square of the frequencies). The new objective
function is

2

n+1
e (13)

(0)]

J =

and the corresponding expression for the sensitivities is given as

d_J_ Opy1 (dwyq _ WOn41 dw,
dt, w? dz, w, dt, )’

(14)

where dw, /d¢, and dw,,/dt, are found from Eq. (10).
In order to compare the designs obtained using this new objective function with the previous,
results are shown with p14 and p as in Section 2.3 for two different modes, » = 4 and n = 19. The
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Fig. 2. Optimized design (left) and corresponding velocity response (right) for maximum separation of w,; and w,.
The material parameters correspond to the ‘elastic rod case’ with u, = 13.21, ug = 2.25. Results are given for four

different values of n, from top to bottom: n = 1,2,9, 24.
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Fig. 3. Comparison of optimized design (left) and velocity response (right) for maximizing the eigenfrequency gap
Oy — 0, (dotted lines) and maximizing the eigenfrequency ratio w? 1/ @? (solid lines). Material parameters are as for
Fig. 2 and results are given for n = 4 and 19.

comparison is shown in Fig. 3 with the results for the new objective function plotted with solid
lines and for the old objective function with dotted lines.

The material distribution curves left show that the new objective function has caused a shift in
the distribution between materials 1 and 2 and that the material in the end of the rods is now
material 2 instead of material 1. Interestingly, the response curves on the right show that the
response in the gaps optimized for maximum ratio drops lower in both examples even though the
absolute gap size is smaller for these designs.

We now introduce a material parameter f that characterizes the contrast between materials

B = papp>1, (15)

where the last inequality condition just implies that if not fulfilled the enumeration of the two
materials should be interchanged.

In Fig. 4, we show results for maximizing the ratio of eigenfrequencies for three different
combinations of material coefficients but keeping f = 4. We vary p, and pp such that in the top
figures u, = up, in the middle figures u, =4, pp =1, and in the bottom figures u, =1 and
ug = 4. For all three combinations we maximize the ratio for n = 4 and find that the ratio for the
optimized designs in all cases becomes 3.09. For other combinations of material coefficients and
when optimizing for other n, we see that the maximum ratio between the adjacent
eigenfrequencies obtainable for any mode order seems to depend only on the parameter f.
However, as also seen in the figure, the material distribution varies and there is also a large
difference in the response curves for the different combinations of material coefficients.
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Fig. 4. Optimized design (left) and corresponding velocity response (right) for maximized eigenvalue ratio w?/wj for
three different choices of p, and py, top: py = up =2, middle: u, =4, ug =1, and bottom: u, =1, ug =4. The
maximum ratio is (for n = 4 as shown) for all three cases equal to 3.09.

We now plot the maximum obtainable eigenfrequency ratio versus mode order n for different
values of the parameter . Fig. 5 shows the maximum ratio for three different values of f,
corresponding to the combination of coefficients for the elastic rod (ff & 29.7), as well as for § = 2
and f =9. The ratio for a homogeneous structure which is given by the analytical expression
w2,/ = (n+ 1)*/n? is also shown in the figure. Naturally, for higher contrast, i.e. higher values
of f8, the maximum ratio is higher. Also it appears that for high values of » this ratio attains a
constant value.

Fig. 4 shows that although the eigenfrequency ratio for the optimal design depends only on the
value of the parameter f5, the material distribution depends on the chosen values of the material
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coefficients. In order to analyze this effect, a second material parameter is introduced:

— (16)

Hp
We now optimize the ratio for different material coefficients but keep o constant. In this case the
optimized material distribution is always the same, whereas the maximum eigenvalue ratio varies
significantly. In Fig. 6, we plot the volume fraction of material 2 versus the value of «. The volume
fraction is computed in the interior part of the domain where the boundary effects are not
important. As seen, with « = 1 the two materials are evenly distributed in the optimized design,
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whereas if o is increased material 2 is dominating and for lower values of o material 1 is
dominating. If uy =1 (e.g. a taut string) we have o« = 1/ <1 which shows that material 1 (the
lighter material) is always dominant in the optimized design for this special case.

3. The 2D scalar case

We now consider the more complex problem of the 2D scalar case.

3.1. Model

The 2D scalar time-reduced wave equation (Helmholtz equation) is given by
VI(A(x, y)Vw) + &’ B(x, y)w = 0, (17)

where the problem-dependent material coefficients 4 and B can now vary in the 2D plane (x, »).
As in the 1D case we apply a standard FEM discretization, which leads to the discrete eigenvalue
problem stated in Egs. (2)—(3). The element matrices are in the 2D case given by

ke=/ (ON)T ANV, me:/ N'NdV, (18)
Ve Ve

o/ox 0
0=1"0" ool (19)

Also in the 2D case we may study different structural vibration problems by changing the two
coefficients 4 and B. Letting 4 = 1 and B = p/T enables us to analyze the membrane problem
where p(x,y) is the density and T is the uniform tension (force per area). Alternatively with
A = E/(2(1 +v)), where E(x,y) is Young’s modulus and v(x, y) is Poisson’s ratio, and with B =
p(x,y) being the density, Eq. (19) governs out-of-plane shear vibrations of a thick elastic body.

where

3.2. Optimization

When we optimize a 2D domain with respect to maximizing the gap between eigenfrequencies
there are a number of extra difficulties we must deal with. The primary source of the difficulties is
the possibility of multiple eigenfrequencies. The multiple eigenfrequencies can be calculated
without difficulty using, e.g. the subspace iteration method [20].

The objective for the optimization is as in the 1D case given by

maximize J = w,1; — 0y, (20)

where the gap between the eigenfrequency of order » 4+ 1 and »n is maximized.

If the eigenfrequencies of order n+ 1 and n are both distinct eigenpairs, with squared
eigenfrequencies w? 41 and w? and corresponding eigenvectors ¢, +1 and ¢, no problems arise and
we use the objective (20) directly since the sensitivities of the squared eigenfrequency with respect
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to a design parameter ¢, are given by

do? t/dK ,dM
=0 (aT;“’ dlg)d), Q1)

where it is assumed that the eigenvector has been normalized so that ¢'Mdp = 1. In the case of
multiple eigenvalues we cannot use Eq. (21) to find the sensitivities. The extended method is
presented in Ref. [21] and was used more recently in Ref. [22].

We elaborate on the case of a double eigenfrequency with two corresponding eigenvectors, (w2,
¢, d,). It is assumed that the two eigenvectors are normalized with respect to the mass matrix as
before and that the two eigenvectors are orthogonal, i.e.,

T

¢, Mo, =0. (22)
The problem is that any linear combination of the two eigenvectors is also an eigenvector with the
same corresponding eigenfrequency:

b =10, + 20, (23)

A+d=1=¢'Mb=1. (24)

Therefore, the sensitivities are not only related to the change in design space, given by the change
in design parameter f,, but also by the choice of the eigenvector. Only for two specific
eigenvectors, depending on the design parameter, do the sensitivities have meaning, because only
these two eigenvectors exist when 7, is changed. By inserting Eq. (23) in Eq. (21) we get

dw?
an 191 + Ggn + 2¢102915, (25)
dK dM
Gup = Oy (d_h — ar ) by (26)

The extreme values of dw?/dt, are found by differentiating Eq. (25) with respect to the two
constants ¢; and ¢, and setting this equal to zero

[gll 912]{61}:{0}’ 27
giz 9 c2 0

and we now find the eigenvalues and the eigenvectors of the matrix in Eq. (27):

Cal Chl
{2} (oeef2)

The sensitivities of the double eigenfrequency with respect to the design parameter 7, are given
directly by g, and g,. The corresponding eigenvectors are given by Eq. (23) where the constants ¢;
and ¢, are the values of the eigenvector ¢, or ¢;:

do? { g with cigenvector ¢, = ¢, + caady,

- _ ] . 29
dz, g, with eigenvector ¢, = cp1 P + cpob,. (29)
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For different design parameters the eigenvectors ¢, and ¢, vary, i.e. the sensitivities in Eq. (29)
are given for two specific directions in the space spanned by the two originally determined
eigenvectors (¢, ¢,). The derivation shown here is for a double eigenfrequency but the extension
to a higher number of multiplicity is straightforward.

It is now possible to find the sensitivities of multiple eigenfrequencies. However, there is
still a problem because the sensitivities are given for specific eigenvectors that vary for each
design parameter. It is therefore difficult to solve the optimization problem as formulated in
Eq. (20). As an alternative formulation we propose to use a double-bound formulation, as in
Ref. [14]. The standard-bound formulation is used to reformulate a min—max problem; instead of
minimizing the maximum value of a given quantity, a new variable is introduced which is
minimized subject to the constraint that the value of the given quantity should be less than
this variable. By using the double-bound formulation we do not need to identify the two
eigenvectors corresponding to w, and w,y; in each iteration step of the optimization, which may
change from iteration to iteration. This is an advantage when we have multiple eigenfrequencies.
The optimization problem of maximizing the gap between two eigenfrequencies is thus
reformulated as

max J=C;—(C,

s.t. wuri=Cy 1€l n]
wnJrlij C2 ] € [l,nl] (30)
K¢ = o’Md
0<t. <1, ee€[l,N],

where the two extra variables introduced are C; and C,. The numbers n, and n; are chosen
suitable in order to secure that all eigenfrequencies of order n + 1 and higher are greater than C,
and all eigenfrequencies of order n and lower are less than C,.

In the practical implementation in each iteration step of the optimization we need to check if
there are multiple eigenfrequencies and in this case calculate the sensitivities according to Eq. (29).
It is important to note here that the sensitivities found for multiple eigenfrequencies are found for
different eigenvectors for each design parameter. If the eigenfrequency of order n is a double
eigenfrequency, which vector of sensitivities should we assign to the eigenfrequency of order » and
which one to the eigenfrequency of order n — 1? For a specific design parameter it is natural to
assign the lowest sensitivity (including the sign) to the lowest order eigenfrequency (z — 1) and the
highest sensitivity to the highest order eigenfrequency (n). If we make the infinitesimal design
change the actual values of the involved eigenfrequencies comply with the chosen allocation of the
sensitivities.

3.3. Penalization

The simplest interpolation of the material coefficients 4 and B when using two materials is
made using a linear approach:

Ae(te) = Ay + 1(A2 — A1) = (1 + te(py — D)4, (1)
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(a) (b) (c)

Fig. 7. Eigenfrequency optimization of a 2D domain with two different materials, the ratio of the side length is 2/1 and
the domain have no supports (free boundary conditions). (a) The result when optimized for minimum first
eigenfrequency, (b) the result when optimized for maximum second eigenfrequency, (c) the result when maximizing the
gap between first and second eigenfrequency.

B.(te) = Bi + 1By — B1) = (1 + t(up — 1))Bu, (32)

where ¢, is the element design parameter which, we recall, takes values between 0 and 1.

As an illustrative example we start with a domain where the ratio between the side lengths of the
domain is 2/1 and the domain has free boundary conditions, i.e, we find the free—free modes.

In Fig. 7, the result of three different optimizations are shown: Fig. 7(a) shows the result when
minimizing the first eigenfrequency, in Fig. 7(b) the maximization of the second eigenfrequency is
shown, and finally in, Fig. 7(c) the result of maximizing the gap between the second and first
eigenfrequencies is shown. It should be noted that by the notation of first and second
eigenfrequencies we have neglected the rigid body mode.

In Figs. 7(a—c) the black color corresponds to material 2 and the white color corresponds to
material 1. From Fig. 7 we see that the maximization of the gap between first and second
eigenfrequencies clearly is a compromise between the results of minimizing first eigenfrequency
and maximizing second eigenfrequency. It should be noted that for the case of maximizing the
second eigenfrequency, this second eigenfrequency is a double eigenfrequency, and in the case of
maximizing the gap between the two eigenfrequencies the second eigenfrequency is also a double
eigenfrequency. In Fig. 7(a) we have a 0—1 design, i.e. no intermediate values of 7, are present,
whereas in Figs. 7(b—c) there are some remaining elements with intermediate values, so-called
“gray”’ elements.

To explain the gray elements we must discuss the interpolation (in some case penalization) that
is used. For the optimizations shown in Fig. 7 the linear interpolation in Egs. (31) and (32) are
used. In Ref. [8] it was noted that the important aspect is not the interpolation of the stiffness
(here coefficient A) or the interpolation of the mass (here coefficient B), but the interpolation of
the eigenfrequency. The squared eigenfrequency ? is by the Rayleigh quotient given as ““stiffness
divided by mass”. Using Egs. (31) and (32), we find

Ae (=D _ A1 .
e (I +1(up—1)) B By
The curvature of Eq. (33) is such that intermediate values are penalized when an eigenfrequency is
minimized. To achieve this intermediate values are penalized when an eigenfrequency is
maximized, the curvature of the interpolation function, f(#,) must have an opposite sign. This can
be obtained in many ways and here it is chosen to let the interpolation be a second-order
polynomial that goes through the three points

Pl = (05 1)9 P2 = (p2x5p2y)a P3 = (1,0().
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Fig. 8. Interpolation function of the squared eigenfrequency that simultaneously acts as a penalization function when
eigenfrequencies are maximized.

Fig. 9. Optimization of second eigenfrequency of a 2D domain with two different materials using interpolation (34), the
ratio of the side lengths is 2/1 and the domain has no supports (free boundary conditions).

The three points are shown in Fig. 8. Point P, is at a distance L along a line that is perpendicular
to the linear interpolation and intersects this line at the center. The parameter L can be used in a
continuation setting where the value of L is slowly increased during optimization to ensure 0-1
design. The penalization of A4 is then given by

Ao =f(t)B, = (k1 () + kate + 1) - (1 + 1oy — 1) Ay, (34)

where k; and k, are constants that depend on the specific value of L and B, is the linear
interpolation (32), which seems reasonable from a physical point of view.

Using the new penalization function (34) together with Eq. (32) we achieve the optimized design
in Fig. 9, where it is clear that the gray elements have been removed. However, there is still a
problem with regard to the interpolation functions when the objective is to maximize the gap
between two eigenfrequencies. The interpolation function shown in Fig. 8 with positive values of
L is suited for the maximization of eigenfrequencies, whereas for negative values of L it is suited
for the minimization. In the maximization of the gap we need both so we apply the following
approach: when calculating the sensitivities of the constraints in Eq. (30) with respect to the lower
bound C, we calculate the eigenfrequencies and the sensitivities on the basis of the interpolation
function (34) with L <0. When we calculate the sensitivities of the constraints in Eq. (30) with
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respect to the higher bound C; we calculate the eigenfrequencies and the sensitivities on the basis
of the interpolation function (34) with L>0. The cost of using this method is that we have to
calculate the eigenfrequencies twice.

3.4. Results for a square design domain

In the first examples we use material parameters corresponding to
wy =225 ug=2.

First, we maximize the gap between eigenfrequencies for a square domain. A square design
inherently has double eigenfrequencies even with only one material. If we want to maximize the
gap between the first and second eigenfrequencies it is not possible to start from an initial design
where all of the design values have been assigned a uniform value (e.g. . = 0.5). To overcome this
problem it is chosen to start from a design in which all design variables are assigned a finite value,
e.g. t, = 0.5, except for one element in which the value ¢, = 0 is used. With this small variation,
there are no initial double eigenfrequency and the optimization works. We apply a continuation
scheme in which the optimization is started with L = 0 and the value of |L| is then increased
during the optimization to ensure a final 0—1 design. This scheme also reduces the possibility of
ending in a local minimum. Additionally, we always perform the optimization with different
initial designs in order to ensure that we converge to the same minimum.

In Fig. 10, the results of optimizing the gap between eigenfrequencies are shown for n € [1 : 12].
The design domain is discretized in 100 x 100 elements. As it appears from the figure, the new
penalization scheme has enabled us to obtain optimized structures with a well-defined distribution
of the two materials. Only very few gray elements appear such as those near the corners forn =7
and n = 12. For some modes it appears that the pattern observed in 1D is valid here as well, i.e.
the optimal design is periodic like with the periodicity increasing with increasing mode order. For
other modes (n = 5, n = 10, n = 11 and n = 12) the optimized design show a different topological
distribution of the two materials.

3.5. Results for a rectangular design domain

In the next examples the same method of optimization has been used but in this case the design
domain size is changed so that the ratio of the side length is 2/1. The results of the optimizations
are shown in Fig. 11. The design domain is here discretized in 100 x 50 elements.

The results depicted in Fig. 11 are similar to the results for the square domain with some
topologies being periodic like and others being qualitatively different. We now try to examine if
the general results from 1D can be transferred to the 2D case.

3.6. Maximizing the ratio of adjacent eigenfrequencies

As in the 1D case we now change the objective function to that in Eq. (13) so that the ratio
between adjacent eigenfrequencies is maximized, but we still use the double-bound formulation
introduced in Eq. (30). We repeat the optimization for the rectangular domain for the case where
n =7, i.e. corresponding to the design in Fig. 11(g).
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(9]

Fig. 10. Eigenfrequency optimization of a 2D domain with two different materials, the design domain is a square that
has no supports (free boundary conditions). (a) The result when maximizing the gap between Ist and 2nd
eigenfrequency (m=1), b)n=2,(c)n=3, (d)n=4,()n=5On=6,(gn=7,)n=8, {)n=9,(j) n=10, (k)
n=11, 1) n=12.

We change the values u, and pj so that the value of o is changed but the value of f = 4.5 is kept
fixed. The results are shown in Fig. 12(a—c). The value of the objective, i.e. the ratio between the
squared eigenfrequencies, does not vary significantly but is not exactly constant as in the 1D case.
The value of w3 /w3 is 2.12, 2.06 and 2.00 for Figs. 12(a—), respectively.

When we compare Figs. 12(a—c) it is clear that although the value of the objective stays almost
constant the design change is evident. In the final examples we fix the value of o = 1.125 and
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Fig. 11. Eigenfrequency optimization of a 2D domain with two different materials, the ratio of the side length is 2/1
and the domain has no supports (free boundary conditions). (a) n=1,(b)n=2,(c) n=3,(d)n=4, (e) n= 15, (f)
n=6(n=7,0n=8 )nrn=9,Gnrn=10, k) n=11, (1) n=12.

HEH -
(a) (b) (©) . !

Fig. 12. Maximizing the separation of 7th and 8th eigenfrequencies (n = 7). Compared to Fig. 11 the objective is here
the ratio between the squared eigenfrequencies and the value of o is changed but the value of f = 4.5 is kept fixed. (a)
a=2, wi/w} =212, (b) a =4, w}/w?: =206, (c) x =38, wi/w3 = 2.00.

instead vary the value of . The results of the optimization are shown in Fig. 13(a—) and the
objective values are 2.99, 4.18 and 5.89, respectively. The figures show that we achieve the
opposite result compared to when the value of o is changed; the objective value is changed
considerably but the design stays more or less the same.

4. Conclusions

In this paper, we consider optimal design of 1D and 2D structures for which the vibrations are
governed by the scalar wave equation. The method of topology optimization is used to maximize
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(a) (b) (©)

Fig. 13. Maximizing the separation of 7th and 8th eigenfrequencies (n = 7). Compared to Fig. 11 the objective is here
the ratio between the squared eigenfrequencies and the value of f§ is changed but the value of o = 1.125 is kept fixed. (a)
B=9, 03/w? =299, (b) f =18, wi/wi=4.18, (c) f = 36, ®} /w3 = 5.89.

the separation of two adjacent eigenfrequencies for structures with two different material
components.

The optimization procedure is based on finite element analysis with a single continuous design
variable assigned to each element. This design variable z, is defined so that for ¢, = 0 the material
properties in that element are those of material 1 and for 7, = 1 the properties correspond to
material 2. For intermediate values of 7, the material properties are also intermediate and a special
interpolation formulation is introduced in the 2D case to ensure that only the two materials
appear in the final optimized design. In the 2D case we treat multiple eigenfrequencies both in
relation to the sensitivity calculations but also by reformulating the objective into a double-bound
formulation.

Two different formulations are used for maximizing the separation of the eigenfrequencies.
The first approach is to use the maximum difference in the frequencies as the optimiza-
tion objective. For both the 1D and the 2D cases the optimized designs are well-defined
0-1 designs, i.e. no intermediate materials appear in the optimal designs. In 1D the
optimized structures are periodic-like and there is a direct relation between the mode order and
the number of alternating sections of materials 1 and 2. In the 2D case, square and rectangular
domains are studied, and it is seen that the optimized designs for some modes consist of
periodically placed inclusions as in 1D, whereas for other modes a quite different topology is
obtained.

In the second optimization formulation we maximize the ratio of two adjacent eigenfrequencies.
Two material parameters are introduced: o and f§ that are functions of the material coefficients of
the two materials. In 1D it is shown that the material distribution in the final optimized design
appears to depend only on «, whereas the maximum ratio for this design depends only on 5. For
2D a similar relation appears, but unlike in 1D an exact correspondence is not seen. Additionally,
it is seen that in 1D the maximum ratio that can be obtained between adjacent eigenfrequencies
seems to be independent of the mode order n for high values of n. This phenomenon was not
studied in 2D.
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