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Abstract

We derive a recursion formulae of transition probability of the noise-induced synchronization arising in a
pair of identical uncoupled logistic maps linked by common noisy excitation only. The formulae has a
delta-type stationary solution which represents the perfect synchronization with probability 1. The
stationary solution maintains under chaotic bifurcation while the escape times to reach the perfect
synchronization increase in the chaotic region. The escape times analysis implies existence of lower
dimensional dynamics around the perfect synchronization. We also provide a physical implementation of
the synchronization.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most surprising results of the last few decades in the field of the nonlinear dynamics
is that a dynamical system and its copies can be synchronized with each other when they are
linked by the common excitation only. For instance, the main idea of the chaotic synchronization
resides in sending the output of a driving system to response systems of the same structure whose
conditional Liapunov exponents are all negative [1,2]. Recently, stochastic counter parts of the
chaotic synchronization have also been developed, showing that common excitations as elements
see front matter r 2005 Elsevier Ltd. All rights reserved.

jsv.2005.03.010

ding author. Tel.: +81 286 89 6005x6071; fax: +81 286 89 6009.

ress: yoshidak@cc.utsunomiya-u.ac.jp (K. Yoshida).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

K. Yoshida et al. / Journal of Sound and Vibration 290 (2006) 34–47 35
of the original system are not necessary to produce the synchronization and can be replaced by
external noisy signals. This kind of noise-induced synchronization of the dynamical system with
its copies can easily be found in nonlinear systems, such as the discrete maps [3,4], the Lorenz
system [3], the Duffing oscillator [5], the single mode CO2 laser [6], and the uncoupled neurons [7].
One of the most important results in these studies is that the perfect synchronization may arise
under some suitable conditions [3,5,6]. Moreover, it also must be noted that the perfect
synchronization exhibits significant degree of robustness against mismatches in the copies such as
the parameters mismatch [5] and the independent random fluctuation of the copies [3,8].
Stability of the synchronization has been explored in terms of the error dynamics [9,10].

Fujisaka [9] proposed the general stability theory to characterize relationship between the
coupling strength and non-synchronized motion. Kim [10] estimated the critical parameter value
for the onset of on–off intermittency. These studies mainly focus on the coupled synchronization
or the master–slave interaction of coupled systems. In contrast to these studies, the stability for
uncoupled case has also been investigated by Pikovsky [11]. He investigated uncoupled one-
dimensional noisy maps and derive the scaling law of statistics of trajectory separation. In
addition, as another approach from random dynamical systems point of view [12], we have
already reported that the noise-induced perfect synchronization of the van der Pol systems, the
Duffing systems, and the nonlinear retarded systems can be characterized by point attractors of
random invariant measures [8,13], showing that if system and its copy are subjected to a common
sample path of the noisy excitation, their orbits belonging to the different coexisting fixed points
(or attractors), which are produced by the Hopf bifurcation [8,13], the saddle-node bifurcation,
and pitchfork bifurcation [8], lose their sensitivity of initial conditions, and consequently becomes
perfectly synchronized.
In these studies, however, the main interest involves long time behaviour of target systems to

characterize dynamical aspects of the synchronization, so that it seems that only a few sample
paths of the excitation are of interest in their investigations. This means that little attention
has been given to the question as to whether the synchronization occurs over all the sample
paths of the excitation. To solve this problem, Maritan and Banavar [14] employed the
Fokker–Plank equation of a pair of randomly forced continuous-time nonlinear systems to
provide rough estimation of existence of stationary joint probability distribution of the form
dðx� yÞ expð�bVðxÞÞ, which confirms the perfect synchronization of the pair of continuous-time
systems.
In contrast to the continuous-time case above [14], we focus on a pair of uncoupled discrete-

time systems and propose a recursive description of the perfect synchronization arising in the pair.
Our description will provide a discrete-time counterpart of the Fokker–Plank description given by
Maritan and Banavar [14]. From an engineering point of view, we mainly focus on periodic
response of the pair. That is, the perfect synchronization of the periodic pair implies that one can
synchronize coexisting engineering oscillators of the same specification by adding a common noisy
input only, instead of performing accurate setup of initial conditions of the oscillators. In this
paper, we first investigate stochastic properties of the noise-induced synchronization arising in a
pair of identical uncoupled logistic maps linked by common noisy excitation only. Although the
same system has already been studied by Maritan and Banavar [14] and Rim et al. [15], it seems
that their stochastic results on the logistic maps, obtaining the mean square distance or
probability densities of error dynamics, are computed from Monte-Carlo simulations. In contrast,
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we regard the response of the discrete maps as a Markov process and derive the joint probability
density of it in a recursive form. We then analytically show that the Markov process has an
absorbing barrier which corresponds to the perfect synchronization. The analytical result is in
good agreement with that of Monte-Carlo simulations. We also provide numerical estimations
of mean escape times and show that extent of attraction of the absorbing barrier are changed
under chaotic bifurcations. Furthermore, presence of lower dimensional dynamics around the
perfect synchronization is shown numerically and analytically. Finally, we propose a physical
implementation of the noise-induced synchronization and demonstrate the nearly perfect
synchronization arising in a pair of multivibrators linked by a common noisy input only.
2. Noise-induced synchronization

2.1. Synchronization of the logistic maps

We consider a synchronization system composed by a pair of identical uncoupled logistic maps
linked by common noisy excitation of the following form:

xnþ1 ¼ Anxnð1� xnÞ; ynþ1 ¼ Anynð1� ynÞ, (1)

where An is the noisy term which is uniformly distributed in the interval ½Ac � s;Ac þ s�. If s ¼ 0,
then system (1) coincides the deterministic logistic map with the constant parameter An ¼ Ac (8n).
In order to determine the range of s to be considered, the bifurcation diagram of the one-
dimensional logistic map:

xnþ1 ¼ Axnð1� xnÞ (2)

is shown in Fig. 1. From the diagram, we choose the centre value Ac ¼ 10=3 and strict the value of
s in the range 0psp0:2 to avoid the one-periodic domain, AoA0 � 3, in which the trivial
synchronization of system (1) occurs.
Fig. 2 shows a sample process of the synchronization system (1) whose noise intensity s is

changed from 0 to 0:2 at n ¼ 30. In the deterministic case for no30, the two-periodic responses xn,
Fig. 1. Deterministic bifurcation diagram of logistic map.
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Fig. 2. Noise-induced synchronization of the pair of logistic maps linked by common noisy excitation where the noise

intensity s is changed from 0:0 to 0:2 at n ¼ 30.
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yn of different initial values oscillate with the phase difference of period one. As s is changed to 0.2
at n ¼ 30, the responses xn, yn become synchronized with each other.
For further investigation, we introduce the transformation:

rn

sn

" #
¼

1 �1

1 1

� �
xn

yn

" #
.

Then, the original equation (1) is rewritten as

rnþ1 ¼ Anrnð1� snÞ; snþ1 ¼ An sn �
r2n þ s2n

2

� �
, (3)

where rn ¼ xn � yn represents error of the synchronization. In what follows, we refer to the new
equation (3) as an error system of the synchronization system (1).

2.2. Stability of the error system

We first examine the case for the fixed An ¼ Ac (8n). Based on the linearized form of the error
system (3) given by

drnþ1

dsnþ1

" #
¼

Acð1� snÞ �Acrn

�Acrn Acð1� snÞ

" #
drn

dsn

" #
,

the stability of the period two points of Eq. (3) is obtained. All the stable period two points for
Ac ¼ 10=3 are listed below.
Index
 Period two point
 Eigenvalue
FP1
 0; ð13�
ffiffiffiffiffi
13
p
Þ=10

� �ffiffiffiffiffip

�4=9
FP2
 � 13=10; 13=10
� �
�4=9
The trivial (FP1) and the nontrivial (FP2) solutions correspond to the synchronized and the
unsynchronized responses of the error system (3) respectively. It is clearly shown that both the
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Fig. 3. A sample process of the error system for A ¼ 10=3 where the noise intensity s is changed from 0:0 to 0:2 at

n ¼ 30.
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synchronized and the unsynchronized solutions have the same eigenvalue �4=9 which is a stable
eigenvalue of discrete maps. Therefore, in the deterministic case, there is no difference in stabilities
between the synchronized and the unsynchronized solutions.
By contrast to the deterministic case, the nontrivial solution (FP2) loses its stability in the

stochastic case where An is random. Fig. 3 shows a sample process of error system (3) starting
from the nontrivial solution (FP2). The noise intensity s is changed from 0 to 0:2 at n ¼ 30. In the
deterministic case for no30, the nontrivial solution (FP2) maintains the stability of the stable
eigenvalue�4=9. However, the nontrivial solution vanishes and the response jumps into the trivial
solution (FP1) as s is increased to 0.2 at n ¼ 30. The trivial solution after n ¼ 30 exhibits a strong
stability, that is, it is not randomly fluctuated and seems to maintain the constant value rn ¼ 0
while the original system (1) is randomly fluctuated by An.
This example makes it clear that the synchronization we consider cannot be characterized by

the deterministic stability analysis because the difference between the synchronized and the
unsynchronized solutions cannot be characterized by the same eigenvalue.
3. The Markov process generated by discrete maps

As another option to characterize the synchronization, we derive a recursion formulae which
determines the transition probability densities of the stochastic system (1).
3.1. The single map case

We start with the simplest case, that for the single logistic map with the random coefficient An

of the form:

xnþ1 ¼ Anxnð1� xnÞ. (4)

Let pnðxÞ, pnþ1ðxÞ, rðAÞ be the probability density function (PDF) of xn, xnþ1, An respectively,
and suppose that pnðxÞ is known, rðAÞ is known and stationary, and pnðxÞ and rðAÞ are
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independent. To avoid singularity, we also assume the condition 0oxno1 without loss of
generally because the trivial solutions x ¼ 0; 1 are not of interest in our investigation. Then, the
unknown density pnþ1ðxÞ is determined as follows [16].
We first introduce the transformation:

xnþ1 ¼ Anxnð1� xnÞ; y ¼ xn,

whose Jacobian is given by

qðxnþ1; yÞ

qðAn;xnÞ
¼ xnð1� xnÞ.

From the assumption 0oxo1, the transformation is holomorphic so that the unknown joint
PDF, pðxnþ1; yÞ can be determined by the known pðAn; xnÞ ¼ rðAÞpnðxÞ as

pðxnþ1; yÞ ¼
qðxnþ1; yÞ

qðAn;xnÞ

� ��1
pnðxÞrðAÞ.

Integrating it from 0 to 1 with respect to y, the desired pnþ1ðxÞ is obtained as the marginal PDF of
pðxnþ1; yÞ,

pnþ1ðxÞ ¼

Z 1

0

pðxnþ1; yÞdy

¼

Z 1

0

pnðyÞ

yð1� yÞ
r

x

yð1� yÞ

� �
dy. ð5Þ

Therefore, the transition law from pnðxÞ to pnþ1ðxÞ is obtained as the recursion formulae (5) which
governs the Markov process generated by map (4).

3.2. The linked pair case

Such a transformation of PDF also leads to the transition law of the synchronization
system (1), however, some additional trick is needed in this case. We thus start with the unlinked
form:

xnþ1 ¼ Anxnð1� xnÞ; ynþ1 ¼ Bnynð1� ynÞ. (6)

Let pnðx; yÞ be the joint probability density of xn and yn, and rðA;BÞ be that of An and Bn,
and suppose that the response is independent of the input at the same time, i.e.,
pðxn; yn;An;BnÞ ¼ pðxn; ynÞrðA;BÞ, and that r is stationary. Then, we introduce the following
transformation:

xnþ1 ¼ Anxnð1� xnÞ,

ynþ1 ¼ Bnynð1� ynÞ,

u ¼ xn; v ¼ yn

whose Jacobian is

qðxnþ1; ynþ1; u; vÞ

qðxn; yn;An;BnÞ
¼ xnynð1� xnÞð1� ynÞ.
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It is clear that the transformation is holomorphic in the domain 0oxn; yno1, so that

pðxnþ1; ynþ1; u; vÞ ¼
pnðu; vÞ

uvð1� uÞð1� vÞ
r

xnþ1

uð1� uÞ
;

ynþ1

vð1� vÞ

� �
.

Integrating pðxnþ1; ynþ1; u; vÞ from 0 to 1 with respect to u and v, we obtain the recursion formulae:

pnþ1ðx; yÞ ¼

Z 1

0

Z 1

0

pnðu; vÞ

uvð1� uÞð1� vÞ
r

x

uð1� uÞ
;

y

vð1� vÞ

� �
dudv. (7)

To rewrite the unlinked form (7) to the linked form corresponding to the linked pair of maps
(1), we assume the joint density rðA;BÞ of the form

rðA;BÞ :¼ rðAÞdðA� BÞ ¼ rðBÞdðA� BÞ, (8)

where the probability density rðAÞ of An and rðBÞ of Bn are assumed to be identical, i.e.,
rðAÞ ¼ rðBÞ, and d is the Dirac’s delta function with the following properties [17]:
(d1)
 dð�xÞ ¼ dðxÞ;

(d2)
 f ðxÞdðx� aÞ ¼ f ðaÞdðx� aÞ;

(d3)
 dðaxÞ ¼ jaj�1dðxÞ; more generally,
gðxiÞ ¼ 0 ði ¼ 1; 2; . . . ; nÞ

¼) d gðxÞð Þ ¼
Xn

i¼1

jdgðxiÞ=dxj�1dðx� xiÞ.

From definition (8), the probability of the event AnaBn equals 0 and the marginal density of it is
identical to the density rðAÞ ¼ rðBÞ, that is,Z 1

�1

rðA;BÞdA ¼ rðAÞ ¼ rðBÞ ¼
Z 1
�1

rðA;BÞdB.

This means that the value of the random variable An is identical to that of Bn with probability 1,
and thus assumption (8) reasonably corresponds to the situation where the pair of maps is linked
by the common noise An, as defined in Eq. (1).
Then, the linked version of (7) is obtained in the form:

pnþ1ðx; yÞ ¼

Z 1

0

Z 1

0

pnðu; vÞ

uvð1� uÞð1� vÞ
r

x

uð1� uÞ

� �
d

x

uð1� uÞ
�

y

vð1� vÞ

� �
dudv. (9)

Applying (d1)–(d3) to eliminate the delta function from Eq. (9), we finally obtain the recursion
formulae:

pnþ1ðx; yÞ ¼

Z 1

0

r
x

vð1� vÞ

� �
pn 1

2 1� Fð Þ; v
� �

þ pn 1
2 1þ Fð Þ; v
� �

yF
dv, (10)

where F :¼ Fðx; y; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4xvð1� vÞ=y

p
.

The recursion formulae (10) describes the transition law from pnðx; yÞ to pnþ1ðx; yÞ. This means
that the error among the synchronization system (1) generates the Markov process governed by
Eq. (10).
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4. Probability densities of the synchronization

4.1. A special solution for the perfect synchronization

We first assume a candidate of a stationary solution of Eq. (10) of the following form:

pnðx; yÞ :¼ dðx� yÞpnðxÞ ¼ dðx� yÞpnðyÞ,

where pnðxÞ is a solution of Eq. (5) which is the state probability density of the single map (4) at
the time n.
Put, a :¼ x=y, and

g1 :¼
1
2
1� Fð Þ � v; g2 :¼ v� 1

2
1þ Fð Þ,

pn
1 :¼ pn 1

2
1� Fð Þ; v

� �
¼ dðg1Þp

nðvÞ,

pn
2 :¼ pn 1

2
1þ Fð Þ; v

� �
¼ dðg2Þp

nðvÞ,

where Fðx; y; vÞ ¼ Fða; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4avð1� vÞ

p
: Then, zeros of gi ¼ giðaÞ are obtained as a simple

point a ¼ 1 ði ¼ 1; 2Þ, and the derivative of giðaÞ is

g0iðaÞ ¼ g0ðaÞ ¼
2vð1� vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4avð1� vÞ
p .

Therefore, from (d1)–(d3), we can rewrite pn
1, pn

2 as

pn
i ¼

1

jg0ið1Þj
dðx=y� 1ÞpnðvÞ ¼

jyj

jg0ið1Þj
dðx� yÞpnðvÞ

¼
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vð1� vÞ

p
2vð1� vÞ

dðx� yÞpnðvÞ ði ¼ 1; 2Þ. ð11Þ

Substituting Eq. (11) into Eq. (10), we have

pnþ1ðx; yÞ ¼ dðx� yÞ

Z 1

0

r
y

vð1� vÞ

� �
pnðvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vð1� vÞ

p
dv

vð1� vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vð1� vÞx=y

p .

Since dðx� yÞ ¼ 0 if xay;

¼ dðx� yÞ

Z 1

0

r
y

vð1� vÞ

� �
pnðvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vð1� vÞ

p
dv

vð1� vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vð1� vÞx=y

p
 !

x¼y

¼ dðx� yÞ

Z 1

0

r
y

vð1� vÞ

� �
pnðvÞ

vð1� vÞ
dv.

From Eq. (5), finally we have

¼ dðx� yÞpnþ1ðyÞ.

Therefore, it is proved that dðx� yÞpnðyÞ is a special solution of Eq. (10).
This special solution exactly corresponds to the perfect synchronization of xn and yn in system

(1) because from the definition of the delta function, the probability of the event, rn ¼ xn � yna0,
equals 0 and the density of unit volume is perfectly concentrated on the line rn ¼ xn � yn ¼ 0.
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In other words, values of the random variables xn and yn are perfectly synchronized with
probability 1.

4.2. Numerical examples

Fig. 4 shows the transient probability densities of the synchronization system (1) obtained by
Monte-Carlo simulations over 2� 107 samples of the numerical solution of Eq. (1) starting from
ðx0; y0Þ ¼ ð

13�
ffiffiffiffi
13
p

20
; 13þ

ffiffiffiffi
13
p

20
Þ which corresponds to one of the nontrivial solutions (FP2).

As the time n is increased, the initial density concentrated at the initial point ðx0; y0Þ becomes
diffused around. Meanwhile, a part of diffused density becomes captured by the peak on the line
rn ¼ xn � yn ¼ 0. The diffused density nearly vanishes until n ¼ 2000 and only the peak of the
form dðx� yÞpnðyÞ becomes alive.
This numerical result provides a phenomenological evidence of the stationary density of the

form dðx� yÞpnðyÞ generated by the synchronization system (1), and thus the analytical result is
confirmed. To this end, we can reasonably conclude that the perfect synchronization
corresponding to the trivial solution (FP1), rn ¼ xn � yn ¼ 0 can be identified as an absorbing
barrier of the Markov process. In view of this, the nontrivial solution (FP2) can be regarded as
(n=40)

0.5

1

x
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0.5

1

y

0

30

60
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0.5

1

x0

0.5

1

y

0
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300

p
n

(x
,y

)
p

n
(x

,y
)

Fig. 4. Numerical transient probability densities of the pair of maps for A ¼ 10=3, s ¼ 0:2 and for n ¼ 40; 2000. The
density is obtained from 107 samples of the numerical solution.
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local minima having a potential higher than that of the trivial solution confined on the absorbing
barrier.
5. Mean escape times under chaotic bifurcations

What has been probed in Section 4.1 is independent of the density of An. In other words, the
existence of the perfect synchronization does not depend on the parameters Ac and s. The
implication is that the synchronization system (1) may produce the perfect synchronization even
in the chaotic region of the logistic map. However, the proof guarantees the existence only, so that
the global stability of the solution dðx� yÞpnðyÞ is unknown yet. In particular, the extent of the
basin of attraction of the absorbing barrier x ¼ y directly affects applicability of the
synchronization to physical situations. From this point of view, we finally investigate escape
times to reach the absorbing barrier dðx� yÞpnðyÞ. The escape times are supposed to be roughly in
inverse proportion to the extent of attraction.
Fig. 5 shows the mean escape time hnðx0; y0Þi for s ¼ 0:2 and A ¼ 10=3; 3:6 where nðx0; y0Þ

represents the escape time in which a sample starting from ðx0; y0Þ reaches the absorbing barrier
x ¼ y. Symmetric parts with respect to the line x ¼ y are omitted in the plots. The average h� � �i is
Ac=10/3

01

 0

 0.5
x0

 0.5

 1

y0

 0

 300

 600

<
n(

x 0
,y

0)
>

Ac=3.6

01

 0

 0.5
x0

 0.5

 1

y0

 0

 1000

 2000

<
n(

x 0
,y

0)
>

Fig. 5. Mean escape times to reach the absorbing barrier x ¼ y, for s ¼ 0:2, and for Ac ¼ 10=3 in the two-periodic

region and Ac ¼ 3:6 in the chaotic region. Each point to plot is obtained from 2� 104 samples starting from the

uniform 60� 60 grid points. Symmetric parts with respect to the line, x ¼ y, are omitted.
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taken over 2� 104 samples of the numerical solution ðxn; ynÞ ð1pnp2000Þ of Eq. (1). The initial
points are placed on the uniform 60� 60 grids on the rectangle region ð0; 1Þ � ð0; 1Þ. For
numerical representation of the equality xn ¼ yn, the criterion jxn � ynjo10�15 is applied.
For Ac ¼ 10=3, the maximal mean escape time is estimated as maxðx0;y0Þ hnðx0; y0Þi

� 544:18o555. Thus, all of the averaged responses of different initial conditions reaches the
absorbing barrier before n ¼ 555. We can detect a set of zeros of hnðx0; y0Þi along the line x0 �

y0 ¼ 0 which corresponds to the perfect synchronization. This synchronizing set is surrounded by
the steep wall of a ravine like shape. The wall is ended by a flat part of the height hnðx0; y0Þi � 120.
The flat part is divided into several parts by oblique prisms like rises being placed symmetrically
with respect to the centre ð0:5; 0:5Þ. These rises imply that the extent of attraction of the barrier
xn � yn ¼ 0 as a function of ðx0; y0Þ has local minima. In particular, the right-hand side of the
larger two rises covers the two-periodic solution which causes the transient peak of densities as
shown in Fig. 4 for n ¼ 40. Besides all this, it is also important to note that there is the second
ravine along the line x0 þ y0 ¼ 1.
The second ravine implies the existence of lower dimensional dynamics along which it takes a

few iterations to reach the absorbing barrier. Indeed, the numerical estimation of the escape time
nðx0; y0Þ along the line x0 þ y0 ¼ 1 is obtained as

nðx0; y0Þjx0þy0¼1
¼

0 if x0 ¼ y0;

1 otherwise

�
(12)

for all of 2� 107 samples of the excitation. It follows numerically that nðx0; y0Þ is not random any
more on the line x0 þ y0 ¼ 1 and becomes the deterministic function which is locally constant in
the domain fðx0; y0Þ j x0 þ y0 ¼ 1; x0ay0g. Analytical explanation of it can easily be obtained by
the trivial fact: for any xn, yn, An, the condition x0 þ y0 ¼ 1 gives

ynþ1 ¼ Anynð1� ynÞ ¼ Anð1� xnÞxn ¼ xnþ1. (13)

Therefore, it is numerically and analytically shown that there exists the lower dimensional
dynamics where all the initial points on the line x0 þ y0 ¼ 1 reach the synchronizing set x0 � y0 ¼

0 in the unit step of iterations. It must be noted that this flow from points on x0 þ y0 ¼ 1 to the
perfect synchronization is not stochastic because of the deterministic law (13).
As Ac is increased to Ac ¼ 3:6, the sample path becomes chaotic, that is, the chaotic bifurcation

occurs. This is because the condition Ac ¼ 3:6 is within the chaotic region of the logistic map
already shown in Fig. 1. First of all, as shown in Fig. 5 for Ac ¼ 3:6, the first ravine along the
synchronizing set x0 � y0 ¼ 0 maintains even in the chaotic region, showing that the analytical
result is also valid for the chaotic case. It is also found that the second ravine along x0 þ y0 ¼ 1
maintains in the chaotic region because of the fact (13).
In the chaotic region, however, ripples of hnðx0; y0Þi disappear and the set of initial conditions

can be divided into only three parts: the flat of the maximal height hnðx0; y0Þi ¼ 2000, the first
ravine along x0 � y0 ¼ 0 of zero height, and the second ravine along x0 þ y0 ¼ 1 of unit height.
This means that the extent of attraction hardly depends on the initial conditions in this time
interval, that is, all the initial conditions out of the ravines cannot reach the synchronizing set
x0 � y0 ¼ 0 by the maximal iterations of this simulation.
The above result on the escape times makes it clear that the bifurcation from periodic to chaotic

behaviour reduces the attraction of the absorbing barrier while it does not affect the existence of
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the perfect synchronization and the lower dimensional dynamics. In other words, the perfect
synchronization exists even in the chaotic region but it is rarely produced by arbitrary initial
points although the convergence to the perfect synchronization might be slightly accelerated by
the lower dimensional dynamics.
6. Experimental synchronization

In order to provide an intuitive example of the synchronization in physical situations, we
propose the circuit shown in Fig. 6. The circuit consists of a pair of multivibrators of the same
physical structure, which are linked by the common noisy input V in only. The input V in is a
Gaussian white noise with zero mean. The root square mean voltage of V in is changed from 0 to
0.3V(rev/min) at t ¼ 40 s and from 0.3 to 0V(rev/min) at t ¼ 80 s. It should be noted that
0.3V(rev/min) is 16.7% of the peak-to-peak voltages of the outputs Vx;Vy. The physical
parameters are selected as V cc ¼ 5V; C ¼ 47mF; R1 ¼ 22 kO; R2 ¼ 330O.
Fig. 7 shows the experimental data of the output Vx;Vy of the pair of multivibrators. In the

absence of noise before t ¼ 40 s, the multivibrators oscillate with slightly different periods due to
experimental errors. In contrast, in the presence of noise from t ¼ 40 s, they rapidly become
synchronized with each other while lower voltages of the outputs are randomly fluctuated by the
noisy input V in. When the noisy input is removed at t ¼ 80, the multivibrators oscillate with
slightly different periods again.
The most important point here is that the synchronization is nearly perfect even in this

experimental situation. Although we have to note that our analytical model based on
logistic maps is too simple to explain this experimental synchronization, we believe that our
circuit provides an intuitive example to understand how to construct the perfect synchronization
in physical uncoupled systems linked by external noisy inputs only. Further experimental
investigation based on more precise models will be shown in our future studies.
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Fig. 6. The pair of multivibrators subjected to the common noisy input voltage V in. The output voltages Vx and Vy are

measured.
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Fig. 7. Experimental synchronization in the pair of multivibrators. The noisy input V in is applied from t ¼ 40 to 80.

K. Yoshida et al. / Journal of Sound and Vibration 290 (2006) 34–4746
7. Summary and concluding remarks

We have demonstrated that the pair of identical uncoupled logistic maps can perfectly be
synchronized when they share the same noisy excitation and shown analytically that the pair
generates the Markov process having the special solution of the form dðx� yÞpnðyÞ. The special
solution can be regarded as the absorbing barrier of the Markov process which corresponds to the
perfect synchronization. To evaluate the extent of attraction of the absorbing barrier, we have
numerically estimated the mean escape time to reach the barrier as a function of the initial
conditions. The result shows that the special solution maintains under chaotic bifurcation whereas
the probability to reach the absorbing barrier is significantly decreased in the chaotic region. In
addition, we have also found that there is the lower dimensional dynamics along the line x0 þ y0 ¼

1 on which all the initial points reach the perfect synchronization in the unit step of iterations.
From these results, we can reasonably conclude that the presence of the perfect synchronization

of the uncoupled logistic maps linked by the common noisy excitation has been guaranteed both
analytically and numerically in a stochastic manner.
Our recursion formulae (10) will provide a new analytical tool to investigate the

synchronization of logistic maps. Because the recursion formulae (10) describes not only the
stationary density dðx� yÞpðyÞ but also transient densities converging to the perfect synchroniza-
tion dðx� yÞpðyÞ. Therefore, our result presenting the existence of the stationary solution only is
just the first step toward future developments of stochastic methods related to the noise-induced
synchronization. Solving the recursion formulae (10) for the transient densities might answer
physical or industrial questions such as how to design the optimal synchronization in practical
situations or how long it takes for the solution to reach the perfect synchronization. Although the
Monte-Carlo method is still effective for this purpose, it consumes too much computational
resources. In view of this, the main problem in the near future would be investigating how to
obtain analytic or semi-analytic solutions of Eq. (10). Primitive numerical methods for the
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transient solution might encounter numerical instabilities because the solution must converge
analytically to the delta-type stationary solution.
Finally, we have proposed a physical implementation of the synchronization as the pair of

multivibrators linked by the common noisy excitation only. The result clearly shows that it is
possible to produce the noise-induced perfect synchronization even in physical situations. We
believe that our experimental technique directly provides a new method to synchronize, for
example, initial states of independently coexisting oscillators of the same specification.
References

[1] L.M. Pecora, T.L. Carroll, Synchronization of chaotic systems, Physical Review Letters 64 (8) (1990) 821–824.

[2] L.M. Pecora, T.L. Carroll, Driving systems with chaotic signals, Physical Review A 44 (4) (1991) 2374–2383.

[3] R. Toral, C.R. Mirasso, E. Hernández-Garcı́a, O. Piro, Analytical and numerical studies of noise-induced

synchronization of chaotic systems, Chaos 11 (3) (2001) 665–673.

[4] H. Suetani, T. Horita, S. Mizutani, Noise-induced enhancement of fluctuation and spurious synchronization in

uncoupled type-I intermittent chaotic systems, Physical Review E 69 (2004) 016219.
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