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Abstract

This paper investigates the interesting behaviour of a structure composed of identical Euler beams, joined
together in a fan-folded configuration with one end clamped and the other end completely free. It is shown
that when the structure comprises an even number of beams, all resonances occur in perfect pairs. When the
structure comprises an odd number of beams, some resonances occur in perfect pairs in addition to
resonances that coincide exactly with the natural frequencies of a single clamped–free beam unit. Moreover,
irrespective of the number of beams present in the structure, resonances occur in clusters each one of them
having a closed boundary at a clamped–free beam resonance and an open boundary at a free–free beam
resonance. For consecutive clusters, these boundaries are determined in alternation by the resonances of
free–free and clamped–free beams.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of structures having repeated resonances is both interesting and challenging. It is
well known that eigenvector derivatives can approach infinity with respect to certain parameters
where resonances coincide [1]. Structures that have almost perfect cyclic symmetry automatically
produce (most) of their natural frequencies in perfect pairs but their eigenvector derivatives
remain small. A structure is presented in this paper that comprises N beams, rigidly joined
together at their ends such that a fan-folded arrangement is achieved. One of the free ends of this
resulting structure is then clamped, see Fig. 1. This class of structures has a number of important
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Structure with two beams (the third, if any, is shown dashed).
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and potentially-useful properties (when it is assumed that the beams behave as simple Euler
beams). These structures are often found in the context of deployable structures for applications
in space and the findings of this paper may have relevance to such structures. However, the main
significance of this paper is that it provides a set of interesting theoretical test-cases of structures
(other than cyclically-periodic ones) which have repeated resonances and structures which have
very unusual distributions of modal densities. As far as the authors are aware, the first discussion
of such a structure (with N ¼ 2 only) was given in a presentation by Lallement in 1993 [2] on
structures having repeated resonances, although the actual structure is not mentioned in the paper
of the proceedings. This structure had been used extensively in the laboratory by colleagues of
Lallement (Piranda and Fillod in particular) but there appears to be no other reference regarding
this problem. For simplicity and without any loss of generality, the material of the structure is
assumed to be steel, although any isotropic material can be used. The degrees of freedom (dofs) of
the structure are assumed to be transverse deflections and in-plane rotations.
2. Analysis approach

The structure is analysed using the following methods:
(a)
 The Wittrick–Williams (W–W) algorithm [3], with a dynamic stiffness matrix obtained from
exact beam functions, to determine the number of resonances below a trial frequency. This is
useful especially in the case of structures having several beams as plotting of determinants of
larger matrices is not a good way to determine resonances. The W–W algorithm stems from
Rayleigh’s theorem that states that if a constraint is imposed on a structure the resulting
resonances are intermediate to those of the unconstrained structure. Using this algorithm, a
dynamic stiffness matrix [4], say KðotÞ, is constructed for a trial frequency ot. This matrix is
converted into an upper triangular form by Gaussian elimination without row interchanges.
The number of resonances, Nt, is then obtained by Nt ¼ ND þNC , where ND is the number of
negative elements on the diagonal of the triangular matrix (can also be determined from the
number of negative eigenvalues of KðotÞ), and NC is the number of resonances that are
exceeded by the trial frequency when the structure is constrained in such a way that all dofs
are zero. In this study, KðotÞ is generated for the connections dofs of the structure. Only one
element is taken along the length of each individual beam.
(b)
 The transfer matrix method, using exact beam functions to study the nature of the matrix that
is used to determine the resonances. This is a 4� 4 matrix, for any number of beams, very easy
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to handle and interpret. This approach is discussed in detail when looking into the nature of
the problem.
3. Analytical derivations

The exact beam function for the transverse deflections of a plane beam, [5], is given by

vðxÞ ¼ a sinðbx=lÞ þ b cosðbx=lÞ þ c sinhðbx=lÞ þ d coshðbx=lÞ, (1)

where a, b, c and d are constants to be determined, x is the distance from the origin as shown in
Fig. 2 and b4 ¼ o2l4rA=EI . Here E; I ;r and A are the elastic modulus, second moment of cross-
sectional area, mass density and cross-sectional area, respectively, and o is the natural frequency.
Assume that vLi, yLi and vRi and yRi are transverse displacements and rotations at the left and

right ends of ith beam, respectively, as shown in Fig. 2. Similarly, MLi, VLi and MRi, VRi are the
moments and shear forces at the left and right ends of the ith beam.
Let zRi ¼ fvRi yRi MRi VRig

T and zLi ¼ fvLi yLi MLi VLig
T so that one can write

zRi ¼ UzLi, (2)

where U ¼ UðlÞ is a 4� 4 transfer matrix [5], given by

UðlÞ ¼

C0 �lC1 �
l2C2

EI
�

l3C3

EI

�
b4C3

l
C0

lC1

EI

l2C2

EI

�
EIb4C2

l2
EIb4C3

l
C0 lC1

�
EIb4C1

l3
EIb4C2

l2
b4C3

l
C0

2
6666666666664

3
7777777777775
. (3)

Here

C0 ¼
coshðbÞ þ cosðbÞ

2
; C1 ¼

sinhðbÞ þ sinðbÞ
2b

; C2 ¼
coshðbÞ � cosðbÞ

2b2
l

vLi,VLi vRi,VRi

y

x

�Li,MLi �Ri,MRi

Fig. 2. Notation of the ith beam.
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and

C3 ¼
sinhðbÞ � sinðbÞ

2b3
.

It should be noted here that the transfer matrix, that can be used to derive the resonances, does
not depend on the constants coefficients (a, b, c and d) in Eq. (1). Once the resonances are
determined, these constants can be determined, which will be different for different beams [5]. In
this paper, however, mode shapes of the structures are not discussed.
Eq. (2) is used to derive the transfer matrix for structure having any number of beams, keeping

in mind that deflections are the same at the joining point while the moments and shear forces have
opposite signs at that point. Now the transfer matrices for structures having more than one beam
can be derived by adopting the following notations:

zR1 ¼ UzL1,

zR2 ¼ UzL2,

zR3 ¼ UzL3 (4)

and so on.
After defining

J ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2
6664

3
7775 and I ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775,

so that zR2 ¼ JzR1, and using Eq. (4) UzL2 ¼ JUzL1, which gives

zL2 ¼ U�1JUzL1 ¼ U2zL1, (5)

where U2 ¼ U�1JU .
It should be noted that1

UðlÞUð�lÞ ¼ I (6)

or

½UðlÞ��1 ¼ Uð�lÞ, (7)

so that

U2 ¼ Uð�lÞJUðlÞ. (8)
1zR1 ¼ UðlÞzL1 and zL1 ¼ Uð�lÞzR1 so that zR1 ¼ UðlÞUð�lÞzR1 or UðlÞUð�lÞ ¼ I .
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Eqs. (5) and (8) imply that

vL2

yL2

ML2

VL2

2
666664

3
777775 ¼

coshðbÞ cosðbÞ 0
l2

EIb2
sinhðbÞ sinðbÞ

l3FðbÞ
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0 coshðbÞ cosðbÞ
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3
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�
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VL1

2
666664

3
777775, ð9Þ

where FðbÞ ¼ sinðbÞ coshðbÞ � cosðbÞ sinhðbÞ and CðbÞ ¼ sinðbÞ coshðbÞ þ cosðbÞ sinhðbÞ.
Consider the structure having two beams first. Now, if the first beam is clamped at the left end

then the moment and shear force at the left end of the second beam are zero and Eq. (9)
becomes
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0
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which gives

0

0

� �
¼
� coshðbÞ cosðbÞ 0

0 � coshðbÞ cosðbÞ

" #
ML1

VL1

" #
.
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Equating the determinant of the 2� 2 matrix in the last equation to zero gives resonances of the
two-beams structure. This matrix clearly shows that the structure has repeated resonances. From
this matrix, the characteristic equation of the two beams structure can be written as

coshðbÞ cosðbÞ ¼ 0. (10)

Roots of this last equation are given by

ð2n� 1Þp
2

; where n ¼ 1; 2; 3; . . . .

Compare Eq. (10) with the characteristic equation for a free–free (F–F) beam, which is given by

coshðbÞ cosðbÞ ¼ 1 (11)

and with that of a clamped–free (C–F) beam given by

coshðbÞ cosðbÞ ¼ �1. (12)

Take the case when the function coshðbÞ cosðbÞ is decreasing. At b ¼ 0, the value of the function
is 1 after which it decreases to zero. It can be seen from Eq. (11) that b ¼ 0 gives the resonance of
an F–F beam. When this function passes through zero and reaches �1, the characteristic equation
of a C–F beam is satisfied, which means that this resonance is bounded below by the resonance of
an F–F beam and above by the resonance of a C–F beam. Similarly, when the function is
increasing, the resonance of two beams structure is bounded below by the resonance of a C–F and
above by that of an F–F. In this manner, an alternating behaviour for the bounds of resonances of
the structure, in terms of the resonances of an F–F and a C–F beam, is obtained. This can also be
seen in Fig. 3. In this figure, scaled values of the determinant of the dynamic stiffness matrix for
the connection dofs, i.e. translation and rotation at right end joint, is plotted. Scaling is carried
out using inverse sine hyperbolic function. It is seen that the resonances of the structure, zero
values of the determinant showing a double root at oi, where oi is the ith resonance of the
structure, are bounded below and above by the poles of the determinant which are resonances of
F–F and C–F beam, respectively. These poles correspond to the situation in which all the
connection dofs are zero [3], a case in which the structure converts to an F–F and a C–F beam,
and hence the determinant of the dynamic stiffness matrix becomes infinite. At these poles, value
of the characteristic polynomial changes from positive infinity to negative infinity and vice versa.
Next consider the case of a three-beam structure. Using the previous notations, the transfer

matrix for this structure is given by

U3 ¼ UðlÞJU2. (13)

After applying the boundary conditions, i.e. clamping one of the free ends, the 2� 2 sub-matrix
that determines the resonances of the three beams structure is

C0ð2 cosðbÞ coshðbÞ � 1Þ C1ð2 cosðbÞ coshðbÞ � 1Þ

C3ð2 cosðbÞ coshðbÞ � 1Þ C0ð2 cosðbÞ coshðbÞ � 1Þ

" #
.

The determinant of this matrix is given by ðC2
0 � C1C3Þðð2 cosðbÞ coshðbÞ � 1Þ2. It can be

seen that the first factor of this determinant corresponds to the resonances in a cantilever
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Fig. 3. Plot of the determinant for the two beams structure (scaled values of determinant against frequency (rad/s)).
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beam while the second term gives double roots. It can also be deduced that the double roots are
given by

1� 2 cosðbÞ coshðbÞ ¼ 0 or cosðbÞ coshðbÞ ¼ 1
2
.

After comparing this last equation with Eqs. (11) and (12), it is clear that the double roots are
bounded by the resonances of an F–F and a C–F beam as discussed earlier for the case of two
beams structure.
4. Generalization

4.1. Structures with even number of beams

In this section, the constant coefficients in the elements of the transfer matrix will be dropped
for simplicity as they do not affect the form of the matrices obtained for structures with different
numbers of beams.
Recall from Eq. (8) that

U4 ¼ U�1JUJU�1JU ¼ U2JU2.
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Since U2, as obvious from Eq. (9), can be written as (after dropping out the constant coefficients)

U2 ¼

a 0 b c

0 a d b

�b c �a 0

d �b 0 �a

2
6664

3
7775.

Hence

U4 ¼

a2 þ b2 � cd 0 2ab 2ac

0 a2 þ b2
� cd 2ad 2ab

�2ab 2ac �ða2 þ b2
� cdÞ 0

2ad �2ab 0 �ða2 þ b2
� cdÞ

2
66664

3
77775.

This matrix has some special features:
�

�

�

It has the same structure as U2.

�
 It has double roots
U4ð2; 4Þ

U4ð1; 4Þ
¼

U2ð2; 4Þ

U2ð1; 4Þ
;

U4ð2; 3Þ

U4ð1; 3Þ
¼

U2ð2; 3Þ

U2ð1; 3Þ
.

Now, it is assumed that the matrix, a modified form of the transfer matrix, for a structure with
2N beams, where N ¼ 1; 2; 3; . . ., is given by

U2N ¼

t 0 u v

0 t w u

�u v �t 0

w �u 0 �t

2
6664

3
7775 and
�
 It has the same structure as U2.

�
 It has double roots
U2Nð2; 4Þ

U2Nð1; 4Þ
¼

U2ð2; 4Þ

U2ð1; 4Þ
;

U2Nð2; 3Þ

U2Nð1; 3Þ
¼

U2ð2; 3Þ

U2ð1; 3Þ
.

Using the same convention,

U2Nþ2 ¼ U2JU2N ¼ U2NJU2

¼

atþ bu� dv bv� cu auþ bt avþ ct

bw� du at� cwþ ub awþ dt auþ bt

�ðauþ btÞ avþ ct �ðatþ bu� dvÞ bv� cu

awþ dt �ðauþ btÞ bw� du �ðat� cwþ ubÞ

2
666664

3
777775. ð14Þ

The three properties for this matrix are now proved.



ARTICLE IN PRESS

A.R. Khattak et al. / Journal of Sound and Vibration 290 (2006) 309–320 317
From third property of U2N , u=v ¼ b=c) bv ¼ cu; b=d ¼ u=w) bw ¼ du and hence cw ¼ dv.
It is also obvious that ðauþ btÞ=ðavþ ctÞ ¼ b=c; and ðawþ dtÞ=ðauþ btÞ ¼ d=b. All these relations
imply that U2Nþ2 also satisfies the three properties that are assumed for U2N . This completes the
generalization that structure having even number of beams have the repeated resonances.
4.2. Structures having odd number of beams

The modified transfer matrix for three-beam structure is given by

U3 ¼ UJU�1JU ¼ UJU2 ¼

AC0 �AC1 �BC2 �BC3

�AC3 AC0 BC1 BC2

�BC2 BC3 AC0 AC1

�BC1 BC2 AC3 AC0

2
6664

3
7775,

where Ci’s have the same usual notation as for the original transfer matrix with some
manipulation to the multipliers (stiffness and mass properties) to make the convention obvious. A,
B are polynomials in b. It is interesting to observe that the derived transfer matrix looks like a
Hadamard product2 of the transfer matrix of a C–F beam and a matrix O, where

O ¼

A A B B

A A B B

B B A A

B B A A

2
6664

3
7775

and A, B are the polynomials defined above.
The transfer matrix for 2N þ 1 number of beams, is given by

U2Nþ1 ¼ UJUN .

Here only one element of U2Nþ1 will be shown to be the product of the Uð1; 1Þ and a function,
gðbÞ, of b.

U2Nþ1ð1; 1Þ ¼
coshðbÞ þ cosðbÞ

2

� �
t�

coshðbÞ � cosðbÞ
2

� �
uþ

sinhðbÞ � sinðbÞ
2

� �
w,

where t, u and w are elements of U2N .

sinhðbÞ � sinðbÞ
2

� �
w�

coshðbÞ � cosðbÞ
2

� �
u ¼

w

2
sinhðbÞ � sinðbÞ � ðcoshðbÞ � cosðbÞÞ

u

w

n o

¼
w

2
sinhðbÞ � sinðbÞ � ðcoshðbÞ � cosðbÞÞ

b

d

� �
¼ f ðbÞðcoshðbÞ þ cosðbÞÞ.
2Corresponding entries of two matrices are multiplied together in such product.
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Hence

U2Nþ1ð1; 1Þ ¼
coshðbÞ þ cosðbÞ

2

� �
gðbÞ ¼ C0gðbÞ.

In this manner U2Nþ1 comes out to be

U2Nþ1 ¼

gðbÞC0 �gðbÞC1 �hðbÞC2 �hðbÞC3

�gðbÞC3 gðbÞC0 hðbÞC1 hðbÞC2

�hðbÞC2 hðbÞC3 gðbÞC0 gðbÞC1

�hðbÞC1 hðbÞC2 gðbÞC3 gðbÞC0

2
66664

3
77775.

Resonances of the structure having ð2N þ 1Þ beams are then given by the determinant of

U2Nþ1ð1: 2; 1: 2Þ or U2Nþ1ð3: 4; 3: 4Þ i:e: ðgðbÞÞ
2
ðC2

0 � C1C3Þ.

It is obvious from this matrix that a structure having (2N þ 1) beams will have double roots
together with resonances coinciding with those of a cantilever beam.
5. Discussion

The results of this study demonstrate valid patterns of the distribution of resonances for
different number of beams. The first group or cluster of resonances is bounded below by the first
resonance of an F–F beam and above by the first resonance of a C–F beam while the second
cluster is bounded below by the second resonance of a C–F beam while above by that of an F–F
beam. In this way the lower and upper bounds for the clusters are determined alternatively by the
resonances of F–F and C–F beam. It is also observed that these groups or clusters occur in groups
of two for structures having even number of beams, while for the structures with odd number of
Table 1

Distribution of resonances in clusters bounded by resonances of F–F and C–F
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Table 2

Resonances of F–F and C–F beams (for reference)

Beam type First Second Third Fourth

F–F ðAiÞ 645.8 1780.3 3490.2 5769.4

C–F ðBiÞ 101.5 636.1 1781.1 3490.1

A.R. Khattak et al. / Journal of Sound and Vibration 290 (2006) 309–320 319
beams one resonance of each cluster occurs exactly at the resonance of a cantilever beam. These
results are illustrated in Table 1 for structures having up to six beams and are derived by the W–W
algorithm. Here, Ai, Bi are the ith resonances of an F–F and a C–F beam, respectively, and bold
‘‘1’’ and ‘‘2’’ mean a single and a double resonance, respectively. There are forbidden zones that
are bounded by the resonances of the F–F and C–F. For reference, the natural frequencies for
F–F and C–F beams are given in Table 2 [6] for a beam having length equal to 1m and a square
cross section having sides equal to 20mm.
6. Conclusions
(a)
 The structures studied in this paper have repeated resonances that lie in well-defined clusters.
The total number of resonances in these clusters is equal to the total number of beams in the
structure.
(b)
 The clusters consist of resonances of multiplicity two for even number of beams. There are
solitary resonances at the resonances of C–F beam for structures with odd number of beams.
(c)
 All resonance frequencies are bounded by the resonances of F–F and C–F beams in an
alternating manner.
(d)
 The resonances tend to converge together as the frequency increases.

(e)
 A split is observed in the resonances if either a Timoshenko formulation of beam is used or the

beams are connected through an element of finite stiffness resulting in unequal deflections for
the two beams at the joining point.
(f)
 This class of structures can be considered as a test case for structures which have repeated
resonances and structures which have very unusual distribution of modal densities.
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