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Abstract

A dynamic model of a curved side-wall of a pressurised tyre is presented. The model uses a previously
derived wave equation. The side-wall is assumed to have a uniform thickness over the whole distance
between the belt and the hub. A vertical or a horizontal displacement is input at the connection with the belt
and the forces input and those transmitted to the hub are calculated and described in terms of dynamic
stiffness. The effect of various parameters such as pressure, geometry, belt wavelength and material
properties are investigated. The side-wall model is applied to a belt model to give a full tyre model. An
integral around the belt circumference is performed to give the forces transmitted to the hub. The effect of
the air within the cavity is calculated from the uncoupled carcass vibration. Finally, some experiments were
made on a tyre and the model was fitted, thereby giving an estimate of the tyre material properties and
validating the model for both belt vibration prediction and force transmission to the hub.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

A pneumatic tyre has two main components, the belt and the side-wall. The purpose of the belt
is to provide a friction interface with the road, while the side-wall transmits traction, side forces
and vehicle weight. Stiffening of the side-wall will therefore improve the vehicle handling but will
transmit more road noise through the suspension to the passenger compartment. If a tyre is to be
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optimised for both vehicle handling and vibration transmission a model is needed for the side-wall
that is valid for the complete frequency range of interest. For vehicle interior noise it is probably
only necessary to have a model below 500 Hz. However, if there is also an intention to predict tyre
surface vibration for sound radiation calculations this frequency range must be raised to around
3kHz.

In the literature, the side-wall is usually represented as a simple stiffness, although in Refs. [1,2]
this is associated with membrane forces controlled by the air-pressure and geometry. The only
attempt at modelling the high-frequency dynamic effects of the side-wall are also found in Ref. [2],
however, this model did not also extend down to the low-frequency region.

The objective here is therefore to make a wave model of a side-wall that will cover the complete
frequency range of interest, i.e. 0-3 kHz. The outcome will be the dynamic stiffness/belt length in
the radial, transverse and circumferential directions. This model is then applied to a belt model [3],
from which surface vibration or transmitted forces can be provided.

At low frequencies the tyre stiffness derives from the balance of internal pressure and the angle
that the side-wall tension makes with the belt or road surface [1,2]. At higher frequencies the side-
wall bending stiffness, shear stiffness and longitudinal stiffness become important, and these are
included in the model. The side-wall model presented here uses the same basic equations as the
belt model [3], but with different boundary conditions. The least realistic feature is that it is
assumed that the thickness is uniform over the length, while most side-walls are broad at the wheel
hub and taper towards the line connection with the belt. No attempt is made to model the internal
structure of the side-wall, and it is assumed that the average elastic moduli of the section are
available.

In order to make force calculations to the hub, three other tasks are performed. The first is to
modify the side-wall stiffness for a travelling wave input at the belt line input. The second is to find
the integral of the transmitted force from the belt over the free belt length. The third is to find the
force transmitted due to the acoustic waves within the cavity.

The model presented here is not quite complete as the air within the cavity is not included
directly as a coupled equation of motion. The air-pressure is included as it controls the belt and
side-wall tension. The calculation shows two air transmission mechanisms, one of which is
responsible for the cavity resonance around 250 Hz that is detectable within the vehicle passenger
compartment.

The side-wall model is combined with the belt model [3] to make a full tyre model, this model is
fitted to some experimental data to give estimates of the material properties and the force
transmitted to the hub. The measurements include two previously untried techniques for line
excitation of the belt and for transmitted force to the hub.

2. Wave model of a curved side-wall

Fig. 1 shows a tyre side-wall of length /; of radius a; and uniform thickness #,, displaying the
sign convention for positive directions, rotations, forces and moments. It is assumed that the
side-wall is symmetric about the neutral axis and that the averaged material properties of
the cross-section are known. Reference will only be made to these single material values for the
cross-section.
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Fig. 1. Side-wall geometry: (a) single side-wall section and (b) belt and side-wall sections.
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The side-wall is a curved, tensioned, Mindlin Plate (supporting bending and shear
deformations) subjected to a net static pressure P. This pressure is balanced by a static tension/
width Ny. Q; is the shear force/width, N the total static and dynamic circumferencial force/width,
M the bending/moment/width. The accompanying displacements are u, w, in the circumferential
and radial directions. ¢ describes the geometric position, and is related to the arc coordinate s as
s = ay¢. The kinematic rotation @; includes contributions from both displacements u, w.

Vertical and horizontal displacements w,, u. are input from the connection with the belt at side-
wall angle ¢, from the vertical. At this position the distance coordinate s = 0, s lies between 0 and
l;. The side-wall is symmetrical so that the radius a; is given as

_ b
T—¢1—¢y 24

The side-wall angle will be seen to have a large influence on the stiffness as it influences both the
radius and the angle at which the static tension is applied to the hub and belt. The static tension is
simply related to the pressure, Ny = Pay, if the side-wall assumes the arc of a circle.

The other four boundary conditions that are assumed here (although others could be used), are
at s = 0 the bending moment is assumed to be zero as the side-wall tapers here. Between the hub
and the stiff wire tyre beading a layer of rubber forms a seal. Perhaps the best model of this
junction would be a rotational stiffness that would allow any possibility between the simple
supported and clamped conditions. However, for simplicity the stiffer extreme was selected so that

(1

ag
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at s = [ the displacements and slope due to bending are set to zero. This choice will have a slight
effect on the stiffness although it will be seen that the tension is the dominant effect which does
not depend on the rotational boundary conditions.

The input displacements cause input forces F i, F.; and transmitted forces F,,, F.,. These
forces when normalised by the displacements provide the required input and transfer dynamic
stiffness’.

2.1. The wave equation

The wave equation is a modified version of Eq. (31) in Ref. [3]. The coordinate s in the arc
direction of the side-wall replaces the corresponding belt coordinate ¢ in all the material and
geometric constants, i.e.

0= Z6(SS + Ns)
— 24[2%3 + Pas - NSRS + (Ss + Ns)(l + Z? + Zst)]
+ 22[(_Zis)(1 - pas - Ss - Z2Ls + NSRS - Z?(Ss + Ns)) + (Z? - RS)(NS + Pas + Zst)]

+ (1 - pas - Z%s)(zf - RS)(Z%s)' (2)
The non-dimensional constants are:
_ S _ N, - Pag - 5 Sy
Ss=—, Ny=—, Pa,=—, R,=a —,
S AS 9 S AS 9 aS AS 9 S a_; BS

S, A, are the shear stiffness/length and longitudinal stiffness/length. Ny, B, are the in-plane force/
length and bending stiffness/length. The normalised wavenumber z is ka;. The normalised non-
dimensional longitudinal wavenumber z;, is defined by
2 By

A
There is also a wave that cuts on at high frequencies that involves only section rotation and no
translation, here it is called the ‘rotational wave’. The wavenumber z, is defined by

zi&, = (a;m)

I
2 2 £
Zs = (asw) B; >

where p, I are the side-wall mass/area and rotational inertia/area, I, = ur?/12.

2.2. The wavenumbers and displacement amplitude ratios

A standard set of parameters in Table 1 was applied to the wave equation. The three roots
of waves in the positive s direction were found from a MATLAB programme. The modulus
and phase of the wavenumbers were found and are displayed in Figs. 2a, b. The associated ratio
of longitudinal/transverse motion, u/w, are given in Fig. 2c to aid the interpretation, the basis
of which is given in Ref. [3]. The line labelled dominant belt real wavenumber is discussed in
Section 3.3.
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Table 1

Side-wall parameters

Parameters Symbol Size equation Units
Internal pressure P 2% 10° N/m?
Side-wall thickness ts 0.7 x 1072 m
Side-wall radius dg 0.3 m
Side-wall angle 0, /6 rad
Tensile force/width N P x ag N/m
Shear modulus Gy 3% 10° N/m?
Shear stiffness/width S, G, X I N/m
Bending stiffness/width By G, x £} /4 Nm
Axial stiffness/width Ay 4.7 x 10° N/m
Belt mass/area Uy 7.7 kg/m?
Rotational inertia/width I e X (2/12 kg
Rotational and shear loss factor n 0.15

Axial and tension loss factor 5 0.1

2.2.1. Wavenumber root 1

In Fig. 2a, the magnitude of root 1 is seen as a constant at a value that gives ka;, = n/2 until
100 Hz. The ratio of u/w in Fig. 2c is about % These three characteristics describe the changing
shape of an in-elastic side-wall that bulges as the belt moves towards the hub, which is the
dominant mechanism of load support.

At higher frequencies the wavenumber magnitude increases in proportion to frequency, the
small negative phase angle and small u/w ratio suggests a tension-dominated travelling wave. If
the internal pressure was removed and hence the tension, this wave would be controlled by the
bending stiffness. At very high frequencies above 3kHz this wave is controlled by the shear
stiffness.

2.2.2. Wavenumber root 2

Fig. 2¢ indicates that this is a longitudinal wave. Below the side-wall ring frequency at 400 Hz
the phase of —7/2 implies an evanescent wave. At 400 Hz the rapid phase change marks the ring
frequency, above which a longitudinal travelling wave occurs. This wave is controlled by the side-
wall longitudinal stiffness.

2.2.3. Wavenumber root 3

The third root has a phase of —n/2 until the cut-on of the rotational travelling wave at 4 kHz.
This means that it is an evanescent wave below this frequency. The large wavenumber implies
rapid decay of vibration away from the belt towards the hub.

2.3. The transfer functions

Fig. 1 is a display of the side-wall subjected to displacements at the belt contact ¢,. If a lateral
displacement u.; or a vertical displacement w,; is applied to the side-wall it causes responses at
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Fig. 2. Wavenumber (a) modulus; ——— root 1, --- root 2, — root 3, —— top belt root; (b) phase and (c) wave
amplitude ratio: — — — root 1, --- root 2, — root 3.

every point s, in both the circumferencial # and radial w directions. The force responses at s = 0
and /; are quantified in the ‘dynamic stiffness’ transfer function, which is force/displacement. The
dynamic stiffness’ can be calculated from the summation of the three pairs of waves that exist at
each frequency. The amplitudes of these waves are found from the six boundary conditions at the
contact line with the hub and with the belt.

A matrix of lateral wave amplitudes is written. These are used to give slopes @, in-plane
displacements, shear rotation 7y, bending rotation f, in-plane forces N, shear forces Q and
moments M. The six boundary conditions are then expressed as a matrix in terms of the lateral
displacements. The solution of this matrix gives the wave amplitudes and hence the transfer
functions.
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2.3.1. Transverse displacement
The wavenumbers for the three wave pairs obtained from the wave equation are,
kpas kpp, p = 1,2, 3; a (anti-clockwise), b (clockwise), denote the direction of the wave propagation.
kpa = kpp = k, for all waves as there is no rotation of the side-wall in the circumferential direction.
The transverse amplitudes of each of the three pairs of waves; w,q, Wy, are given in a column
matrix w,
Wla
Wib
W2qa
Wop
W3q

w
\3b

At position s each wave becomes phase-lagged and attenuated in accordance with the 6 x 6
diagonal matrix L,

Lps — diag[e—iklé" OC]eile, e—isz’ azeikzs, e—ik3S’ a3eik3S]’ (4)
where the exponential attenuation and phase-lag over the side-wall length /; = 2¢a;y is
o, = exp(—ik,ly).

The column matrix for weighted wave amplitude and phase is w),

Wps = LipsWp- (5)
The transverse displacement w(s) at any point s is the sum of the six waves in Eq. (5)
w(s) = 1wy, (6)

where the row matrix I = {1 1 1 1 1 1} is just a device to make the sum.
The slope at any point s is obtained using the differential operator D,

ow
a = ITDprs; (7)

where Dp = diag[—ikl,ikl, —ikz,ikz, —ik3,ik3].

2.3.2. Longitudinal displacement
The longitudinal displacement u, is the transverse displacement w, weighted by the
displacement ratios A4, for anti-clockwise and clockwise pth waves

u, = Apwp. (8a,b)

The displacement ratios for the anti-clockwise and clockwise waves is found by substituting the
harmonic travelling wave solutions exp(Fik,s) into Eq. (29), [3], to give for the anti-clockwise
wave

—iz,

2 2

Ap:Z —Z
P Ls

p=12.3. (9a,b)
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The clockwise wave has the opposite sign. The total longitudinal displacement u(s) is the sum of
the six wave displacements u,, given from Eq. (5)

u(s) = 1T A, Wy (10)
The diagonal matrix of displacement ratios is
Ap = diag[Ah _A19A2> _AZa A39 _A3]

2.3.3. The slope due to bending

The gradient Ow/0s is given in Eq. (1) [3], as the sum of the bending slope  and the shear y. The
slope due to bending is related to the gradient by Eq. (14a) [3]. On substitution of the harmonic
solution for a clockwise or anti-clockwise travelling wave p, and using the normalisation of
Eq. (26), [3]

ow
Bp=Ep3 (11)

where

1+ R,

E = =.
P2 -2+ R

The diagonal matrix of wave weighting functions, E, is
E, = diag[E|, E\, E», E>, E3, E3]). (12)

2.4. The boundary conditions
There are six boundary conditions, three at each end of the side-wall. All the boundary
conditions are expressed in terms of the six transverse wave amplitudes w,. As the boundary

conditions are initially in radial coordinates they must be transformed into Cartesian coordinates
using a transformation matrix. At s = 0, the displacements are:

wi Wy B —cos ¢; sin ¢,
=00 T b di=d =
U U sin ¢;  cos ¢,
The forces at s = 0 are:
Fy F
The forces at s = /; are:

Fy F, cos ¢,  sin ¢,
{Fzz}:q)z{Nz}; ¢2:[sinq’>2 —cosqﬁJ' (15)

: (13)
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2.4.1. Radial displacement at s = 0
The radial displacement w) is given in Eq. (13) from the input displacements, and from Eq. (5),
setting s = 0

wi = ITL,(0)w, (16)
and by expanding the matrices
w1 = By,w,,
where

B1p=[1 o 1 0%} 1 063].

2.4.2. Circumferential displacement at s = 0
The longitudinal displacement u; is given in Eq. (13) from the input displacements, and from
Eq. (10), setting s =0

up = I"A,L,,(0)w, (17)
and by expanding the matrices
up = Bo,w,,
where
By =[41 —mdr Ay —mAdr Az —azds).

2.4.3. Bending moment at s = 0

The bending moment is assumed to be zero in this case, although it is possible to insert a
rotational stiffness instead. However, for the zero moment it can be said that the gradient in the
bending slope is zero

op(0
-,
Egs. (7) and (11) relate this to the radial displacements

0 =I"E,D;L,,(0)w,. (18)

On expanding the matrices

0 = B3,w,,
where

By, =[~k0E,  — ko E i l, p=123.

2.4.4. Slope from bending at s = I,
The slope from bending is zero in this case as a clamped termination is assumed. Although as
above, it is possible to insert a rotational stiffness instead. For zero bending slope

B(ls) = 0. (19)
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With Egs. (7) and (11) this can be related to the radial displacements, setting s = /;
0 =1"E,D,L,(/)w, (20)
and by expanding the matrices
0 = By,w,,
where
By, = [—1kpopEy  ikpE .. ], p=123.

2.4.5. Radial displacement at s = I
The radial displacement w; is zero for the clamped boundary, and from Eq. (5)

0 =1"Ly(/)w, (1)
and by expanding the matrices
0 = Bs,w,,
where

B5p = [061 1 oo 1 o3 1]

2.4.6. Circumferential displacement at s = I,
The longitudinal displacement is zero for the clamped boundary, and from Eq. (10)

0 =1"A,L,(/,)w, (22)
and by expanding the matrices
0 = Bg,W,,
where
Bo, =[d1 — A1 oAy — Ay o3dAs  — A3).

2.5. Assembly of dynamic stiffness matrices

The six boundary conditions from Egs. (16) to (22) can now be assembled into a single matrix

Blp (W)
By, u
B3p 0
Bw,=w, B,= By, |’ W= 0 (23)
BSp 0
_BGP_ 0 )
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This may be inverted to give the wave amplitudes

w, =B, 'w. (24)

2.5.1. The transverse and longitudinal forces
The net transverse force/width F in the radial direction in Fig. 1 has contributions from the
component internal shear forces/width Q,; and tension forces/width N at s =0 or s = [,

Fi1 =10y — N19]—, (25a)

Fy=[0 — Nady,. (25b)
The kinematic rotation @y, is given in Eq. (2), [1]

o, = (26)
a, Os
The shear force for the pth wave is the product of shear stiffness S and shear slope y and can be
written in terms of w, using Eqgs. (1), (8) and (44) of Ref. [3]

o

Os
If only the static in-plane force is considered, i.e. N = N, then substitution into Eq. (25) of Egs.
@), (7), (10), (11), (26) and (27), yield the net transverse force F at s

0, = Si(1 - Ep) 27)

N
F=I' ((Ss + Ny)D, — S,E,D), — a_Ap) Lywp. (28)

N

The longitudinal forces N, in Fig. 1, are simply the product of the longitudinal stiffness 4; and the
longitudinal strain

N=A<%+ﬁ> (29)
Os

dg

This can be written in terms of w, using Eqgs. (4), (7) and (10)
1
N:—mﬂOM%+;myW%, (30)

where I is the unit matrix. The radial and longitudinal forces in Egs. (28) and (30) can be written
in a single stiffness matrix K,

F
E={N}=&%Mm (31)

where the stiffness matrix is

K, =K, Kiy Ky Ky Kz Kl (32)
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{ikp(SS(l — E,)+ Ny) — %Ap} {ikp(Ss(l —Ep) Ny + %AP}

s
1 1

A(=ikyy ) (=it )
dg ay

The vertical force and horizontal force at s = 0 can now be written using the transformation
matrix in Eq. (13)

[Kpu Kp]= , p=123.

Fy
N (= —¢,K,L,(0)w,. (33)

Likewise the vertical force and horizontal force at s=/; can now be written using the
transformation matrix in Eq. (14):

Fy ;
N., = ¢2Kprs( s)wp' (34)

The wave amplitudes w, are given in Egs. (23), (24) as a function of input displacements wy, u;.

2.5.2. Vertical dynamic stiffness’
The vertical input and transfer dynamic stiffness’ are given from F,;, F,, by setting
w1 = 1,Ll1 =0.

2.5.3. Horizontal dynamic stiffness’
The horizontal input and transfer dynamic stiffness’ are given from F.,F., by setting
W = 0,u1 =1.

2.6. Parameter study on two-dimensional side-wall dynamic stiffness’

Eqgs. (33) and (34) are applied for various parameter changes with the values in Table 1 taken as
the norm. These include excitation direction, internal pressure P, the angle subtended by the side-
wall ¢, and side-wall angle thickness #;. The main purpose here is to consider the static and low-
frequency stiffness’ in the vertical and lateral directions, which is most important for vehicle
handling and whole body vehicle motion.

2.6.1. Side-wall stiffness for vertical excitation

Fig. 3 shows the vertical side-wall stiffness/length for a vertical displacement applied at the tyre/
road interface. Below 220 Hz the side-wall behaves as a static stiffness of about 1.5 x 10° N/m?,
which is slightly lower than the value of 2 x 10°N/m? obtained from the expression for an
inelastic side-wall [2]. The discrepancy almost certainly arises from the fact that the side-wall can
in fact stretch and has an in-plane stiffness of 4.5 x 10°N/m?, as seen in Fig. 7. At 220 Hz a dip
occurs corresponding to a resonance of the side-wall if excited by a force at the road. There are
then a series of sharp peaks, the lowest near 400 Hz, the ring frequency. Above the ring frequency
the peaks and mean slope are associated with the in-plane motion of the side-wall, i.e. the
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Fig. 3. Vertical dynamic stiffness/length: - - - input real part, — transfer modulus, —— input modulus.
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Fig. 4. Horizontal dynamic stiffness/length: - - - input real part, — transfer modulus, —— input modulus.

behaviour could be modelled as a plate excited in-plane [2]. The transfer stiffness and input
stiffness are similar except at the troughs.

2.6.2. Side-wall stiffness for horizontal excitation
The lateral stiffness is shown in Fig. 4. The static value, below 20 Hz is about a twentieth of the
vertical value seen in Fig. 3. This shows the shortcoming of pneumatic tyres, as lateral stiffness is
desirable for sharp vehicle handling but vertical stiffness only serves to transmit road noise.
The stiffness characteristic at higher frequencies is similar to the vertical excitation case, with
the in-plane motion dominant. In this frequency range, the side-wall is stiffer in the vertical
direction than the horizontal direction by a factor between two and three, as would be expected
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Fig. 6. Horizontal transfer stiffness modulus/length vs. side-wall angle: —— Orad, --- n/6rad, ——— =n/3rad, —

n/2rad.

from the angle of the side-wall to the horizontal, i.e.

cosX(¢,)/sin’(¢,) =3, ¢, =n/6.

2.6.3. The effect of inflation pressure

Fig. 5 shows the transfer stiffness to the hub from the road for various inflation pressures. The
norm is 2 bar which lies in the centre. If the pressure P is raised or lowered by a factor of two
the frequency stiffness changes accordingly. This is expected as the in-plane tension N; is
responsible for the static stiffness, and this is proportional to the pressure. Ny = Pa,, where ay is
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the side-wall radius. Above the ring frequency at 400 Hz the pressure has little influence as the
longitudinal stiffness is the dominant factor.

2.6.4. The effect of the angle of the side-wall, transverse excitation and vertical excitation

In Fig. 6 the angle that is subtended by the side-wall ¢, is varied between 0 (vertical profile) and
7/2 (semicircular profile). The length of the side-wall profile is maintained constant. The angle has
little effect on the static transverse stiffness until it softens as the angle approaches 0°. At this
position the side-wall behaves as a straight tensioned beam.

The trend is reversed for vertical excitation, seen in Fig. 7. The side-wall is stiffest when the
subtended angle is 0°, as it behaves as a plate driven in-plane. The softest value occurs when the
side-wall profile is semicircular when the angle is 7/2. On this superficial basis it would appear

10°

—
o
N

Dynamic Stiffness N/m/m
S

10° : :
10’ 10° 10° 10
Frequency (Hz)
Fig. 7. Vertical transfer stiffness modulus/length vs. side-wall angle: — Orad, --- n/6rad, ——— n/3rad, — n/2rad.
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Fig. 8. Vertical transfer stiffness modulus/length vs. side-wall thickness: —— 8 mm, --- 16 mm, — 2 mm.
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that maximising lateral stiffness and minimising vertical stiffness is achieved with the semicircular
profile. The vertical stiffness in this case is only three times greater than the horizontal stiffness, as
opposed to a factor of 20 of the standard case.

2.6.5. The effect of side-wall thickness

The side-wall can be regarded as an elastomer plate with nylon cords aligned approximately in
the radial direction to resist the pressure. An increase in wall thickness increases the weight and
bending stiffness but has little bearing on the tension forces and in-plane elastic forces.
Accordingly, Fig. 8 shows that apart from a slight increase in static stiffness the main effect of
increasing the thickness is to lower the natural frequencies and hence degrade the performance
over the whole frequency range.

3. The side-wall stiffness when excited by a travelling wave

In the previous section it was implied that the side-wall was excited in-phase over the length.
However, on a real tyre it is the in-plane and transverse wave motion of the belt that drives the
side-wall boundary. It is therefore necessary to modify the previous stiffness’ for the case of a side-
wall (or plate) excited by a wave at the boundary. Nevertheless this modification will have no
effect on the static stiffness’ discussed in the previous section, only on the characteristics above the
first side-wall resonance.

The example here will only include one wavetype and the shear waves generated by the belt
circumferential or longitudinal motion are chosen, being the most simple, described by a second-
order differential equation. It will be shown that the effects depend upon the relative sizes of the
side-wall (or plate), free wavenumber and the excitation wavenumber from the belt at the
boundary.

3.1. Complex wavenumbers normal to the boundaries

Fig. 9 shows an infinite orthogonal plate strip of width /,, representing the side-wall. The
wavenumber k,, across a strip of width /,, is very similar to that of the one-dimensional system of
the same length, considered previously. However, for the strip, the wavenumber k, has a larger
attenuation part due to the extra distance actually travelled between boundaries by the non-
normal wave front. Two methods of finding this damped wavenumber in the y direction are
obtained by considering the in-plane response of the strip to an inexorable x displacement
Ug exp(—ikx), travelling in the x direction at the boundary y = 0. The in-plane wave was selected
as it is the simplest description of the physics.

The plate has different free wavenumbers in the orthogonal directions x, y

ke = ky — ik,
ky = ky — ik, (35a,b)

Take for example, the x direction wavenumber. The real part is positive, describing the changing
phase of a wave progressing in the x direction. The imaginary part is negative, indicating the
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Fig. 9. Edge excited plate strip.

attenuation of the wave travelling in the x direction. The real component of the wavenumber in
the x direction k,, must correspond to the wavenumber of the imposed displacement at the
boundary at y = 0. The y wavenumber component IEy describes a free wave which satisfies the
boundary conditions at both y =0 and /,.

The imposed displacement causes a shear force Fy exp(—ik,x) at y = 0 and a transmitted shear
force to the rigid boundary at y = /,. The displacement at any point (x, y) for x>/, is the sum of
two plane waves, an incident plane wave coming directly through point (x,, 0), another reflected
wave comes through (0,0) via the other boundary at (/,/,). The phase of these waves depends
only on the x, y coordinates, but the amplitudes depend on the attenuation in the medium of the
two paths shown. The incident wave travels a distance in the x direction

X —Xx,=ycoth. (36a)

The reflected wave travels a distance in the x direction of
x=2l,—ycot0, (36b)

where [, = [, cot 0. Then Eq. (36b) can be written as x = (2/,, — y) cot 0. The incident wave begins
with amplitude A4 at the origin, and travels on the boundary without attenuation, and real
wavenumber k,, until x, when it enters the medium to be attenuated until the observation point
x,y. The reflected wave also leaves the origin with amplitude A4 but travels with attenuation
through the medium and suffers one reflection at y = /,, with reflection coefficient 7. These two
waves can be summed below to give the displacement at point x, y. The first term is the incident
wave and the second term is the reflected wave.

u(x,y) = A{exp(—ilgyy) + f'&i exp(ileyy)} exp(—ikyx). (37a)

This is now an equation for one-dimensional waves in the y direction; the complex wavenumber is
the same as before but now with extra attenuation dependent upon the angle of incidence to the
boundary 0

ky =k, — ik’ cot 0. (37b)

For normal incidence there is no extra attenuation, while for grazing incidence the attention
becomes infinite because of the increased path, i.e. /, becomes infinite. &, is the attenuation and
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phase change as the wave between the boundaries separated by distance /,
8, = exp(—ik,l,). (37¢)

The complex wavenumber léy can actually be found much more directly, but without physical
interpretation from the vector summation of wavenumbers seen in Fig. 9

by =\ =k, B =l +Fk. (38a,b)

The real and complex wavenumbers are defined in Eq. (35). It is to be noted that the purely real
wavenumber k, imposed on the boundary is used in Eq. (38a). If the loss factor #, in directions x
and y are the same, then Eq. (38b) becomes

e K+ k; 33
=Tvm (359)
By making this substitution into Eq. (38a) the modified wavenumber in the y direction is
A k X
k —7y\/1 — (n cot 0)* —in(1 +cot H)*, cot 9:1‘—'. (39)

y_\/1+172 ky

This is the alternative form of the modified wavenumber seen in Eq. (37). Eq. (38) or (39) is
more useful than Eq. (37) as it is applicable to any level of damping and any wavenumber
combination.

3.1.1. Travelling wave propagation (k> k) and light damping (n<1)
If k> k. a travelling wave is radiated into the plate by the edge excitation. If there is also light
damping (n<1), Eq. (39) reduces to

ky=ky<1—5—1 > cotB) (40)

showing increasing attenuation with angle of incidence, identical to Eq. (35).

3.1.2. Coincidence between the excitation and plate wavenumbers (k = k)
If there is light damping and there is matching of the excitation and the plate wavenumber in
the x direction (k = k), Eq. (39) becomes

ky = £k(1 — i), /z(%ﬂz). (41)

This represents an evanescent wave normal to the boundary if the positive root is selected.

3.1.3. Above coincidence between the excitation and the plate (k> k)
If the excitation wavenumber is greater than the plate wavenumber, waves cannot propagate
away from the boundary, and Eq. (39) becomes mainly imaginary as for an evanescent wave

- : K\ ke
ky:—lkx—|—11<k—Y> pnE (42)
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3.1.4. Boundary wave that is evanescent
If the excitation is an evanescent wave of the form Uy exp(—k,x), the excitation wavenumber
becomes purely imaginary and so Eq. (38a) becomes

ky =\ + 12 (43)

always giving a real wavenumber and radiation into the plate.

3.2. Input and transfer dynamic stiffness’

With the establishment of the wavenumbers it is now possible to find the transfer functions for
line excitation of a strip. This is achieved by matching the boundary conditions. If the boundary is
fixed at y = [,, Eq. (37a) yields a reflection coefficient 7 = —1, and becomes

u(x,y) = Afexp(—ikyy) — & exp(ik,y)} exp(—ikx). (44)
At y = 0 the displacement is U exp(—ik,x), therefore substitution into Eq. (44) gives
U
A= (45)
1 —a

thereby describing the general wavefield. The forces F or dynamic stiffness’ at position y, can be
found from the Hooke’s Law relationship

Ou
sy a >
where S, is the side-wall shear stiffness/length on the plane normal to the y direction. If this is

applied to Eqgs. (44), (45), then the force F at the line input, and the transmitted force F7 is given
from Eq. (46)

F=-§ (46)

Fo= _ssy{g_;‘} s _ssy{g_i} . (47a.0)
Y= Y=l

This yields the input dynamic stiffness Ky, and the transfer dynamic stiffness K

F . 1+6  F A o
20 _ Ky = iky Sy —2, T _ Ky = 21kySsyLA2-
-4 Uo 1—4;

(48a,b)

These are plotted in Figs. 10 and 11 for the side-wall data in Table 1. The dynamic stiffness’ are
shown for four different excitation wavenumbers to demonstrate above and below coincidence
behaviour described in Section 3.1.

For frequencies less than 100 Hz the wavelength in the y direction is too long for travelling
waves or standing waves, the behaviour is of a simple stiffness irrespective of the excitation
wavenumber. Above this frequency there is the possibility of propagating waves if the excitation
wavenumber k, is less than the free shear wavenumber k.

If the excitation wavenumber ratio k,/k; is zero, Eq. (48a,b) correspond to the expressions for
normal boundary excitation of a plate or end excited rod. When the wavenumber ratio &, /k; is 0.5
the result is similar to the zero angle case, with wave propagation and the resonant behaviour seen
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Fig. 10. Input shear stiffness modulus of an edge excited strip, varying excitation wavenumber k,, free wavenumber
ks ky/kyg ——0.5,——0.7,--- 1.0, — 1.4.
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Fig. 11. Transfer shear stiffness modulus of an edge excited strip, varying excitation wavenumber k,, free wavenumber
ks ky/kyg ——0.5,-———0.7, --- 1.0, — 1.4.

in Figs. 10 and 11. The only difference is that the real part of the wavenumber k,, is reduced in
accordance with Eq. (38) and the attenuation is increased in accordance with Eq. (40). This trend
is seen by comparison to the k,/k; = 0.7 case in the figures, where the natural frequencies are
raised and the attenuation increased for both input and transfer stiffness’.

At the coincidence condition k, /k; = 1, there is no propagating wave into the plate as the angle
of incidence is zero. Therefore no resonant behaviour is seen in the input or transfer responses,
and almost no force is transferred above the low-frequency stiffness region. Similar behaviour is
seen when k,/ky>1, a further increase in wavenumber ratio causes more attenuation.
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From the above discussion it appears that there is some scope in force transmission control by
using the side-wall and belt wavenumbers.

3.3. Modification of the vertical side-wall stiffness for the belt wavenumber

The procedure for modifying the vertical side-wall stiffness is the same as with the shear case
above, except that now three wavenumbers, seen in Fig. 2a, must be modified by the belt
wavenumber k., in Eq. (38a).

The belt wavenumber k, is the dominant travelling transverse wave of the belt. This wave is
selected from the belt dispersion curve in Ref. [3] and is displayed in Fig. 2a along with the
three original side-wall wavenumbers k1, k», k3. From inspection of this figure it is seen that the
belt wavenumber is only greater than the lowest root, for the longitudinal wave. Application of
Eq. (38a) therefore filters out this longitudinal wave. The effect of this filtering is seen in Fig. 12,
in which the original stiffness’, in Fig. 3, is plotted against the new stiffness’ obtained from the
modified roots.

At frequencies below 200 Hz there is no change, as the static stiffness does not involve travelling
waves. At higher frequencies there is a substantial reduction in stiffness and hence transmitted
force, as only the contribution from the transverse wave remains after the high impedance
longitudinal waves are no longer excited.

The side-wall stiffness has been described in terms of the side-wall properties and the dominant
belt wavenumber. As this belt wave is travelling in the frame of reference of the rotating tyre the
resulting side-wall stiffness’ should be independent of the tyre rotation speed.

The analysis so far assumes that the side-wall width is precisely the same over the whole
circumference. In fact there will be a slight fluctuation in width about a mean value. The effect of
this fluctuation is modelled by averaging nine transfer functions. Fig. 12 shows the effect of a
0.3% standard deviation in the plate strip width /;. For this 100 mm side-wall, the standard

10
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Dynamic Stiffness/length N/m/m

10

10*

10 10 10° 10*
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Fig. 12. Side-wall vertical stiffness modulus; modified for plate wavenumber: — input, - -- transfer, —— input 0.3%
error, transfer 0.3% error.
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deviation of the width was therefore 0.03 mm. It is interesting to see that the effect of the width
fluctuation has a similar effect as an increase in damping. A realistic side-wall model can therefore
be made without using particularly high damping values.

4. The force transmitted to the hub of a loaded tyre

Fig. 13 shows a loaded tyre of belt radius ¢ and a contact patch of length /., where /., = 20a.
The total force transmitted in the vertical direction F is the sum of three components
Fs=Fy +Fp+F,. (49)

F, is the force transmitted by the ‘free acoustic wave’ in the cavity, and is calculated in Appendix
A.l. Fo = 2K,1,w(0) is the force transmitted through the side-wall at the contact patch. The force
from the vibration of the unloaded belt F is an integral over the free belt length /,, weighted by
cos 0

2(n—0c) 2(n—0c)
F,=—-Q2K, + Ka)a/ w(c)cos 0dO + 2K0a/ u(c)sin 0d0, (50)
Oct Oct

where K, and K, are the side-wall stiffness’ in the radial and circumferential directions. The term
K, is the stiffness of the air in the cavity and is calculated in Appendix A.2. The associated belt
deflections are w,u. The term containing the circumferential stiffness and deflections will be
neglected here as being less than the radial term. The radial displacement is given in Eq. (36), [3],
as the sum of six wave amplitudes w,

w(e)={111111}Lyw,,
where

Ly = diaglexp(—ikp0) o explikppe) - 1p- 25 (51

u(s)
L w(s)

Fc

Fig. 13. Net force transmission to the hub due to a displacement on the contact patch.
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and
Opp = exp(_ikpb lb)9

where the unloaded tyre length /;, = 2(n — 0.). kp4, k) are the wavenumbers in the anti-clockwise
and clockwise directions for the pth wavetype. The integral /, for the clockwise or anti-clockwise
terms is the same, i.e.

1}, [h
I, =/ exp(—ikp,c)cos 0d0 or / opp eXplik,pc) cos 0do (52)
0 0
becoming for each wave
I, = _—lz{ocp(sin Ot 4 ik,acos Ou) + (sin Oy — ik,a cos O}, (53)
1 — (kpa)

where the subscript p = pa = pb. For the case of line excitation, 0 = 0, and Eq. (53) reduces to

I, {ikya(l — a,)). (54)

1
1= (kpya®)
This spacial filter mainly selects the p = 1 mode (rigid body translation), and the evanescent and

complex waves that exist near the input. The force from the unloaded belt is therefore given from
Eq. (50) and (53) as

6
Fy=QK,+KJa)_ Iw, (55)
p=1
a sum of the six waves. The amplitude of these waves depends on the boundary conditions [1]. The
total force from the contact patch and the free belt can now be found from Eq. (49).

5. Comparison of the model with measurements on a stationary tyre

Some tests were made on a smooth pressurised tyre to make comparison with the results from
the belt model in Ref. [3] and the side-wall model presented here. The main purpose of the
comparison is to see if it reproduces the physical phenomena observed on the tyre. Fitting of the
measurements to the model will give an estimate of the mean material properties of the cross-
section. Three types of test were made; the first uses a line excitation to select only the zero-order
waves on the belt, the second test uses point excitation on the belt, the third test attempts to
measure the force transmitted to the hub from excitation on the belt.

Measurements were made for all the transfer functions described above and the parameters of
the model were varied until a reasonable fit was made to the transfer functions with a single data
set. This final parameter choice used in all the predictions is given in Tables 2 and 3.

5.1. The test arrangement

Fig. 14 shows a schematic diagram of a test arrangement on a pressurised tyre on a hub bolted
horizontally to a steel block weighing 200 kg. This type of mounting is needed for measurements
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Table 2
Side-wall parameters from measured data

Parameters Symbol Size equation Units
Internal pressure P 2 x 10° N/m?
Side-wall thickness 15 0.85 x 1072 m
Side-wall length I 0.1 m
Side-wall angle @, 0.68 rad
Contact angle oy 0.36 rad
Tensile force/width Ny P x a; N/m
Shear modulus Gy 2.5 x 10° N/m?
Shear stiffness/width S Gy X 1 N/m
Bending stiffness/width By G, x /4 Nm
Axial stiffness/width Ay 4.5 % 10° N/m
Belt mass/area Uy 9.35 kg/m?
Rotational inertia/width I g X 1212 kg
In-plane shear loss factor Ny 0.2

Transverse, bending shear loss factor N, 0.1

Tension loss factor Nz 0.04

Table 3

Belt parameters from measured data

Parameters Symbol Size equation Units
Internal pressure P 2 x 10° N/m2
Belt thickness t 1.6 x 1072 m
Belt outer radius a 0.3 m
Cavity inner radius ay 0.18 m
Belt width b 0.18 m
Tensile force/width N, N. Eq. A4 [3] P x [;/20 N/m
Shear moduli G, G. 3 % 107 2 % 107 N/m?
Shear stiffness/width S, S. G, xt G. xt N/m
Bending stiffness/width B, B. 90 90 N/m
Axial stiffness/width A, 1.8 x 10° 00 N/m
Belt mass/area u 20 kg/m?
Rotational inertia/width I, I. uxt/3 uxt/3 kg
Bending and shear loss factor N, n. 0.1 0.1

Acoustic loss factor Mg 0.04

Axial loss factor N, 0.2

Tension loss factor N Ny 0.04 0.04

of transmitted force. The excitation was band-limited white noise from an electro-dynamic exciter.
For most tests the loading was applied on a line across the belt, designed to preferentially excite
the one-dimensional, m = 0, belt waves. This load spreader was made of plywood of 0.01 m width,
and was glued to the belt. The mass, including the belt section directly beneath, was 0.095kg. The
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Fig. 14. Schematic arrangement for tyre tests.

load spreader exhibited a resonance at 8 kHz, below which the measured data can be assumed to
be associated with a mass-less line loading. The input force and acceleration were measured with
piezo-electric transducers attached to the load spreader. The transfer mobilities were measured
to the diametrically opposite position at 180°, by attaching the accelerometer to a wooden
square section rod glued across the belt width. This arrangement selects the m = 0 waves, also the
increased area over that of a point measurement permits the use of a heavier and more sensitive
accelerometer than could be used otherwise.

In-plane excitation was also used to measure the in-plane input line mobility. This was done by
gluing the load spreader tangentially to the belt with an additional 0.1 m plywood rod attached to
provide access for the exciter. This arrangement does not give a force directly in line with the belt
neutral axis, as would be the case for the theoretical predictions, but rather the more realistic case
of a tangential force on the belt surface offset from the neutral axis.

The force transmitted to the hub was measured using a novel means, with 5 piezo-electric chips
operating as strain gauges, one glued axially to each of the radial hub elements. The idea was to
locate these as close as possible to the neutral axis for bending, thereby to be only sensitive to
radial in-plane forces. If the extraneous bending and shear forces are neglected the total force F,
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transmitted in the displayed test arrangement is
2n 47
FS=F1+(F2+F5)cos?+(F3+F4)cos?, (56)

where F| to F5 are the forces taken in an anti-clockwise sense from the excitation position. In a
calibration it was found that when a force F, was applied externally, 95% was transmitted by F,
4% by Fy + Fs, 1% by F3 4+ F4. Although the cosine weighting reduces the contribution from
normal and shear forces other than F, it would still appear that even in a more sophisticated
arrangement the force F; would remain dominant.

5.2. Radial and tangential line mobilities

These tests were designed to confirm the one-dimensional curved belt model. To select only the
one-dimensional waves the load spreaders described above were used for radial and also
tangential excitation.

The input line mobilities for radial excitation are compared in Fig. 15. At 80 Hz the belt rigid
body translation mode, n = 1, occurs. Below this frequency the tyre resists the line force as a
stiffness element. The measurement exhibits a resonance at 20 Hz, which is probably the rig
resonating laterally on the contact with the floor. Between 90 and 300 Hz translation belt modes
are seen. At the lower-frequency end the stiffness is from the belt tension and side-wall stiffness,
both dependent on the air-pressure. At the upper-frequency end the belt bending stiffness tends to
dominate. The fit between the theory and measurement is quite good both in level and frequency.

At higher frequencies, from 300 Hz to 1kHz the fit is not so good with an overestimate of a
factor of 1.5 at worst. The problem may be with the measurement, as the slope is greater than
(frequency) /> which is the expected value of an infinite beam in flexure. It is possible that the
load spreader is rocking slightly in this region and exhibiting a resonance around 1 kHz. Above

Mobility Yy (m/s/N)
S

10’ 102 10° 10*

Frequency [Hz]

Fig. 15. Measured and predicted radial line input mobility modulus: —— measured, — predicted.
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Fig. 16. Measured and predicted radial line transfer mobility modulus: —— measured, — predicted.

1 kHz the line from the theory becomes constant indicating stiffness controlled behaviour, which
was fitted to the levelling off in the measured curve.

Fig. 16 shows the comparison of the radial transfer measurements made at 180°. Below 400 Hz
there is a reasonable fit of the model to the measured data, as with the input measurement
discussed above. Above 400 Hz the major troughs at 350, 700 Hz and 1kHz are predicted quite
well. These are the peaks in side-wall dynamic stiffness seen in Fig. 12. At these frequencies
the side-wall acts as a dynamic absorber on the belt, preventing transmission around the
circumference. The troughs in the side-wall stiffness in Fig. 12 will prohibit transmission to
the hub at 250, 500 and 750 Hz but give no attenuation to waves travelling around the belt.

Inspection of the measured data also shows troughs at the intermediate frequencies of the
predictions, where maxima were expected. This is probably because the tyre is excited slightly
asymmetrically causing additional excitation to the belt rigid body transverse rocking waves,
this second mode group will cause attenuation at the extra set of anti-resonant troughs. This
may also explain why the predictions are overestimating by a factor of 3 in this region,
although this will also related to the underestimate at the input which was discussed above.
This hypothesis is supported by the single-point tests later. Figs. 15 and 16 suggest that both the
belt and side-wall models are giving a fair description of the physical behaviour for belt radial
motion.

Fig. 17 displays the tangential input line mobility from the measurement in comparison with the
prediction. At 50 Hz the belt rigid body rotation mode occurs, followed at 80 Hz by the rigid body
translation mode. The general trend then falls off to a dip at 180 Hz associated with the belt ring
frequency. This is lower than is usual for a tyre, indicating that this particular tyre is not very stiff
in the circumferential direction. The small peaks due to the transverse belt modes are also seen
superimposed on the general trend. Above 300 Hz the agreement in the trend deteriorates slightly
and the prediction underestimates the measurement. The reason for this is almost certainly
because the force is offset from the belt neutral axis giving an additional rotational excitation to
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Fig. 17. Measured and predicted tangential line input mobility modulus: —— measured, — predicted.

the belt translation waves. There is a resonance near 1 kHz as was suspected from the translation
measurements discussed previously. Despite these differences the prediction is nevertheless seen to
describe the correct overall behaviour.

5.3. Input and transfer mobility for point excitation

The belt was driven via a 1 in diameter aluminium disc. The disc diameter d limits the shortest
wavelength A that can be driven into the belt according to: 4>2d, and accordingly the upper
cross-belt mode order. In this case only waves with cross-belt mode order m <7 are included in the
model for comparison with the measurement. The excitation and response were set at /10 from
the centre line so that all the modes would be excited.

Fig. 18 shows a comparison of the measured and predicted point input mobility. Below 300 Hz
the response is dominated by the m = 0 waves that have been discussed above. At 330 Hz the
lowest symmetric mode m = 1, cuts on. An attempt has been made to fit the model to this. The
model then shows a second peak at 450 Hz from a side-wall mode, which does not appear in
the measurement. This suggests that the simple method of modelling the higher-order modes of
the section is not accurate, which was expected. The questionable assumption that the side-wall
can be modelled independently from the belt at all frequencies, as at the belt cut-on frequencies, is
clearly not correct. However on average, the agreement is quite good, indicating that overall the
model is acceptable, with problems only occurring at the cut-on of the low-order cross-belt modes.

The transfer mobility at 180° is displayed in Fig. 19. The comparisons for frequencies of
the peaks and troughs are quite good over the whole frequency range. As troughs above 300 Hz
are side-wall anti-resonances it can be concluded that the side-wall model must be representing the
low-frequency tension behaviour accurately. The predicted levels are not accurate, but the average
is near the measurement, which must be regarded as quite impressive for such a complex and
heavily damped structure.
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Fig. 18. Measured and predicted radial point input mobility modulus: —— measured, — predicted.
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Fig. 19. Measured and predicted radial point input mobility modulus at 180°: —— measured, — predicted.

5.4. The force transmitted to the hub

The tyre model presented here only includes the air indirectly, in controlling the belt and side-
wall tension. This is a good simplification for tyre surface vibration predictions, as confirmed from
the good fit between theory and experiment above. However, if the requirement is for force
transmission to the hub this model is no longer complete as the air in the cavity causes enhanced
transmission at three frequencies in the sensitive region for interior noise below 500 Hz.

This is investigated in Appendix A, by considering the cavity pressures generated by the surface
velocity, and ignoring the acoustic loading on the tyre surface. The most important of these effects
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Fig. 20. Measured and predicted hub force/input displacement: —— measured, — predicted.
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Fig. 21. Components of the hub force/input displacement: — total, --------- contact zone, - - - free belt, free
acoustic wave, — forced acoustic wave.

is the n = 1 acoustic cavity mode occurring when an acoustic wavelength fits around the cavity.
However the n = 1, belt flexural mode and the » = 0 ring mode have longer wavelengths than the
acoustic wave and therefore transmit forces to the hub via the stiffness of the entrapped air.
Some tests were made of the theoretical predictions for transmitted force via the two side-wall
components in Eq. (49), and the three structural/acoustic modes from Appendix A. The belt in
Fig. 14 was excited by 0.2 m line force along the centre line. The displacement directly above the
edge of the side-wall was obtained from the acceleration, and the force transmitted to the hub was
measured using the piezo-electric transducers. The force/displacement or ‘dynamic stiffness’ was
thereby obtained and are compared with the theoretical prediction in Fig. 20. Fig. 21 gives the
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four components of the theoretical prediction, which will be discussed before considering
the measurements. The contact length in Fig. 21 was taken as 0.1 m as this is more realistic for
typical tyre.

(1) The largest single component is the force which is transmitted directly through the 0.2m of
the contact zone. It has a stiffness characteristic dependent upon side-wall curvature and
tension until 200 Hz after which it is responsible for all the features above 400 Hz. This model
is rather crude in that the side-wall is assumed uniform and the tapering section is neglected.
However, the good fit with these measurements, and those on the belt, suggests that the
influence of tension, which is not greatly influenced by the taper, is dominant. The side-wall in
the contact zone supports most of the static load. The actual static stiffness will be
approximately 2K/, where /. is the contact length. The contact length is not calculated here,
but will be included in a later paper.

(i1) The next most important feature is the resonance around 230 Hz from the n = 1 acoustic
wave (‘free acoustic wave’). The calculation is made in Appendix A, where it is shown that the
excitation is mainly from the cavity cross-section deformation in the contact zone. The
remainder of the tyre carcass is assumed to be an inextensible rigid boundary. This
mechanism makes no other significant contribution.

(ii1) The vibration of the ‘free belt’ outside the contact contributes the n = 1 structural mode at
about 80 Hz, and other belt resonance frequencies below 150 Hz.

(iv) The ‘forced acoustic wave’, also calculated in Appendix A, represents the transmission to the
hub when the carcass motion is forced upon the air cavity. This only makes a significant
contribution when the carcass wavelength approaches that of the contained air. This happens
at two frequencies the » = 1 belt mode near 80 Hz and the belt ring frequency at about
200 Hz.

The measurements in Fig. 20 tend to confirm the predicted levels and to give a similar frequency
dependence. However, complete confirmation of the model was not achieved as there is an
impression that the curves are shifted by 20 Hz. The error seems to appear on the measurements,
as predictions of structural frequencies are confirmed by the measurements on the belt, and the
acoustic frequency is only a matter of geometry and must appear at 230Hz. There was
unfortunately a time constraint and only a single frequency response measurement taken, using
random excitation between 30 Hz and 3 kHz. The statistics for the low frequencies may therefore
not be reliable.

The prediction for the acoustic wave amplitude may be a little high as the tyre was only a driven
on the centre line rather than over the full belt width.

6. Conclusions

A complete tyre model has been constructed and tested. The model is composed of a curved belt
connected to a curved side-wall. The same wave equation is used for both components. The model
is applicable between 0 Hz and the first standing wave across the belt thickness, which means it
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has the capacity for both predictions of sound radiation in the 1-3kHz region and the low-
frequency vibration region below 500 Hz.

The side-wall was modelled here as the circular arc of variable angle which could be rotated to
give a variable angle of connection with the belt. Both parameters have quite a large influence on
the side-wall and belt tension. The side-wall model does not describe the bending well as the
thickness is assumed uniform, however in the lower frequency region this is not important as
tension dominates the response. When the side-wall is coupled to the belt, the in-plane
transmission through the side-wall does not seem to occur because the waves in the belt are too
slow to radiate vibration into it. The side-wall model modified to compensate for this effect gave a
reasonable fit for both belt vibration and transmission to the hub.

The model presented here does not directly include the air within the cavity in the coupled
equations, but this omission has little effect on the belt vibration. The effect of the air cavity was
included using uncoupled acoustic equations. It was found that the free acoustic wave causes a
resonance at 230 Hz, as is well known. There were also contributions from the stiffness of the air
at the belt » = 1 mode and the ring frequency.

The response for translation and in-plane forces are modelled, for both input and transfer
responses. The belt standing waves controlled the test tyre below 300 Hz; above this frequency the
side-wall and infinite belt behaviour were the main influences on tyre response.

A technique to measure average tyre cross-section properties, with a line input and response,
was successfully tested. Also a means to measure the force transmitted to the hub using piezo-
electric chips, was tested. For a stiff symmetric hub this method could probably be used with some
confidence.

The higher-order modes across the belt were modelled, but the cut-on frequencies are not
accurate because of the simplicity of the assumed cross-belt mode shape. This is the greatest
shortcoming in the model. However, the high-frequency response above 1 kHz and the noticeable
cut-on frequencies seem to be in agreement with the measurements.
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Appendix A. Force transmitted to the hub via the air cavity

The tyre model includes the air in the cavity indirectly, as the pressure controls the belt and
side-wall tension. However, the air is not included as an independent wave bearing medium. This
omission does not influence the belt vibration but it affects the force transmission to the hub in
two ways. First the n = 1 cavity mode, which causes an audible tone around 250 Hz within the
passenger compartment, is neglected. The second is the stiffening of the belt due to cavity
volumetric changes. Both of these effects are calculated here by considering the ‘free’ and ‘forced’
acoustic waves in the cavity, but an initial stage calculates the change in section area 64 due to
belt radial displacement w.
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Consider the tyre section of area 4 and inextensible side-wall of length /; seen in Fig. 22. The
sum of the two end segments has an area A,

Ay = @*(2¢, — sin 2¢). (A.1)
The central rectangle has area 4, = wgb. The side-wall radius and height are
I sin ¢
a; = , Wy = s, (A.2a,b)
26, b5
The total area is
The fractional change in area arising from a belt displacement w is
d4 d4, dqﬁ
A4
dw do¢, dw (AD
where
d4a, P <sin 2¢ ) dw
— = 1 —cos2¢, ], cos ¢, — sin
ag, =202\ 4, ). g g con 0. msin )

The general case of coupling between the carcass and the enclosed air, is obtained from the wave
equation of the enclosed air excited by the change in cross-section 04, calculated above. The tyre
is assumed to be inextensible, only the shape of the section controls the enclosed air volume.

Fig. 23a shows an element of length dc of the tyre cavity, where the increase in volume oV is
given in terms of the belt displacement w and air axial displacement u, as

dA4 0
SV =w-S2 de+ A 5. (A.5)
dw Oc
This is related to the dynamic pressure p, by the static pressure P and adiabatic gas constant y as
oV
= —yP . A.6
Pa " se (A-6)
The equation for horizontal equilibrium of force in the cavity is
)
pity = — La (A.7)

oc’

ls as

W Al q)s/
0, \ A

<
<

Fig. 22. Tyre cross-section.
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dc
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cross-section
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Fig. 23. Air cavity elements: (a) general case and (b) at the contact patch.

where p is the air density. The equation of motion is obtained by combining Egs. (A.5-A.7)
ow d4  Pu, | piy
dc Adw  0c  yP’

The forcing function due to volumetric change is on the left while the dynamic response of the air
is on the right.

(A.8)

A.1. The force transmitted to the hub from the contact patch

The solution to the wave equation is the sum of the forced and free solutions. The free solution
calculated here is obtained by setting the forcing function to zero, i.e.

0= 662:2 + Kug, (A.9)
where the acoustic wavenumber k, is defined as
kfl = ? E
0
Within the air cavity, seen in Fig. 23a, the solution to Eq. (A.9) takes the form
Uy = Ugq eXp(—ikyc) + uqy exp(ikyc), (A.10)

where u,, and u,, are the amplitudes of the anti-clockwise and clockwise waves at the contact at
0 = 0. The circumferential distance for the acoustic wave is ¢ = a,0. The radius for the acoustic
wave a, lies between the belt radius a, and the hub radius a;,. The wave amplitudes are found from
the two boundary conditions. The first is that symmetry may be invoked to give u, = 0 at ¢ = a,m.
Eq. (A.10) gives

Uy = —Ugg®®, o = exp(—ikaaym), (A.11)



R.J. Pinnington | Journal of Sound and Vibration 290 (2006) 133—168 167

where o is the attenuation and phase change of the wave travelling half a circumference; o is the
change over a complete circumference. At the contact where the belt displacement is wq the
acoustic displacement u, is given from volume conservation of the air in the shaded zone seen in
Fig. 23a

I dA
24dw’
where /. is the length of the contact, and the other terms are from Egs. (A.1)—(A.5). At the contact
where ¢ = 0, u, = u,, therefore

Uy = Wy (A 12)

Uq0
= A.13
The acoustic displacement at any point ¢ becomes
te=1 ““Oaz (exp(—ik,c) + o exp(ik,c)). (A.14)
The acoustic pressure is then found by using
Ouy
Pa=—T030 (A.15)
c
which on making the substitution from Eq. (A.15) gives
iy Pk, . .
Pa _ 7% (oxp(—ikyc) + o explikyc)). (A.16)

U 1—0o?
The net force towards the hub is the weighted integral of the pressure around the cavity, which
after substitution from Eq. (A.12) becomes
F, 1iyPkyabl, dA

wo  1—o2 Adw™’

I= / (exp(—ikyc) + o exp(ik,c))cos 6.d6. (A.17)
0

The integral I becomes

I ikaa,(1 — o?)

. A.18
1 - (kaaa)2 ( )
Therefore, the net force to the hub from the acoustic wave is
F, dA  yP(k.a,)*
A 1Pkada) (A.19)

Wo AW = (kpa,)*

The main feature is a single peak when k,a, = 1, the frequency at which there is a single acoustic
wavelength in the cavity. Acoustic damping within the cavity will give k, an imaginary
component that will control this peak level.
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A.2. The force transmission by the acoustic wave forced by the belt

The other component of the transmitted force is caused by the action of the free belt waves on
the acoustic space. This effect is calculated from Eq. (A.8) by considering the forced solution of
acoustic displacement u, and pressure p, to the excitation function from the belt, seen on the
left-hand side. The belt radial displacement is composed of three pairs of waves p = 1,2,3 of
amplitude w, and wavenumbers k,. The belt waves and associated forced acoustic waves have
the form

3 3 3
w= Z wp exp(Fik,c), u, = Z ug(Fikyc), p, = Z Pap(Fikyo). (A.20)
1 1 1
Eq. (A.8) becomes
. dA4
ik wp = ugp(ky — k). (A.21)
By substitution from Eq. (A.15) the acoustic pressure for the pth clockwise or anticlockwise
wave is
w’p dA4
=————=——W,. A.22
pap ki _ k]zj AdW W[J ( )
The stiffness/length of the air K, that acts on the belt and the hub is the product of the pressure
and the belt width b

papb _ CUzpb dA4
W o ki — k;Adw'

K,= (A.23)
This can be added to the side-wall radial stiffness 2K, in Eq. (50) to give the total force
transmission to the hub. It can be seen that only the long wavelengths, when k,>k,, associated
with the belt in-plane motion will give stiffness coupling. These waves are only important at the
belt n = 1 mode and the ring frequency, when n = 0.
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