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Abstract

Tuned liquid column dampers are U-tubes filled with some liquid, acting as an active vibration damper in
structures of engineering interest like buildings and bridges. We study the effect of a tuned liquid column
damper in a vibrating system consisting of a cart which vibrates under driving by a source with limited
power supply (non-ideal excitation). The effect of a liquid damper is studied in some dynamical regimes
characterized by coexistence of both periodic and chaotic motion.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The need of mitigate wind, ocean wave and earthquake-induced vibrations in structures
like tall buildings, long span bridges and offshore platforms has led to a steadfast interest
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in damping devices. Impact dampers are a very useful way to suppress unwanted high-
amplitude vibrations in small-scale systems, but they are somewhat difficult, if not impossible,
to implement in large-scale engineering structures [1,2]. For the latter systems the tuned
liquid dampers (TLDs) and tuned liquid column dampers (TLCDs) have gained a
special attention by virtue of their simplicity and flexibility [3]. A tuned liquid damper is
basically a mass-spring-dash-pot system connected to the structure, and works due to the
inertial secondary system principle, by which the damper counteracts the forces producing the
vibration [4].

A TLCD replaces the mass-spring-dash-pot system by a U-tube-like container where the
motion of a liquid column absorbs part of the vibration on the system, with a valve/orifice playing
the role of damping. An TLCD has the additional advantage of being a low-cost application. In a
tall building, for example, the container can also be used as a building water supply, whereas in an
TLD the mass-spring-dash-pot is a dead-weight component without further use [5]. In fact,
vibration control through TLCD has been recently used in other engineering applications, such as
ship and satellite stabilization.

Whereas the damping of a mass-spring-dash-pot system characteristic of a TLD is essentially
linear, the damping in a liquid column is amplitude-dependent (regulated by the orifice in the
bottom of the U-tube) and consequently nonlinear. Hence, the dynamics of a TLCD is far from
being simple, and very few analytical results can be obtained. Numerical explorations of the
dynamics of a TLCD mounted on a structural frame, using a non-ideal motor as a source of
energy, have been performed recently [3].

Non-ideal motors are forcing sources with limited energy supply, in such a way that their
behavior also depends on the vibrating system [6]. In fact, the forcing becomes an active part of
the dynamics, and this leads to systems with more degrees of freedom, and more equations of
motions are thus needed to describe the problem [7]. We must borne in mind that, in practice,
every driving source has a limited power supply, and ideal motors are actually an idealization.
Impact dampers, using particles bouncing back and forth, and subjected to non-ideal forcing have
been recently studied from the point of view of complex dynamics, presenting regular and chaotic
motion for wide parameter intervals [8§—10].

In this paper we study the dynamics of a vibrating system consisting of a moving cart
attached to a spring—dash—pot under non-ideal (limited power supply) motor, and endowed
with a TLCD. The combination of nonlinear damping of the liquid column, the spring
nonlinearity and the non-ideal nature of the forcing makes for a rich dynamical behavior which
we investigate numerically. The main motivation underlying our investigation is the fact that
amplitude damping of vibrations cannot be taken for granted if a TLCD is mounted on a
structure driven by a limited power supply source. In fact, there are situations in which the
damping effectiveness of TLCD is very low, and even complex motion may appear, such as large-
amplitude chaotic motion, which can be highly undesirable. It is of paramount importance to
analyze the parameter intervals for which damping due a TLCD can be effective, and this is the
key point to be treated in this paper.

This paper is structured as follows: in Section 2 we describe the model equations for the cart
endowed with a TLCD under non-ideal forcing. Section 3 explores some aspects of the model
dynamics, emphasizing the role of forcing parameters on the effectiveness of vibration damping
and/or amplification.
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2. Theoretical model

In the following we will consider the 1D motion of a cart of mass M connected to a fixed frame
by a nonlinear spring and a dash-pot (viscous coefficient ¢) (Fig. 1). The nonlinear spring force is
given by k1 X — k,X?, where X denotes the cart displacement with respect to some equilibrium
position in the absolute reference frame. The motion of the cart is due to an in-board non-ideal
motor with moment of inertia J and driving an unbalanced rotor. We denote by ¢ the angular
displacement of the rotor, and model it as a particle of mass m attached to a massless rod of
radius r with respect to the rotation axis. Here £, and E, are damping coefficients for the rotor,
which can be estimated from the characteristic curve of the energy source (a DC-motor) [8].

The TLCD consists of a U-tube attached to the top of the moving cart, containing a liquid of
total mass m and density p. The cross-sectional area of the tube is 4, and with a distance b
between the two vertical columns. The distance between the liquid levels in these columns will be
denoted ¢ and is obviously a constant. The vertical displacement of the left column with respect to
the liquid level when the cart is in rest is denoted Y. There is a valve at the middle point of the
bottom of the TLCD whose aperture can be tuned in order to vary the resistance to the flow
through this orifice. This is the source of the nonlinear and amplitude-dependent damping
experienced by the liquid mass while flowing through the U-tube. The coefficient of head loss of
the valve is €.

The motion of the combined cart-liquid damper system is governed by the following
equations [3]:

’x  dx ; d’e . do\? d’y
(M—i—m)F—FcE_k]X—i-kzX _morlvsmq)—k <E> coS | —am-o-, ()
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Fig. 1. Schematic model of a cart oscillation driven by a rotor and with a tuned liquid column damper.
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where g is the gravity acceleration, o = b/¢ is the length ratio of the U-tube, and k3 the effective
(linear) stiffness of the liquid column, as it undergoes oscillations inside the TLCD.
It is convenient to work with dimensionless positions and time, according to

X

X—>xz7, 4)
Y

Y>y=-—. 5)

t%rzt\/% (6)

in such a way that Egs. (1)—(3) are rewritten in the following form:

(1 4+ Wi + px — x + ox° = &1(p sin @ + ¢* cos @) — auy, @)
¢ =eXsing +ecose+ E — Ep, ()
Y+l + oy = X, )

where the dots stand for differentiation with respect to the scaled time 7, and the following
abbreviations were introduced:
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3. Dynamical analysis of the non-ideal system with a liquid damper
The non-ideal system with a liquid damper has the following dynamical variables:

® (x(1), x(?)): position and velocity of the cart,
® (¥(1), »(1)): position and velocity of the liquid level in the tube,
® (¢(2), @(1)): angular position and angular velocity of the eccentric mass of the rotor.

The combined system phase space has out of 6D, and this is the same dimensionality as of the
vector field v = F(v) corresponding to the governing equations (7)—(9), where v = (x, X, y, 7, @, ®)".

The high dimensionality of the phase space and the nonlinearity present in the corresponding
vector field limit us almost exclusively to numerical analyses done by integrating the equation set
(7)—(9) and examining the dynamical properties of the solutions obtained. In the following we will
fix the system parameters as = 0.01, § =0.02, 6 =0.1, &g =0.1, &, =0.25, ¢3=0, E, = 1.5,
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Fig. 2. Bifurcation diagram for the cart position versus the control parameter E;. The coexisting attractors are labelled
A, B, and C.

y» = 0.374656, and ¢ = 0.9801. We will choose, as the control parameters to be studied, the motor
constant £, and the geometrical aspect ratio « of the liquid damper.

Let us begin by considering the system in absence of a liquid damper, i.e., only the cart motion
driven by the unbalanced rotor. Fig. 2 shows the bifurcation diagram for the cart position in terms
of the control parameter E£;. For low values of it we have two coexisting limit-cycles (periodic
attractors), named as A and B. These attractors suffer an abrupt change at £; ~ 1.9, where a
saddle node bifurcation occurs: the stable orbits 4 and B collide with unstable orbits (not shown
in the bifurcation diagram), and in their place, after the bifurcation, there appears chaotic motion.
This is the typical scenario of type-I intermittent transition to chaos [11]. The chaotic region is
interspersed with periodic windows, some of them presenting period-doubling bifurcation
cascades clearly visible in Fig. 2. Simultaneously, for E; greater than = 2.3 there appears a third
attractor, named C, which persists for higher £ even when the former attractors (4 and B) are
restored.

The motion of the cart itself can be viewed in a 2D subspace of the full phase space, in which we
plot the cart displacement versus velocity. Fig. 3(a) shows phase portraits exhibiting two
coexisting limit-cycles 4 and B. The phase trajectories will asymptote to either one, according to
its initial condition. These attractors are located symmetrically with respect to the x = 0 and x = 0
lines, thanks to the x — —x and X — —X symmetries possessed by Egs. (7)~(9) (only odd powers
of x do appear). The gray curves refer to the cart motion without damping by TLCD, whereas
black curves include this damping.

Since gray and black curves nearly coincide in Fig. 3(a), we conclude that, at least in this case,
the damping effect is practically not noticeable, as can be confirmed by 3(b), where the time
series of the cart position are plotted, showing motions of very similar amplitude and frequency.
Figs. 3(c) and (d) show the Lyapunov spectrum of coefficients related to the system without
control and with a TLCD, respectively. In the latter case there are six coefficients because of the
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Fig. 3. (a) Displacement versus velocity of the cart, for E; = 1.5 showing two periodic attractors named as 4 and B.
Gray curves: without TLCD; black curves: with TLCD; (b) time series of the cart displacement for the attractor 4 with
and without TLCD; (c) Lyapunov spectrum without TLCD; (d) with TLCD.

increased phase space dimensionality. As expected, in both cases, all Lyapunov exponents are
negative, indicating purely regular motion in all phase space directions. The stationary values of
all Lyapunov exponents are found in Table 1.

Fig. 4 shows the basins of attraction corresponding to the attractors 4 and B of Fig. 3(a),
represented as black and white regions, respectively. These regions show up as smooth lobes from
which emanate striations which encircle the lobes. The uncontrolled and controlled cases are
depicted in Fig. 4(a) and (b), respectively. Both figures are similar to the basin boundary structure
displayed by a particle in a two-well potential [12]. In fact, the symmetry of the vector field with
respect to x = 0 is shared by both systems. Moreover, the motion of the cart itself is essentially of
a damped driven Duffing oscillator, thanks to the nonlinear stiffness adopted. It is apparent that
the basin filaments are wider in the controlled case, which indicates that, at least for that part of
phase space considered, the effect of a TLCD is to decrease the complexity of the basin structure.

As we anticipated in Fig. 2, for higher values of the control parameter E; it is possible to
observe chaotic dynamics in the system. Fig. 5(a) shows, in the x x X projection of the phase
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Table 1

Lyapunov spectrum

E, =1.5 no E| = 1.5, with E, =20, no E, = 2.0, with E, =2.5 no E| = 2.5, with

TLCD TLCD TLCD TLCD TLCD TLCD

0.0000 0.0000 0.0540 —0.0027 0.0004 —0.0037

—0.0241 —0.0767 —0.0003 —0.1264 0.0000 —0.0451

—0.0238 —0.0769 —0.1576 —0.1265 —-0.0174 —0.0452

—1.4908 —0.1425 —1.4352 —0.5286 —1.5218 —0.6358
—0.2535 —0.5285 —0.6957
—1.4903 —1.4359 —1.5737

5 0 5
® x

Fig. 4. Basins of attraction of the attractors A (black) and B (white). (a) Without a TLCD (o = 0); (b) with a TLCD
(z = 3.0).

space, two coexisting chaotic attractors (in gray) for the uncontrolled system, named 4 and B. In
this case, the effect of the TLCD is to suppress chaos, since the same attractors, with control,
reduce to limit-cycles (in black). Moreover, the amplitude of the periodic oscillations (with
TLCD) is roughly one-third of that for uncontrolled chaotic oscillations (Fig. 5(b)). The
chaoticity of the attractors without TLCD can be also related to the existence of one positive
Lyapunov exponent (Fig. 5(c)); whereas with TLCD all exponents are negative (Fig. 5(d)). The
values of these exponents can also be found in Table 1.

Unlike the smooth basin boundary structure typically displayed by periodic attractors like those
depicted in Fig. 3, the structure for coexisting chaotic attractors is more involved (Fig. 6(a)). The
overall structure is the same, but there are incursive fingers in the lobe filamentation for both
basins, and which appear due to homoclinic and heteroclinic crossings between stable and unstable
manifolds of periodic orbits (saddle points) belonging to the basin boundaries. In fact, the
boundary itself is the closure of the stable manifold of a saddle point belonging to the boundary.
Since the unstable manifold of this saddle intercepts both basins (a fact not shown explicitly in
Fig. 6(a)), the basin boundary is a fractal curve, with a non-integer box-counting dimension [13,14].
The fractal nature of the boundaries can also be appreciated in Fig. 6(b), where a magnification of
a part of the basin structure is shown, revealing the wiggles characteristic of manifold crossings.

However, as we apply the perturbation of a TLCD on the system, besides the high-amplitude
chaotic attractors have reduced to low-amplitude limit-cycles, the corresponding basin structure
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Fig. 5. (a) Displacement versus velocity of the cart, for E| = 2.0 showing two coexisting attractors named as 4 and B.
Gray curves: chaotic attractors without TLCD; black curves: limit-cycles with TLCD; (b) time series of the cart
displacement for the attractor 4 with and without TLCD; (c) Lyapunov spectrum without TLCD; (d) with TLCD.

has become also less involved (Fig. 6(c), consisting of smooth filaments emanating from the two
lobes (see Fig. 6(d) for a magnification).

Up to now we have fixed the geometric ratio of the liquid damper («) and varied the driving
parameter £;. We can also hold the latter at a constant value, say, £; = 2.0, and analyze how the
cart position changes with the TLCD parameter o. Our results are shown in Fig. 7, where we plot
the corresponding bifurcation diagram. Without a liquid damper (o = 0) the system will undergo
chaotic motion, as already observed. Varying the geometrical ratio of the TLCD this chaotic
motion suffers a complicated transition to periodic dynamics for o greater than 2.0.

To conclude this numerical investigation, we can also explore the control parameter E|-range
for which, as shown by Fig. 2, there is a periodic attractor coexisting with two quasi-periodic
attractors, as for E; = 2.5 (Fig. 8(a)). With the liquid damper, the quasi-periodic attractors
transform to limit-cycles as before, but the periodic attractor (C) disappears at all (Fig. 8(b)).
These conclusions can also be inferred from the Lyapunov spectra (Fig. 8(c) and (d); and Table 1).
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Fig. 6. (a) Basins of attraction of the attractors A (black) and B (white) without a TLCD (« = 0); (b) magnification of
part of previous figure; (c) basins for the system with a TLCD ( « = 3.0); (d) magnification of part of previous figure.
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Fig. 7. Bifurcation diagram for the cart position versus the TLCD parameter o.

The structure of the attraction basins is even more involved with three coexisting attractors, as
illustrated by Fig. 9(a). In this case, the filamentation of the two main basins (of 4 and B) are not
only interspersed but are also intertwined with the basin of the third attractor (painted in gray). We
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Fig. 8. (a) Displacement versus velocity of the cart, for E| = 2.5 showing three coexisting attractors named as A, B, and
C. Gray curves: quasi-periodic attractors without TLCD; black curves: limit-cycles with TLCD; (b) time series of the
cart displacement for the attractor A with and without TLCD; (c) Lyapunov spectrum without TLCD; (d) with TLCD.

conjecture, based on previous results, that the common boundary to all these basins displays not
only a fractal nature, but also the stronger Wada property: all boundary points are arbitrarily close
to points of all basins, in such a way that a ball centered at any boundary point would intercept all
basins of attraction in non-empty sets. The practical consequence of a system having the Wada
property is the extreme sensitivity to final state exhibited by such a system: small uncertainties in
the determination of the initial condition can lead to complete uncertainty as to what attractor will
this initial condition asymptote to. Even with control (Fig. 9(b)) the basin structure will be fractal,
although not having the Wada property since the third attractor has disappeared.

4. Conclusions

For the parameter ranges studied in this work we basically conclude that a tuned liquid column
damper does not necessarily reduces the amplitude of periodic oscillations. We analyze a situation
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Fig. 9. Basins of attraction of the attractors A (black), B (white), and C (gray) for E; = 2.5. (a) Without a TLCD
(o = 0); (b) with a TLCD (o = 3.0).

where there are two coexisting limit-cycles and found that the damper effect is almost negligible.
On the other hand, when chaotic oscillations are displayed by the vibrating system, the
effectiveness of liquid dampers have been demonstrated by (i) the suppression of chaotic motion
into a limit-cycle; (ii) a substantial reduction (by a factor of about one-third) of the oscillation
amplitudes. Parameter ranges were also found for which there is a third periodic attractor for the
uncontrolled system. In this case, the effect of the liquid damper was to suppress this third
attractor.

Another result which we obtain is that a liquid damper makes the basin structure simpler
in terms of its topological properties. When there are two periodic attractors, the corresponding
basins having a smooth boundary, the damper effect is to enlarge the basin filaments. For
two chaotic attractors, where the phase space has a convoluted structure (fractal) of
basin filaments, the effect of the liquid damper was to make the basin boundary smoother.
Finally, when three attractors coexist, the uncontrolled system has a very complicated basin
boundary structure, which we conjecture may exhibit the strong topological Wada property,
which implies almost complete uncertainty about the final state. The addition of a perturbation
by a liquid damper decreases the complexity of the basin structure by washing this latter
Wada property.

In all cases studied in this paper, the effectiveness of a TLCD in a vibration structure driven by
a limited power source cannot be assured a priori thanks to the complicated dynamical aspects
of its behavior. In particular, the original claim that a liquid damper can reduce the amplitude
of any oscillation needs to be taken with due caution, and a further dynamical investigation
is mandatory. Furthermore, for the considered parameters, a preliminary analysis indicates
that the addition of small amounts of noise to non-ideal oscillators with a TLCD does not
change significantly their dynamical properties, at least for the parameter ranges considered in
this work. For example, we have found that noise perturbations do not typically cause basin
hopping, i.e., the alternate switching among different coexisting attractors. Therefore, we expect
that noise effect should not alter significantly the action of liquid column dampers on non-ideal
oscillators. However, further numerical investigation should be carried to better understand
the noise effect in the considered system for other parameter ranges not explored in the present
work.
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