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Abstract

This paper presents an experimental investigation of seismic damage identification of a 38-storey tall
building model using measured frequency response functions (FRFs) and neural networks (NNs). The 1:20
scale reinforced concrete structure is tested on a shaking table by exerting successively enhanced ground
earthquake excitation to generate trifling, moderate, serious and complete (nearly collapsed) damage,
respectively. After incurring the earthquake excitations at each level, a 20-min white-noise random
excitation of low intensity is applied to the structure to produce ambient vibration response, from which
FRFs are measured for post-earthquake damage detection by means of the NN technology. Principal
component analysis (PCA) is pursued to the measured FRFs for dimensionality reduction and noise
elimination, and then the PCA-compressed FRF data are used as input to NNs for damage identification.
After a study on tolerance of PCA-reconstructed FRFs to measurement noise, different PCA
configurations are designed for overall damage evaluation and damage location (distribution) identifica-
tion, respectively. It is shown that the identification results by means of the FRF projections on a few
principal components are much better than those directly using the measured FRF data, and agree fairly
well with the visual inspection results of seismic damage during tests.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Civil engineering structures deteriorate with time and continuously accumulate damage during
their service life due to natural hazards such as earthquake, storm, fire, long-term fatigue and
corrosion. Many efforts have been made on health monitoring and damage assessment of civil
infrastructure for avoiding catastrophic structural failure and making proper decision on repair,
partial replacement or demolition. Among others, the vibration-based damage identification
technique has attracted significant interest for researchers and engineers in the past two decades
[1,2]. This approach usually uses measured change in natural frequencies and modal shapes to
evaluate change in physical properties that may indicate structural damage or degradation. Also,
vibration-based damage detection using measured frequency response functions (FRFs) has been
studied by a number of researchers [3–9]. As modal parameters (natural frequency, mode shape
and modal damping) are indirectly-measured test data, they could be contaminated by
measurement error as well as modal extraction error, and provide less information than FRF
data. In this sense, it is more reasonable and reliable to use directly-measured FRF data for
structural damage detection, particularly for structures with closely spaced modes. However,
identification accuracy of the FRF-based damage detection method depends heavily on the
selected frequency range. If improper frequency points are adopted, the measurement error may
seriously affect the identification results. Using the FRF data in the vicinity of resonant
frequencies is not necessary to provide the most reliable damage detection [10].
Neural networks (NNs) have been a promising computation tool for damage identification due

to their strong capabilities in pattern recognition and classification, data interpretation, function
approximation, etc. The combined use of FRFs with NNs for structural damage detection was
reported in the literature. For example, Wu et al. [11] studied the damage detection of a three-
storey frame by using selected frequency points of response spectrum as input to a neural
network; Chaudhry and Ganino [12] used frequency response data over a specified frequency
range to train a neural network for delamination identification in a beam structure; Manning [13]
trained a neural network using active member transfer function information to classify damage
and predict damage extent; Rhim and Lee [14] addressed damage detection using a neural
network with input data being transfer functions of auto-regressive model; Luo and Hanagud [15]
used FRF data obtained from PVDF sensors to train a neural network for delamination
detection; Chang et al. [16] constructed a signal anomaly index vector in terms of FRF data before
and after damage as input to a neural network for bridge damage detection. However, a
bottleneck remaining for the use of FRFs with NNs is the huge size of FRF data. Direct use of
full-size FRF data will lead to the neural network having a large number of input nodes, which
cause the problem of training convergency and computational efficiency. If only using partial
FRF data, improper selection of data points from frequency windows may result in the loss of
important information. In order to circumvent the above difficulty, Zang and Imregun [17,18]
recently proposed a novel approach to compress FRF data by principal component analysis
(PCA) within the framework of damage detection. They obtained size-reduced projections of
measured FRF data on significant principal components and used such compressed FRFs as
neural network input for structural damage detection.
This paper describes an experimental study to compare the identification accuracy of the combined

FRF and NN technique with and without PCA pre-processing when applied to seismic damage
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detection of high-rise building structures. A 1:20 scale model of a 38-storey residential building is
tested on a shaking table to subject to four levels of earthquake including minor earthquake,
moderate earthquake, strong earthquake and super-strong earthquake. Accordingly, the structure
suffers from trifling, moderate, serious and complete (nearly collapsed) damage, respectively. After the
earthquake excitations at each level, white-noise random excitation is applied to the structure to
imitate ambient vibration, and excitation accelerations at the base plate as well as response
accelerations at nine floors of the structure under the ambient vibration are measured for the purpose
of damage detection. FRFs of the structure are obtained in the healthy state and at different damage
levels. PCA is applied to the measured FRFs to find the principal components and to determine a
proper number of truncated significant components through comparing the reconstructed FRFs with
the original ones. The noise tolerance of the reconstructed FRFs using a few principal components is
studied by introducing additional artificial noise in the time-domain records of excitation and
response. Different PCA configurations are formulated as input to neural networks for overall
damage evaluation and damage location (distribution) identification, respectively. Identification
results using the PCA projections as input to neural networks are also compared with those obtained
by directly using the measured FRF data as input to neural networks.
2. Theoretical background

2.1. Dimensionality reduction of FRFs using PCA

PCA is a statistical technique that linearly transforms an original set of variables into a
substantially smaller set of uncorrelated variables that represents most of the information in the
original set of variables [19,20]. It can be viewed as a classical method of multivariate statistical
analysis for achieving a dimensionality reduction. Because of the fact that a small set of
uncorrelated variables is much easier to understand and use in further analysis than a larger set of
correlated variables, this data compression technique has been widely applied to virtually every
substantive area including engineering, biology, medicine, chemistry, meteorology, geology, as
well as the behavioral and social sciences.
Using an orthogonal projection, the original set of variables in an N-dimensional space is

transformed into a new set of uncorrelated variables, the so-called principal components (PCs), in
a P-dimensional space such that PoN. In other words, it seeks to project the high-dimensional
data into a new low-dimensional set of Cartesian coordinates ðz1; z2; . . . ; zPÞ. The new coordinates
have the following property: z1 is the linear combination of the original coordinates xi ði ¼

1; 2; . . . ;NÞ with maximal variance, z2 is the linear combination which explains most of the
remaining variance and so on. If exist P-coordinates which are actually a linear combination of N

(4P) variables, then the first P principal components will completely characterize the data and
the remaining N�P will be zero. The calculation is described as follows. Given the measurement
data sets fxgj ¼ fxj1; xj2; . . . ;xjNg

T ðj ¼ 1; 2; . . . ;MÞ, where T denotes transposition and M is the
total number of measurements, we form the N�N-dimension covariance matrix ½C� as

½C� ¼
XM

j¼1

fxgjfxg
T
j (1)



ARTICLE IN PRESS

Y.Q. Ni et al. / Journal of Sound and Vibration 290 (2006) 242–263 245
and perform singular value decomposition of ½C� as

½C� ¼ ½A�½L�½A�T, (2)

where ½L� is a diagonal matrix. The transformation to principal components is then accomplished
as

fzgj ¼ ½A�
Tðfxgj � fx̄gÞ, (3)

where fx̄g is the vector of means of the x-data. From the point of view of dimensionality
reduction, PCA works by discarding those linear combinations of the data which contribute least
to the overall variance or range of the data set.
In the present study, PCA is used to reduce the dimensionality of measured FRF data. With the

measured FRF vectors {x}j ðj ¼ 1; 2; . . . ;MÞ, it is easy to calculate the principal component
matrix [A] and their transformations {z}j ðj ¼ 1; 2; . . . ;MÞ by using the above formulae. In order
to determine how many principal components are enough for reserving most information of the
original FRF data, FRF reconstruction using only a few principal components will be conducted
firstly. The projection of the original frequency response function matrix ½HðoÞ�M�N which
consists of M FRFs and has N frequency points for each FRF, on the N principal components, is
given by [17,18]

½B�M�N ¼ ½HðoÞ�M�N ½A�N�N . (4)

The projection matrix [B] and the principal component matrix [A] can be portioned into two
sub-matrices with P significant principal components and (N�P) insignificant principal
components (which actually are trivial and thus not really principal) as

½B�M�N ¼ ½½B1�M�P
..
.
½B2�M�ðN�PÞ�, (5a)

½A�N�N ¼ ½½A1�N�P
..
.
½A2�N�ðN�PÞ�. (5b)

The frequency response function matrix can therefore be reconstructed for only P principal
components as

½HR� ¼ ½B�½A�
T

¼ ½½B1�M�P
..
.
½B2�M�ðN�PÞ�½½A1�N�P

..

.
½A2�N�ðN�PÞ�

T

ffi ½B1�M�P½A1�
T
P�N . ð6Þ

In addition to using different number of principal components for reconstructing FRFs, the
reconstruction of FRFs will also be carried out under a variety of noise levels to examine the noise
tolerance of PCA-compressed FRFs. Noise corruption in the original measured FRFs is attained
by adding the time-domain excitation and response signals independently with random variable
sequences of normal distribution.
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Fig. 1. Illustration of damage identification using NN.
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2.2. Damage detection using NN

Implementing the neural network technique for structural damage detection includes two
stages: the training stage and the detection stage, as shown in Fig. 1. When FRFs are used with
NNs for damage identification, the FRFs data of a structure in intact state and under a series of
given damage scenarios, obtained analytically or experimentally, are used as training samples to
train the neural network. The trained neural network is able to predict the damage state when a
new set of measured FRF data is presented as input to the trained network. However, direct use of
full-size FRF data will result in huge configuration of the network input layer which brings about
the problem of iteration divergency in training and computational inefficiency. In the present
study, the FRF projections on a small number of principal components obtained by PCA are
instead taken as input to neural networks for seismic damage detection of the tested structure. As
shown in Fig. 2, a three-layer feed-forward network with the Sigmoid activation function and
back-propagation algorithm is herein employed for this purpose. The configured network has
only one output node. When a set of FRF projections obtained from a structural region is fed as
testing samples into the network, its output indicates the damage severity at this specific region.
3. Shaking table tests

3.1. Experimental description

The tested structure, as shown in Fig. 3, is a 1:20 scale model of a typical high-rise residential
building in Hong Kong with the transfer plate system and large open-space at the lower stories.
The prototype building is a 38-storey reinforced concrete structure with 34 stories typical floors
supported by a transfer plate and a three-level podium. The scaled model, which is 2.370m long,
2.160m wide and 6.515m high, is constructed with Nos. 1–3 bottom floors, one transfer plate,
Nos. 4–38 typical floors, and Nos. 39–42 top machine floors. In the model structure, sizes of the
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concrete beams, columns, slabs and shear walls and core walls are strictly fabricated following the
dimensional scale ratio 1:20, and the structural materials (including additional masses and
reinforcements) are selected according to the similitude law. The section area and number of
reinforcements are designed to meet the requirement of the reinforcement ratio used in the
prototype building.
The model structure was tested on a 5m� 5m, 6-dof shaking table by exerting successively

enhanced earthquake waves (minor earthquake, moderate earthquake, strong earthquake and
super-strong earthquake excitations under rock, medium soil and soft soil site conditions).
Accordingly, it was subjected to seismic destroy extending from trifling, moderate, serious damage
till to complete (nearly collapsed) damage. These shaking table tests conducted in consecutive
stages with increasing magnitude of earthquake excitation are mainly for the purpose of
evaluating seismic performance of tall buildings in Hong Kong [21]. Fig. 4 shows the visual
inspection results of damage of the structure after experiencing four levels of earthquake
excitations. When the structure was subjected to minor earthquake excitations, fine ‘hair-line’
cracks were found in several structural members at the podium level (transfer plate). These cracks
were barely noticeable and the crackwidths were very small. When subjected to moderate
earthquake excitations, cracks previously appeared under minor earthquake excitation
propagated with slight increase in crackwidth. More importantly, new horizontal and diagonal
cracks were found between floors Nos. 4 and 8 above the transfer plate, indicating the shift of
structural damage to the stories above podium level. Under strong earthquake excitations, besides
increase in the crackwidths and propagation of the cracks found in moderate earthquake
excitations, more than 50 new cracks were found. Most of them appeared at stories above the
transfer plate and at the middle and upper stories. For example, cracks were found on the wall
and the central core at floors Nos. 8–10, and a penetrated horizontal crack was found on the wall
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Fig. 3. Tested tall building model.
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at floor No. 35. When subjected to super-strong earthquake excitations, integrity of the structure
was destroyed. The failure is mainly due to complete separation of an end shear wall at the vicinity
above the transfer plate. Horizontal cracks appeared on the surfaces of the floor slabs in all the
stories, with the severest cases at floors Nos. 4–10.
After experiencing each level of earthquake excitations, the structure was subjected to white-

noise random excitation of low intensity at its base to generate ambient vibration, and the
excitation and response under the ambient vibration were measured for structural damage
identification. A total of 27 accelerometers are distributed uniformly along the height to track the
ambient vibration response at south–north direction (direction-X) and east–west direction
(direction-Y). In order to facilitate damage location, the structure is divided into nine regions
along the elevation as shown in Fig. 3, each consisting of 4–5 floors. For each region, three
accelerometers are installed at one floor, respectively, at the west and east sides of floor plan in
direction-X and at the centre of floor plan in direction-Y. The 20-min white-noise random
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Fig. 4. Visual inspection of damage after four levels of earthquake excitations: (a) minor earthquake; (b) moderate

earthquake; (c) strong earthquake; (d) super-strong earthquake.
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excitation after each level of earthquake excitations was exerted in terms of six time segments,
each lasting about 3min. Because the level of the white-noise random excitation is considerably
low, it is regarded that the structure holds the same damage state during the six time segments.
The excitation and response accelerations during the ambient vibration were measured with a
sampling rate of 100Hz. Only the excitation and response records in direction-X are used in the
present study. Table 1 shows the sequence of the shaking table tests, including both earthquake
excitations (for seismic performance evaluation) and white-noise random excitations (for damage
detection), where ‘bi-direction’ implies simultaneous excitation of earthquake in directions-X and
Y. Stories with obviously observed cracks after each level of earthquake excitations are also
indicated in the table. It should be noted that several earthquake excitations (different site
conditions and different attack directions) have been exerted for each level, after which the 20-min
ambient vibration testing is conducted.

3.2. Measured FRFs

FRFs of the structure in healthy and damage states are obtained by low-intensity white-noise
random excitations. As mentioned earlier, each 20-min random excitation consists of six time
segments. One segment, which lasts more than 3min, contains more than 3� 60� 100 ¼ 18,000
sampling data in the time domain with the sampling rate of 100Hz. The FRFs are obtained with
the basic FFT length of 1024 points and the FFT average number of 1000. As a result, each FRF
contains 512 spectral lines. Six FRFs corresponding to the six time segments are obtained for the
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Table 1

Sequence of shaking table tests and observation of cracked stories

No. Damage cases (cracked

stories)

Excitation type Descriptions

1 No damage Modal test (a) Without artificial mass attached

2 (b) With artificial mass attached

3 White noise 20-min white noise excitation

4 Trifling damage (transfer

plate & C04)

Minor earthquake

excitations

(a) Bi-direction on hard soil site

5 (b) Bi-direction on moderate soft soil site

6 (c) Bi-direction on soft soil site

7 (d) Direction-X on hard soil site

8 (e) Direction-Y on hard soil site

9 (f) Direction-X on moderate soft soil site

10 (g) Direction-Y on moderate soft soil site

11 (h) Direction-X on soft soil site

12 (i) Direction-Y on soft soil site

13 Modal test After minor earthquake excitations

14 White noise 20-min white noise excitation

15 Moderate damage (C04,

C07 & C08)

Moderate earthquake

excitations

(a) Bi-direction on hard soil site

16 (b) Bi-direction on moderate soft soil site

17 (c) Bi-direction on soft soil site

18 (d) Direction-X on hard soil site

19 (e) Direction-Y on hard soil site

20 Modal test After moderate earthquake excitations

21 White noise 20-min white noise excitation

22 Serious damage (C04,

C07, C08, C10, C25, C30

& C34)

Strong earthquake

excitations

(a) Direction-X on hard soil site

23 (b) Direction-X on moderate soft soil site

24 (c) Direction-X on soft soil site

25 Modal test After strong earthquake excitations

26 White noise 20-min white noise excitation

27 Complete damage (C04,

C07, C08, C10, C15, C25,

C30, C34 & C39)

Super-strong earthquake

excitations

(a) Direction-X on hard soil site

28 (b) Direction-X on moderate soft soil site

29 (c) Direction-X on soft soil site

30 Modal test After super-strong earthquake excitations

31 White noise 20-min white noise excitation
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healthy state and for each damage state. Fig. 5 shows the measured FRFs of the structure in
healthy and different damage states, which are generated using the response at floor No. 38 in
direction-X subject to the base excitation in the same direction. It is seen that the damage not only
changes the resonant frequency, but also makes a reduction of the resonant peak.
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(c) moderate damage; (d) serious damage; (e) complete damage.
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4. Compression of FRFs using PCA

4.1. Selection of principal components

The present study uses FRF information as input to NNs for structural damage detection.
Because the size of the FRF data (9� 3 measurement points, six segments for each case, and 512
spectral lines in each FRF) is prohibitive for a direct use, PCA is applied as a pre-processing to
reduce the data dimensionality. The most significant principal components obtained from FRFs
contain those features which are dominant in most of the frequency responses. In order to
determine an appropriate number of principal components which can represent the original FRFs
well, the reconstruction using a different number of principal components are investigated.
Firstly, a total of five FRF matrixes corresponding to no damage, trifling damage, moderate
damage, serious damage and complete damage cases are generated, where each matrix has six
rows consisting of FRFs from the six measurement segments and 512 columns equal to the
number of spectral lines in each FRF. Then, by combining the above five matrices, we yield a
30� 512 matrix consisting of 30 FRFs which represent both healthy structure and four damage
cases. Subsequently, with the use of Eqs. (1)–(6), the principal components are calculated and
FRFs are reconstructed using 5, 13 and 30 principal components, respectively, as shown in
Figs. 6–8.
It should be noted that both the original FRFs and reconstructed ones plotted in the above

figures are average of the six FRFs for each healthy or damage case. When only five principal
components are used, the FRFs cannot be reconstructed well. Reconstructed FRFs by 13
principal components can represent the original FRFs well as a whole. When using 30 principal
components, the reconstructed FRFs are almost identical with the original ones. In conclusion,
the more principal components used, the better FRF reconstruction. Considering that 13
principal components are enough to account for most of features in the original FRF data, we use
these principal components for the subsequent noise-tolerance investigation and seismic damage
identification.
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Fig. 6. Original and reconstructed FRFs using five principal components: (a) healthy; (b) moderate damage.
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Fig. 7. Original and reconstructed FRFs using 13 principal components: (a) healthy; (b) moderate damage.
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Fig. 8. Original and reconstructed FRFs using 30 principal components: (a) healthy; (b) moderate damage.
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4.2. Tolerance to measurement noise

As opposed to the most significant principal components containing dominant features,
measurement noise corrupted in excitation and response signals will be represented by the less
significant components. In other words, reconstructing the frequency response by using only a
limited number of principal components should perform data compression as well as remove the
majority of noise. In order to study the noise-tolerant property of PCA, a set of normally
distributed random sequences with zero mean and s standard deviation are added to the original
time-domain excitation and response records directly, to simulate additional measurement noise.
Let xðtÞ denote the original time-domain signal and rðsÞ a sequence of man-made random noise,
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the noise-corrupted ‘measurement’ is obtained as

x̄ðtÞ ¼ xðtÞ þ rðsÞ, (7)

where the standard deviation s is herein taken as 0.01 and 0.05 to represent low and high noise
level, respectively. The excitation and response signals are corrupted with the noise samples
independently.
Figs. 9 and 10 illustrate the original and reconstructed FRFs of the healthy structure at floor

No. 38 in low and high noise levels, respectively. The reconstructed FRFs are obtained using the
first 13 principal components. For each noise level, random sequences are added independently to
the measured excitation and response to produce 30 FRFs corrupted with man-made noise as
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Fig. 9. Original and reconstructed FRFs in low noise level (s ¼ 0:01): (a) original FRFs; (b) reconstructed FRFs.
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Fig. 11. Comparison of FRFs obtained under different noise levels: (a) original FRFs; (b) reconstructed FRFs.
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shown in the figures. In the low noise case, the original FRFs have considerable fluctuation due
to the noise, whereas the reconstructed ones have much smaller fluctuation. The 13 principal
components retain prevailing features of the origin FRFs while discarding the trivial variation
caused by noise. When the high level noise is introduced, fluctuations of both the original FRFs
and reconstructed ones become more significant than those in the low noise corruption case. The
fluctuation is so large as to mask the variation of the original FRFs with frequency. Nevertheless,
the reconstructed FRFs in this noise level represent the variation detail favourably and are quite
consistent with each other. It means that PCA is eligible for filtering unwanted measurement
noise. In Fig. 11, two original FRFs corresponding to the low and high noise levels are plotted in
the same diagram, which is also the case for reconstructed FRFs. It is seen that the original FRFs
vary significantly with the increase of noise level, whereas the reconstructed ones keep a high
consistency, even in the high frequency range. This observation attests again that PCA is capable
of reducing the dimensionality of the original FRF sets with reserving most of the information
and highly tolerant to measurement noise. Thereafter, PCA-compressed FRF projections will be
used as input to NNs for seismic damage identification of the tested structure.
5. Damage identification using NNs

5.1. Overall damage assessment

Damage identification of the tested structure includes overall seismic damage assessment and
damage location (distribution) evaluation. For overall damage assessment, three neural network
input configurations are designed for comparative study. The first scheme is to use 13 and 30
directly measured FRF points around the first resonant frequency (4.68Hz) as network input,
respectively. Apparently in this scheme only partial information over a specified frequency range
rather than all information on the whole FRF is utilized. In the second scheme, a few principal
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component projections of FRFs measured at one specific floor are taken as network input. Here,
we adopt 13 principal components of FRF obtained from floor No. 38. The third scheme for
overall damage assessment is to utilize the complete information of FRFs obtained from all nine
measurement points at floor Nos. 4, 10, 15, 21, 25, 30, 34, 38 and 42. Based on 13 principal
components extracted from each measurement point, a total of 13� 9 ¼ 117 principal component
projections are grouped together, which contain the information of nine FRFs and spatial
configuration. However, an input vector consisting of 117 elements seems still too burdensome for
network training. A twofold-PCA strategy is thus proposed. PCA is executed again on the
obtained 117 principal component projections, and 30 principal component projections obtained
from the second PCA are used as network input. For distinction, the three schemes are referred to
as direct FRF method, once-PCA method and twofold-PCA method, respectively. In all the three
schemes, the three-layer feed-forward network is configured to have 15 nodes in the hidden layer
and one output node indicating overall damage severity.
The training samples of neural networks are usually obtained by numerical simulations

using an analytical or finite-element model of the structure [11] or directly obtained from
model experiments [22]. In order to obtain analytically generated training samples for the
present study, finite-element models of both the healthy structure and the earthquake-
damaged structure are needed. However, it is found that for the tested tall building model it is
extremely difficult to establish finite-element models of the earthquake-damaged structure
after experiencing various levels of earthquake excitations, due to the lack of appropriate
representation of cracking and ductility performance. So we have no alternative but to use
experimental data as training samples of the neural networks. As mentioned earlier, six ambient
vibration measurement segments have been obtained after the structure experiences each
level of earthquake excitations. Data of the first three segments are used herein to train the
neural networks, while data of the second three segments are used for damage evaluation.
Because the ambient vibration data were obtained after the structure experienced several
earthquake events at each level, the training samples can be understood corresponding to several
damage states rather than one damage state. However, such obtained training samples are still
limited and may be not enough for learning all damage patterns. It also results in the testing
samples for damage evaluation exercise being not significantly different from the training samples
in the sense that they are experimentally derived under identical damage states. As a result, good
performance for such testing samples does not necessarily indicate good generalization capability
of the trained neural networks. But the damage evaluation results still provide a good
experimental validation and performance comparison of using PCA-compressed FRF data and
directly using measured FRF data as input to neural networks for damage identification,
respectively.
In order to study identification accuracy under different noise levels, all the measurement

signals are additionally corrupted by artificial random noise sequences with s ¼ 0:01 and
s ¼ 0:05, respectively. For each noise level, 100 sample sets of time-domain excitation and
response signals are produced by adding the first three measurement segments with random
sequences for neural network training, and another 100 sample sets are independently generated
from the second three measurement segments for damage evaluation use. There is no overlap
between the 100 training samples and the 100 testing samples. To quantitatively define damage
extents for the five cases, the target output in neural network training phase is specified as
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Table 2

Neural network target output and permitted actual output for damage evaluation

Damage cases Specified target output Permitted actual output

No damage (N) 0.1 o0.2

Trifling damage (T) 0.3 0.2–0.4

Moderate damage (M) 0.5 0.4–0.6

Serious damage (S) 0.7 0.6–0.8

Complete damage (C) 0.9 40.8
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Fig. 12. Identification results by direct FRF method (30 FRF points, s ¼ 0:05).
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a definite value, whereas the actual output in testing (damage detection) phase is defined as a
permitted range, as shown in Table 2. If and only if the network output for a testing sample lies in
the permitted range corresponding to the respective damage case, we count that testing sample as
correct identification.
Figs. 12–14 show the predicted output by neural networks using the three schemes, where N, T,

M, S and C denote testing samples of no damage, trifling damage, moderate damage, serious
damage and complete damage cases, respectively. The damage severity is correctly predicted when
the neural network output is within the permitted range of the corresponding damage level. It is
observed that the damage evaluation results by twofold-PCA method are the best and the results
by direct FRF method are the worst. Table 3 gives the correct identification times out of 500
testing samples and the identification accuracy (IA), which is defined as the ratio of the number of
correct identification times to the total number of testing samples. It is found that when using
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Fig. 13. Identification results by once-PCA method (13 PCs, s ¼ 0:05).
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Fig. 14. Identification results by twofold-PCA method (30 PCs, s ¼ 0:05).
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PCA methods, the identification accuracy in the case of high noise level is almost same as that in
the case of low noise level. This demonstrates again the function of PCA as a noise filter. The
twofold-PCA method achieves identification accuracy over 98% for both low and high noise
cases.
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Table 3

Number of correct identification times and IA for overall damage assessment

Damage case Direct FRF method Once-PCA method Twofold-PCA method

n (with s ¼ 0:05) s (using 13 PCs) s (using 30 PCs)

30 13 0.01 0.05 0.01 0.05

N 82 (100) 65 (100) 97 (100) 93 (100) 100 (100) 100 (100)

T 72 (100) 54 (100) 87 (100) 88 (100) 100 (100) 99 (100)

M 21 (100) 18 (100) 91 (100) 90 (100) 99 (100) 98 (100)

S 68 (100) 43 (100) 87 (100) 85 (100) 98 (100) 97 (100)

C 82 (100) 56 (100) 99 (100) 97 (100) 97 (100) 97 (100)

S 325 (500) 236 (500) 461 (500) 453 (500) 494 (500) 491 (500)

IA (%) 65.00 47.20 92.20 90.60 98.80 98.20

Y.Q. Ni et al. / Journal of Sound and Vibration 290 (2006) 242–263 259
5.2. Identification of damage location and distribution

For damage location and distribution identification, a total of nine neural networks are
configured with the same architecture as used for overall damage assessment. The 13 principal
component projections extracted from each of nine FRFs are not grouped with each other.
Instead, they are separately used as input to the nine neural networks. Accordingly, the damage at
floors near a certain measurement point can be indicated by output of the respective network. All
the nine neural networks are trained by using measurement data of the healthy structure, with the
target output being the baseline value 0.1 for no damage case. With such trained neural networks,
it is expected that the more damage occurs near a certain measurement point, the farer output of
the respective network deviates from the baseline value. A damage index DIi is thus defined, for
the ith (i ¼ 1; 2; 3; 4) damage case, as percentage deviation of the predicted output relative to the
baseline value:

DIi ¼
Odi � 0:1

0:1
� 100%, (8)

where Odi is the output of neural network in the testing phase, 0.1 is the baseline value of no
damage case. Thereafter, the damage location and distribution under a specific damage case can
be indicated by the values of Odi from nine measurement points. The higher Odi of a certain floor,
the more damage occurs near that location.
A total of 2700 samples from the nine measurement points (300 for each location) are generated

for damage detection testing. Fig. 15 shows the DI1 value for trifling damage case. It is seen that
most of DI1’s are about 1%. Some fluctuation in the diagram is attributed to neural network
training error, which is also the situation for other damage cases. Small value of DI1 at all
locations is due to the fact that in this case only minor damage occurs at a few columns around the
transfer plate. Fig. 16 shows the DI2 value for moderate damage case. It is seen that the DI2 value
below the 38th floor has an obvious deviation from the corresponding DI1 value for trifling
damage case, especially at 4th–10th floors. It implies that after moderate earthquake attack,
considerable damage has been developed at the bottom portion from 4th to 10th floors. Fig. 17
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shows the DI3 value for serious damage case. The value of DI3 at 15th–34th floors has a great
increase in comparison with the corresponding value of DI2, indicating that severe damage has
occurred at middle and upper stories after strong earthquake excitation. Fig. 18 shows the DI4
value for complete damage case. Extremely large value of DI4 is found at 4th–15th floors, which
agrees with the observation that during super-strong earthquake excitation the damage at the
bottom portion extended dramatically to make the structure nearly collapsed and completely
unrepairable. In each damage case, the average value of 300 DIi’s corresponding to one location
has also been calculated to define a ‘damage distribution profile’, as plotted with dashed lines in
the above figures. As a whole, the identified ‘damage distribution profile’ coincides fairly well with
the visual inspection results of damage.
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6. Conclusions

An experimental investigation has been conducted to examine the combined FRF and NN
technique for seismic damage identification of tall building structures. The 38-storey model
structure was tested to subject to four levels of earthquake action corresponding to minor,
moderate, strong and super-strong earthquakes. After experiencing each level of earthquakes,
low-intensity white-noise random excitation, which imitates post-earthquake ambient vibration
monitoring, was exerted on the structure for the measurement of FRFs. PCA was then pursued to
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reduce the dimensionality of FRF data by extracting essential features and disregarding unwanted
measurement noise, which provided a better alternative for neural network implementation based
on FRFs. Different NN architectures have been configured for both overall damage evaluation
and damage location (distribution) identification of the tested structure. The following
conclusions are drawn from this experimental study: (i) PCA is a powerful tool for reducing
the size of measured FRF data. Even when a relatively small number of principal components are
used, the PCA-compressed FRFs appear to account for most of the original information. (ii) A
limited number of principal components retain prevailing features of the original FRFs, while
filtering most of unwanted measurement noise. As a result, the reconstructed FRFs and
subsequent damage identification results based on these few principal components are insensitive
to noise. (iii) Compared with the direct FRF method, PCA methods provide much higher
identification accuracy in damage assessment. Especially, the twofold-PCA method which utilizes
information from different sensors is able to afford an accurate assessment of overall seismic
damage. (iv) When sufficient sensors are distributed along the structure, the proposed method can
offer a satisfactory evaluation of damage location. On the whole, the seismic damage distribution
predicted by the proposed damage index is quite agreeable with the visual inspection results.
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