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Abstract

When a cantilever beam rotates about an axis perpendicular to its neutral axis, its modal characteristics
often vary significantly. If the geometric shape and the material property of the beam are given, the modal
characteristic variations can be accurately estimated following a well-established analysis procedure
employing assumed mode method or finite element method. In many practical design situations, however,
some modal characteristics are usually specified as design requirements and the geometric shape that
satisfies the requirements needs to be found. In the present study, certain modal characteristic requirements
such as maximum or minimum slope natural frequency loci are specified and the geometric shapes that
satisfy the requirements are obtained through an optimization procedure.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Cantilever beam-like structures can be found in many practical engineering examples. To design
such structures, it is necessary to calculate natural frequencies to avoid undesirable problems such
as resonance phenomena. It is a common practice to find the natural frequencies of stationary
structures if their geometric and material properties are given. Some cantilever structures (for
instance, turbine and helicopter blades), however, rotate during their normal operation. Due to
the rotational motion, the modal characteristics of cantilever structures often vary significantly.
Therefore, the variations of modal characteristics need to be estimated accurately for reliable
designs of the rotating structures.
Southwell and Gough [1] pioneered to investigate the modal characteristics of rotating

cantilever beams in 1920s, and their monumental work was followed by many theoretical and
numerical studies (see, for instance, Refs. [2–5]). More recently, advanced methods were
developed and more complicated effects (see, for instance, Refs. [6–12]) were considered to
analyze the modal characteristics of rotating structures. Using these methods, the modal
characteristics of rotating cantilever structures could be effectively analyzed if the geometric and
the material properties are given. However, in many practical design situations, the geometric
shapes of rotating structures need to be found (instead of being given) while their modal
characteristics are specified as design requirements (to avoid undesirable vibration problems).
Despite the best effort of the authors, research works on such inverse problems were rarely found
in literature.
The purpose of the present study is to find the optimal shapes of rotating cantilever beams that

provide some specific modal characteristics. Maximal or minimal increasing rate of a natural
frequency versus the angular speed could be one of the specific modal characteristics. In the
present study, the cross-section of the rotating beam is assumed rectangular and the length of the
beam is divided into multiple segments. The thickness and the width at every segment are assumed
to be cubic spline functions. The stage (the segment’s ends) values of the thickness and the width
are employed as design variables and optimization problems that include the design requirements
of specific modal characteristics are formulated. An optimization method that combines a genetic
algorithm [13] along with a gradient-based search algorithm [14] is employed to solve the
problems in the present study.
2. Derivation of the modal equations of a rotating cantilever beam

In the present study, a linear dynamic modeling method that employs hybrid deformation
variables (see Ref. [11]) is utilized to derive the equations of motion for rotating cantilever beams.
The following assumptions are employed. Firstly, the beam has homogeneous and isotropic
material properties. Secondly, the beam has slender shape so that shear and rotary inertia effects
are ignored. Finally, the stretching and the out-of-plane bending deformations are only
considered. These assumptions are made to simplify the modeling procedure and to focus on the
major interest of the present study, that is how to find the optimal shape of rotating beams that
satisfy certain design requirements of modal characteristics.
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Fig. 1. Configuration of a rotating cantilever beam.
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Fig. 1 shows the configuration of a cantilever beam fixed to a rigid hub (reference frame A) that
rotates with constant angular speed O about the axis of â3. In the figure, â1; â2, and â3 represent
orthogonal unit vectors fixed in the rigid hub; ~u denotes the elastic deformation of a generic point;
u and w denote the axial and the out-of-plane bending deformation components, respectively; and
s denotes the arc-length stretch (stretch along the deformed beam axis). The angular velocity of
the rigid hub A and the velocity of point O can be expressed as follows:

~oA
¼ Oâ3; ~vO

¼ rOâ2, (1)

where r denotes the radius of the rigid hub. Then the velocity of the generic point P can be derived
as follows:

~vP
¼ ½ _u�â1 þ ½Oðrþ xþ uÞ�â2 þ ½ _w�â3, (2)

where x is the distance from point O to the generic point in the un-deformed configuration.
In the present work, s and w are approximated (by employing the assumed mode method) as

follows:

sðx; tÞ ¼
Xm1
j¼1

f1jðxÞq1jðtÞ,

wðx; tÞ ¼
Xm2
j¼1

f2jðxÞq2jðtÞ, (3)



ARTICLE IN PRESS

H.H. Yoo et al. / Journal of Sound and Vibration 290 (2006) 223–241226
where f1j and f2j are mode functions, q1j and q2j are generalized coordinates and m1 and m2 are the
numbers of the generalized coordinates. Since the non-Cartesian variable s is approximated, the
following geometric relation needs to be employed to derive the equations of motion.

xþ s ¼

Z x

0

1þ
qu

qs

� �2

þ
qw

qs

� �2
" #1=2

ds. (4)

Using a binomial expansion of Eq. (4)

s ¼ uþ
1

2

Z x

0

qw

qs

� �2

dsþ ðhigher degree termsÞ. (5)

Differentiation of the above equation with respect to time gives

_s ¼ _uþ

Z x

0

qw

qs

� �
q _w
qs

� �
dsþ ðhigher degree termsÞ. (6)

By substituting Eqs. (5) and (6) (while neglecting the higher degree terms) into Eq. (2), the velocity
of the generic point P can be obtained as follows:

~vP
¼ _s�

Z x

0

qw

qs

� �
q _w
qs

� �
ds

� �
â1 þ O rþ xþ s�

1

2

Z x

0

qw

qs

� �2

ds

 !" #
â2 þ ½ _w�â3. (7)

The partial derivatives of the velocity of P with respect to the generalized speeds ( _q1i and _q2i) can
be obtained as follows:

q~vP

q _q1i

¼ f1iâ1 ði ¼ 1; 2; . . . ;m1Þ;

q~vP

q _q2i

¼ �
Xm2
j¼1

Z x

0

f2i;sf2j;s ds
� �

q2j

" #
â1 þ f2iâ3 ði ¼ 1; 2; . . . ;m2Þ:

(8)

Later, Eq. (8) will be employed to obtain the generalized inertia forces in the equations of motion.
Now, to obtain the generalized active forces in the equations of motion, one needs the strain

energy expression of the beam, which is expressed as follows:

U ¼
1

2

Z L

0

EA�
qs

qx

� �2

þ EIyy
q2w
qx2

� �2
" #

dx, (9)

where L denotes the beam length, E denotes Young’s modulus, A� denotes the cross-sectional area
and Iyy denotes the second area moment of the cross-section. With the assumption of neglecting
rotary inertia effect, the equations of motion can be obtained from the following equation:Z L

0

rA�
q~vP

q _qi

� �
�~aP dxþ

qU

qqi

¼ 0 ði ¼ 1; 2; . . . ; mÞ, (10)

where r denotes the density, qi consists of q1i and q2i, m is the sum of m1 and m2 and ~aP denotes
the acceleration of the generic point which can be obtained by differentiating the velocity
expression given in Eq. (7). Employing Eq. (10), the equations of motion can be finally derived
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as follows:

Xm1
j¼1

Z L

0

rA�f1if1j dx

� �
€q1j �

Xm1
j¼1

O2

Z L

0

rA�f1if1j dx

� �
�

Z L

0

EA�f1i;xf1j;x dx

� �� �
q1j

� rO2

Z L

0

rA�f1i dx

� �
� O2

Z L

0

rA�xf1i dx

� �
¼ 0 ði ¼ 1; 2; . . . ;m1Þ, ð11Þ

Xm2
j¼1

Z L

0

rA�f2if2j dx

� �
€q2j þ

Xm2
j¼1

Z L

0

EIyyf2i;xxf2j;xx dx

� �
q2j

þ
Xm2
j¼1

O2

Z L

0

rA�x

Z x

0

f2i;sf2j;s ds
� �

dx

� �
q2j þ

Xm2
j¼1

rO2

Z L

0

rA�
Z x

0

f2i;sf2j;s ds
� �

dx

� �
q2j

¼ 0 ði ¼ 1; 2; . . . ;m2Þ. ð12Þ

As can be observed from Eqs. (11) and (12), the bending equations are decoupled from the
stretching equations. Since natural frequencies of bending modes are much lower than those of
stretching modes, only the bending equations will be employed for the modal analysis. Using
matrix notation, the bending equations can be expressed as follows:

½M�f €q2g þ h½K
B� þ O2½KG�ifq2g ¼ 0, (13)

where the elements of ½M�, ½KB�, and ½KG� are defined as follows:

Mij �

Z L

0

rbhf2if2j dx, (14)

KB
ij �

Z L

0

E
bh3

12
f2i;xxf2j;xx dx, (15)

KG
ij �

Z L

0

rbhðxþ rÞ

Z x

0

f2i;sf2j;s ds
� �

dx, (16)

where b and h denote the width and the thickness of the rectangular cross-section, respectively.
The length of the beam is equally divided into n segments and the thickness and the width at every
segment are assumed as cubic spline functions, which can be expressed, respectively, as follows:

f iðxÞ ¼ at
i x�

ði � 1Þ � L

n

� �3

þ bt
i x�

ði � 1Þ � L

n

� �2

þ ct
i x�

ði � 1Þ � L

n

� �
þ dt

i ,

giðxÞ ¼ aw
i x�

ði � 1Þ � L

n

� �3

þ bw
i x�

ði � 1Þ � L

n

� �2

þ cw
i x�

ði � 1Þ � L

n

� �
þ dw

i ði ¼ 1; . . . ; nÞ. ð17Þ
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All the coefficients of the cubic spline functions (for the thickness and the width) can be
determined by the following conditions:

f i

i � L

n

� �
¼ hi; gi

i � L

n

� �
¼ bi ði ¼ 1; . . . ; nÞ, (18)

f i

i � L

n

� �
¼ f iþ1

i � L

n

� �
; gi

i � L

n

� �
¼ giþ1

i � L

n

� �
,

f 0i
i � L

n

� �
¼ f 0iþ1

i � L

n

� �
; g0i

i � L

n

� �
¼ g0iþ1

i � L

n

� �
i ¼ 1; . . . ; n� 1ð Þ,

f 00i
i � L

n

� �
¼ f 00iþ1

i � L

n

� �
; g00i

i � L

n

� �
¼ g00iþ1

i � L

n

� �
, (19)

f 1ð0Þ ¼ h0; g1ð0Þ ¼ b0,

f 001ð0Þ ¼ f 00nðLÞ ¼ 0; g001ð0Þ ¼ g00nðLÞ ¼ 0. (20)

By using the local spline functions, the global thickness function hðxÞ and the global width
function bðxÞ can be expressed as follows:

hðxÞ ¼
Xn

i¼1

f iðxÞuiðxÞ,

bðxÞ ¼
Xn

i¼1

giðxÞuiðxÞ, (21)

where

if x ¼ 0 then u1ð0Þ ¼ 1 and uið0Þ ¼ 0 ðia1Þ,

if x 2
k � 1ð Þ � L

n
;
k � L

n

� �
then ukðxÞ ¼ 1 and uiðxÞ ¼ 0 ðiakÞ.

Now by using the global thickness and width functions in Eq. (21), the elements of the mass and
the stiffness matrices shown in Eqs. (14)–(16) can be calculated and the modal analysis employing
Eq. (13) can be performed.
To verify the accuracy of the modal formulation (that is derived in this section), three test

problems are solved. Fig. 2 shows the shapes of the three cantilever beams and the corresponding
shape functions. The material and geometric data are given in Table 1. Numerical results obtained
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Fig. 2. Beam thickness variations of three cases of test problems.

Table 1

Comparison of the first natural frequency

Angular velocity Case I Case II Case III

Present ANSYS Present ANSYS Present ANSYS

0 2.3409 2.3405 2.6814 2.6812 0.58161 0.58124

10 2.9132 2.9128 3.2408 3.2407 1.7707 1.7698

20 4.1649 4.1651 4.4847 4.4852 3.3515 3.3457

30 5.6349 5.6371 5.9540 5.9562 4.9526 4.9374

(unit: rad/s).
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by the present method and a commercial code ANSYS are compared in Table 2. To obtain the
present results, the beam is divided into 10 segments in which the thickness is expressed with a
spline function. To obtain the results of ANSYS, the beam is divided into 50 segments in which
the thickness is expressed with a linear function. Table 2 shows that the numerical results obtained
by the two methods are in good agreement.
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Table 2

Material and geometric properties of the beam for test problems

Description Case I Case II Case III

Young’s modulus ðEÞ ðGPaÞ 70

Density ðrÞ ðkg=m3Þ 1:2� 103

Length ðLÞ ðmÞ 10

Width ðbÞ ðmÞ 0.3

Fixed end height ðh0Þ ðmÞ 0.3 0.3 0.1

Free end height ðhf Þ ðmÞ 0.3 0.1 0.3

Table 3

Material and geometric properties of the beam for optimization problems

Description Data

Young’s modulus ðEÞ ðGPaÞ 69.0

Density ðrÞ ðkg=m3Þ 2:71� 103

Length ðLÞ ðmÞ 0.4

H.H. Yoo et al. / Journal of Sound and Vibration 290 (2006) 223–241230
3. Formulation of optimization problems and numerical results

The natural frequencies of rotating beams can be determined from the angular speed as well as
the thickness and the width that consist of the cross-section. Thus, the natural frequencies can be
expressed as follows:

ok ¼ okðO;X Þ, (22)

where ok denotes the kth natural frequency, O denotes the angular speed of the rotating beam,
and X denotes the stage values of the thickness and the width, which are employed as design
variables. Thus, if a beam is divided into n segments, X can be expressed as follows:

X ¼ ½h0; h1; . . . ; hn; b0; b1; . . . ; bn�
T, (23)

where hi and bi represent the stage values of the thickness and the width from the fixed end to the
free end of the cantilever beam, respectively. The material and geometric properties of the beam
are given in Table 3. To obtain the natural frequencies, five bending modes are employed.
3.1. Problem to find the range of the first natural frequency of a rotating beam

The first problem is to find the range of the first natural frequency of a rotating beam when the
following constraints are given. The total volume of the beam needs to be not larger than
the initial volume and the thickness and the width have minimum values. To solve the problem,
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the objective function and the constraints are formulated as follows:

Min ðor MaxÞ o1ðOs;X Þ

s:t:

Z L

0

hðX ;xÞbðX ; xÞdxpLhinibini,

hðX ;xÞXhmin ð0pxpLÞ,

bðX ;xÞXbmin ð0pxpLÞ, ð24Þ

where Os denotes the angular speed; hinið¼ 0:002m and binið¼ 0:035mÞ denote the initial thickness
and the initial width; and hminð¼ 0:001mÞ and bminð¼ 0:0175mÞ denote the minimum thickness
and the minimum width of the cross-section. For this problem, the hub radius is given 0 and the
length of the beam is divided into 10 segments. Thus, the design variables consist of 22 elements.
Fig. 3 shows the minimum and the maximum first natural frequency loci of the rotating beam

when the angular speed increases from 0 to 300 rad/s. Therefore, the two loci embrace the possible
region of the first natural frequency of the rotating beam. To obtain the results in Fig. 3, two
optimization problems (to find the minimum and the maximum natural frequencies) for the
angular speed of 0 rad/s, are first solved with the given initial design variables. The optimum
values of design variables are then employed as the initial values to solve the optimization
problems for the angular speed of 0.1 rad/s. The same procedure continues until the angular speed
reaches 300 rad/s. Thus, 3001 sets of optimization problems need to be solved to obtain the
minimum and the maximum loci, respectively. Table 4 shows a typical set of numerical results for
the optimization problem. The initial and the optimal values of the design variables and the
objective function (to find the first minimum natural frequency) for the angular speed of 0 rad/s
are shown in the table. Fig. 4 also shows the convergence history of the objective function.
Figs. 5 and 6 represent the thickness and the width of the beam versus the length of the beam

for the minimum and the maximum first natural frequency results, respectively. The thickness and
the width variations along the beam length for the angular speed of 0 and 300 rad/s are shown in
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Table 4

Initial and optimal values of the design variables and the objective function

Initial values Optimal values

Design variables (m)

h0 0.002 0.00100

h1 0.002 0.00100

h2 0.002 0.00102

h3 0.002 0.00114

h4 0.002 0.00144

h5 0.002 0.00195

h6 0.002 0.00275

h7 0.002 0.00389

h8 0.002 0.00542

h9 0.002 0.00740

h10 0.002 0.00989

b0 0.035 0.01750

b1 0.035 0.01811

b2 0.035 0.01873

b3 0.035 0.01938

b4 0.035 0.02006

b5 0.035 0.02076

b6 0.035 0.02148

b7 0.035 0.02223

b8 0.035 0.02301

b9 0.035 0.02382

b10 0.035 0.02465

Objective function (rad/s)

64.019 13.190
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Fig. 4. Convergence history of the objective function.
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these figures. The minimum frequency results show that both the thickness and the width
gradually increase as the cross-section moves to the free end. The maximum frequency results,
however, show that the width fixes to the minimum value, bmin while the thickness varies with an
interesting curve. The thickness curve has three peaks that decrease as the cross-section moves to
the free end. These figures also show that the cross-section shapes that minimize and maximize the
first natural frequencies do not vary even if the angular speed varies. Figs. 7 and 8 show the
overall pictures of the beams for the minimum and the maximum frequency results, respectively.
To show cross-sections of the beams in detail, the thickness and the width are amplified two times
compared to the length of the beam.
It is well known that (as the angular speed increases) the natural frequencies of cantilever beams

with larger hub radius increase faster than those with smaller hub radius. To investigate the effect
of the hub radius on the optimal shape of rotating beam, problems with different hub radius
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values are solved. Fig. 9 shows the thickness and the width of the beam (that maximize the first
natural frequency) with three different radius values. The results show that the optimal shapes for
the three different radius values are identical. So, for other design problems, hereinafter, the hub
radius of the rotating beam is fixed as 0.
3.2. Problem with the fixed stationary first natural frequency constraint

In many structural design problems, the stationary first natural frequency (when the angular
speed is zero) often needs to be constrained to the initially given value. So one more constraint (as
a design requirement) is added to the previous problem. Thus, the objective function and
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Fig. 7. Beam shape that minimizes the first natural frequency.

Fig. 8. Beam shape that maximizes the first natural frequency.
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constraints are now given as follows:

Min ðor MaxÞ o1ðOs;X Þ

s:t: o1ð0;X Þ � o1ð0;X 0Þ ¼ 0,Z L

0

hðX ;xÞbðX ; xÞdxpLhinibini,

hðX ;xÞXhmin ð0pxpLÞ,

bðX ;xÞXbmin ð0pxpLÞ. ð25Þ
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Fig. 10 shows the minimum and the maximum first natural frequency loci of the rotating beam
when the angular speed increases from 0 to 100 rad/s. Thus, the two loci embrace the possible
region of the first natural frequency. As shown in the figure, the first natural frequency is
constrained to a value when the angular speed is 0 rad/s.
Figs. 11 and 12 show the thickness and the width of the beam versus the length of the beam for

the minimum and the maximum first natural frequency results. The thickness and the width
variations along the beam length with the angular speed of 100 rad/s are shown in these figures.
Figs. 13 and 14 show the overall pictures of the beams for the minimum and the maximum
frequency results, respectively. The thickness and the width are again amplified two times
compared to the beam length.
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Fig. 10. The first natural frequency range for the optimization problem including the first natural frequency constraint

at zero angular speed.
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Fig. 11. Thickness variations that minimize and maximize the first natural frequency (for the optimization problems

with an added constraint).

H.H. Yoo et al. / Journal of Sound and Vibration 290 (2006) 223–241 237
3.3. Problem to find a beam shape having a specified first natural frequency at a specific angular
speed with the fixed stationary first natural frequency constraint

As a typical design problem, the first natural frequency of a rotating beam at a specific angular
speed (usually this is the operating speed) is first determined to avoid undesirable problems like
resonance phenomena. Then the beam shape that satisfies the condition needs to be found. To
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Fig. 12. Width variations that minimize and maximize the first natural frequency (for the optimization problems with

an added constraint).

Fig. 13. Beam shape that minimizes the first natural frequency while satisfying the added constraint of the first natural

frequency at zero angular speed.
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solve such a design problem, the following formulation can be employed:

Min ½o1ðOG;X Þ � oG�
2

s:t: o1ð0;X Þ � o1ð0;X 0Þ ¼ 0,Z L

0

hðX ; xÞbðX ; xÞdxpLhinibini,

hðX ; xÞXhmin ð0pxpLÞ,

bðX ; xÞXbmin ð0pxpLÞ, ð26Þ
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Fig. 14. Beam shape that maximizes the first natural frequency while satisfying the added constraint of the first natural

frequency at zero angular speed.
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Fig. 15. A specified natural frequency condition at a non-zero angular speed that is located between the maximum and

the minimum natural frequency loci.
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where OG and oG are the specific angular speed and the corresponding first natural frequency. The
objective function is different from the previous problem but the constraint equations are same as
the previous one.
Fig. 15 shows two loci and a point: the maximum first natural frequency locus, the minimum

first natural frequency locus, and the point that satisfies o1ðOG;X Þ � oG ¼ 0. For this problem,
OG is given as 50 rad/s and oG is given as 90 rad/s. Of course, only the natural frequency that is
located between the minimum and the maximum frequency loci may be required for the design
problem. Fig. 16 shows the variations of the thickness and the width of the beam that has the
specific natural frequency at the specific angular speed and Fig. 17 shows the overall picture of the
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Fig. 17. Beam shape that satisfies a specified modal characteristic at a non-zero angular speed.

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40
0

1

2

3

4

5

H
al

f 
th

e 
th

ic
kn

es
s 

(m
m

)

Length (m)

 Thickness shape
 Width shape

0

5

10

15

20

25

H
al

f 
th

e 
w

id
th

 (
m

m
)

Fig. 16. Variations of the thickness and the width that satisfies a specified modal characteristic at a non-zero angular

speed.
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beam. The thickness and the width of the beam cross-section is again amplified two times
compared to the length of the beam.
4. Conclusions

In this study, an optimization method is employed to find the cross-section shape variations of
rotating cantilever beams that satisfy some specific modal characteristics. The beam is divided into
multiple segments and the thickness and the width are assumed as cubic spline functions at the
segments. The stage values of the thickness and the width are employed as design variables and
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optimization problems to find the design variables are formulated. Numerical results show that
there exist specific cross-section shape variations that satisfy certain modal characteristic
requirements. It is also found that the angular speed and the hub radius little influence the optimal
shapes of the rotating beams.
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