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Abstract

A sensitivity-based finite element (FE) model updating is carried out for damage detection in this paper.
The objective function consisting of the modal flexibility residual is formulated and its gradient is derived.
The optimization algorithm used to minimize the objective function and damage detection procedures are
explained. The proposed procedure is firstly illustrated with a simulated example of the simply supported
beam. The effect of noise on the updating algorithm is studied. It is demonstrated that the behavior of
proposed algorithm on noise is satisfactory and the identified damage patterns are good. Afterwards, the
procedure is applied for the tested reinforced concrete beam, which is damaged in the laboratory. Despite
all the elements in the FE model are used as updating parameters which is considered as the extreme
adverse condition in FE model updating, the identified damage pattern is comparable with those obtained
from the tests. It is verified that the modal flexibility is sensitive to damage and the proposed procedure of
FE updating using the modal flexibility residual is promising for the detection of damaged elements.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Quantitative and objective condition assessment for infrastructure protection has been a
subject of strong research within the engineering community. To achieve this aim, methodologies
see front matter r 2005 Elsevier Ltd. All rights reserved.
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of the routine inspections with fixed intervals or the continuous monitoring, which provide
constant information on safety reliability or remaining lifetime of the structure, have been
under development in recent years. Inspection of structural components for damage is
vital to take decisions about their repair or retirement. Visual inspection is tedious and often
does not yield a quantifiable result [1]. For some components visual inspection is virtually
impossible. Methods which are based on pure signal processing have only a limited capability for
the early detection of damage and often do not allow unique conclusions to be drawn on the
sources of the damage [2]. The importance and difficulty of the damage detection problem
has caused a great deal of research on the quantitative methods of damage detection based
upon physical testing. Among those physical tests, the use of the modal tests has emerged
as an effective tool to use in damage detection. The possibility of using measured vibration
data to detect changes in structural systems due to damage has gained increasing attention
[3,4]. Doebling et al. [5] gave a detail overview of the vibration based damage detection
methods.
Many modal-based damage detection methods attempt to detect changes in the natural

frequencies of a structure. In an earlier work by Cawley and Adams [6], it was shown that the
ratio of frequency changes in different modes is only a function of damage location and not
the magnitude of damage. Salawu [7] reviewed the different methods of structural damage
detection through changes in natural frequencies. He emphasized the simplicity and low cost of
this approach, but at the same time pointed out the factors that could limit successful application
of vibration monitoring to damage detection and structural assessment since the changes in
natural frequencies cannot provide the spatial information about structural damage. Therefore,
also mode shape information is needed to uniquely localize the damage. Analysis of changes in
mode shapes due to damage represents another subgroup of modal-based methods. Usually,
changes in a mode shape’s curvature are more sensitive to damage. Pandey et al. [8] introduced
the use of mode shape curvatures. Changes in strain energy were used as an indicator to
represent damage [9]. In fact, the mode shape curvature is correspondent to the strain energy at
that location.
Another class of damage identification methods uses the dynamically measured modal

flexibility matrix. Aktan et al. [10] proposed the use of the measured flexibility as a ‘‘condition
index’’ to indicate the relative integrity of a bridge. Two bridges were tested and the measured
flexibility was compared to the static deflections induced by a set of truck-load tests. Pandey and
Biswas [11] presented a damage detection and location method based on changes in the measured
modal flexibility of the structure. This method is applied to several numerical examples and to an
actual spliced beam where the damage is linear in nature. Results of the numerical and
experimental examples showed that estimates of the damage condition and the location of the
damage could be obtained from just the first two measured modes of the structure. It is
demonstrated that the modal flexibility is more sensitive to damage than the natural frequency or
mode shape. Reisch and Park [12] proposed a method of structural health monitoring based on
relative changes in localized flexibility properties and applied for the damage detection of elevated
highway bridge column. Topole [13] developed an algorithm to calculate the contribution of the
flexibility of the structural members to the sensitivity of the modal parameters to change on the
flexibilities of the members and applied to detect the damage of simulated structure with truss
member.
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Finite element (FE) model updating can be one of the other ways to identify the structural
damage and perform the assessment of the structure. The purpose of FE model updating
is to modify the mass, stiffness and damping parameters of the numerical model in order
to obtain better agreement between numerical results and test data. A number of model
updating methods in structural dynamics have been proposed [14–17]. Non-iterative methods
directly update the elements of stiffness and mass matrices are one-step procedures [18,19].
The resulting updated matrices reproduce the measured structural modal properties exactly but
do not generally maintain structural connectivity and the corrections suggested are not
always physically meaningful. The iterative parameter updating method involves using the
sensitivity of the parameters to find their changes [15,17]. This sensitivity-based parameter
updating approach has an advantage of identifying parameters that can directly affect
the dynamic characteristics of the structure. Fritzen et al. [2] examined the problem of
detecting the location and extent of structural damage from measured vibration test data
using FE model updating. It is noted that the mathematical model used in the model
updating is usually ill-posed and the special attention is required for an accurate solution.
Wang et al. [20] implemented FE model updating to establish the baseline modal values
(modal frequencies and mode shapes) for a long-span bridge. They suggested that model
updating might be used in automated on-line monitoring on bridges. In recent years,
sensitivity-based FE model updating has been successfully used for damage assessment of
structures [21,22].
Selection of the residuals in the objective function is a crucial issue in FE model updating. It

not only affects the interpretation of the best correlation, but also influences the behavior of
the utilized optimization algorithm. The objective function is normally built up by the
residuals between the measurement results and the numerical predictions. Frequency residual
and modal accuracy criterion (MAC)-related function were used in FE model updating of
industrial structures [23]. The residual vector containing the deviation from the orthogonality
of the experimental mode shapes to the analytical ones was discussed in literature [24]. Some of
the sensitivity-based approaches reported for FE model updating of real case studies have
considered only the frequencies as the backbone during optimization [22,25]. FE model updating
method was successfully applied to the damage assessment of structures using frequency and
mode shape residual with the introduction of damage functions [26,27]. For the purpose of
damage detection, the residuals should be sensitive to even slight local structural changes. The
modal flexibility is basically a combination of natural frequencies and mode shapes, which is
a sensitive index in damage detection, so the modal flexibility residual in the objective function
is used.
In this paper, a sensitivity-based FE model updating is carried out for the purpose of damage

detection. The objective function consisting of the modal flexibility residual is formulated and its
gradient is derived. The optimization algorithm used to minimize the objective function and
damage detection procedures are presented. The proposed procedure is illustrated with simulated
beam and the laboratory-tested beam with damage. Despite all the elements in the FE model
are used as updating parameters, which is considered as the extreme adverse condition in FE
model updating, the identified damage pattern is comparable. It is demonstrated that the
proposed FE updating using the modal flexibility residual is promising for the detection of
damaged elements.
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2. Theoretical background

2.1. Objective functions and minimization problem

The undamped free vibration of a structural dynamic system can be described by the second-
order differential equation as

½M� f €ug þ ½K � fug ¼ 0 (1)

in which ½M� and ½K � are the mass and stiffness matrices, respectively, and u is the displacement
vector. The eigensolution of this system consists of the eigenvalue matrix ½L�, which is a diagonal
matrix of the squared natural frequencies, diagfo2

i g, and the eigenvector matrix ½f�, which is mass-
normalized, i.e. scaled such that

½f�T½K � ½f� ¼ ½L�, (2)

½f�T½M� ½f� ¼ ½I �. (3)

Solving Eq. (2), the stiffness matrix can be written in modal form as

½K � ¼ ½f��T½L� ½f��1 ¼ ð½f� ½L��1½f�TÞ�1. (4)

The flexibility is basically defined as the inverse of the stiffness matrix

½G� � ½K ��1. (5)

Substituting Eq. (4) into Eq. (5) yields the inverse vibration representation of the flexibility
matrix

½G� � ½f� ½L��1½f�T. (6)

If all the mode shapes and frequencies are available at all the DOFs, Eq. (6) gives the flexibility
matrix and this flexibility matrix is exactly equal to the static flexibility matrix. The flexibility
matrix can be separated into modal component and residual component. The contribution of the
unmeasured vibration modes to flexibility is called the residual flexibility. The eigensolution used
to form ½G� in Eq. (6) is the full eigensolution for the system. In practice, however, only a few
lower mode shapes and frequencies are actually measured during vibration testing. Defining the
measured modal set as n and unmeasured set as r the eigensolution can be partitioned as

½G� ¼ ½Gn� þ ½Gr�, (7)

where [Gn] is the modal flexibility, formed from the measured modes and frequencies as

½Gn� ¼ ½fn� ½Ln�
�1 ½fn�

T (8)

and ½Gr� is the residual flexibility formed from the residual modes and frequencies as

½Gr� ¼ ½fr�½Lr�
�1½fr�

T. (9)

In practice, the measured flexibility matrix is not computed for the full DOF set, because only a
limited number of measurements are available. Partitioning the full DOF set into measured
m and non-measured DOFs and multiplying the partitioned, it is shown in the work of
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Doebling [28] that

½Gmm� ¼ ½fnm
� ½Ln�

�1½fnm
�T þ ½frm

� ½Lr�
�1½frm

�T, (10)

where ½Gmm� is called the measured flexibility matrix; fnm
and frm

are, respectively, the measured
and unmeasured mode shapes of the structure at the measured DOFs; and Ln and Lr correspond
to the eigenvalues of measured and unmeasured modes. The first and second portion of Eq. (10)
indicate the modal and residual contribution to measured flexibility, respectively.
Doebling [28] developed a method to accurately estimate the static flexibility of the structure

considering residual flexibility for forced vibration case in which the input of the system is known.
For the case of known input, there is no problem to compute the residual flexibility. The issue
considered in this work is related to the ambient vibration work, where the input of the system is
not measured. For the case of unknown input with measurements carried out only in certain
locations, the situation is much more different and the calculation of residual flexibility is not
straightforward. In general, the measured modes are typically those that are lower in frequency
and therefore contribute the most to the flexibility. Therefore, a good estimate of the flexibility
matrix may be obtained from only a few low-frequency modes corresponding to measured DOFs
[11,29–32]. Hence, Eq. (10) becomes

½Gmm� ¼ ½fnm
� ½Ln�

�1½fnm
�T. (11)

For the sake of clarity, the measured flexibility matrix ½Gmm� will be referred to simply as ½Gexp�,
Fnm

will be referred as f and Ln will be referred as L in the remaining portion of the paper.
Similarly, the notation for matrix [ ] is removed for convenience.
Eq. (11) is used to compute the modal flexibility and used for the model updating procedure in

the paper. The analytical modal flexibility is estimated using the analytical eignevalue and mode
shapes which are partitioned corresponding to the measured DOFs. The most important issue to
use Eq. (11) is the mass normalization of mode shapes obtained from ambient vibration test. In
general, there are three methods to mass normalize the ambient vibration mode shapes. They are
the FE model approach [30], sensitivity-based method [33], and the methods that use mass
orthogonality condition [34]. In case of FE model updating application, the first approach of
using the FE mass matrix to normalize the experimental mode shape is straightforward due to the
fact that the detail analytical model of the complex structure is readily available.
An objective function P reflects the deviation between the analytical prediction and the real

behavior of a structure. The FE model updating can be posed as a minimization problem to find
x� design set such that

Pðx�ÞpPðxÞ; 8x, (12)

xlipxipxui; i ¼ 1; 2; 3; . . . n,

where the upper and lower bounds on the design variables are required. The general objective
function is formulated in terms of the discrepancy between FE and experimental quantities. The
modal flexibility error residual is given by the expression

GðX Þ ¼ Gexp � Gana (13)

in which Gexp is the measured modal flexibility matrix obtained at the measurement DOF; Gana is
the analytical flexibility matrix corresponding to the measured DOF; and X is the updating
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parameters which is a column matrix. The updating parameters are the uncertain physical
properties of the numerical model. Instead of the absolute value of each uncertain variable X, its
relative variation to the initial value X 0 is chosen as dimensionless updating parameter a. Using
the normalized parameters a, problems of numerical ill-conditioning due to large relative
differences in parameter magnitudes can be avoided:

ai ¼ �
X i � X i

0

X i
0

, (14a)

X i ¼ X i
0ð1� aiÞ. (14b)

The objective of FE model updating problem is to find the value of vector ai of Eq. (14) which
minimizes the error between the measured and analytical modal flexibility matrices. Hence,
Eq. (13) becomes

min
a

GðaÞ
�� ��, (15)

where

GðaÞ ¼ Gexp � fL�1fT. (16)

In Eq. (16), f indicates the analytical mode shape matrix corresponding to the experimental
degree of freedom and L denotes the frequency matrix containing the square of circular natural
frequency. Eq. (15) represents the function to be minimized, which is obviously in matrix form. To
carry out the minimization of matrix in least square sense, the norm of matrix called Frobenius
Norm is utilized in this work. Hence, the minimization problem using Frobenius Norm can be
presented as

min
a

GðaÞ
�� ��2

F
. (17)

The most frequently used matrix norms is the F-norm (Frobenius norm). The F-norm is used to
provide the least-square solution of an exact or over-determined system of equations. It is a norm
of m�m matrix A defined as the square root of the absolute square sum of its elements.
Mathematically, for ½A� 2 Rm�m

Ak kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

Xm

k¼1

jajkj
2

vuut . (18)

Hence, substituting Eq. (18) into Eq. (17), the function to be minimized becomes

GðaÞ
�� ��2

F
¼
Xm

j¼1

Xm

k¼1

ðGjkðaÞÞ
2. (19)

To avoid the numerical problems during minimization, this function is divided by the function
value at the initial parameter estimate:

PðaÞ ¼
GðaÞ
�� ��2

F

Gða0Þ
�� ��2

F

. (20a)
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As a result, finally, the minimization problem can be mathematically posed as

min
a

PðaÞ

such that alipaipaui; i ¼ 1; 2; 3; . . . ;N. ð20bÞ
2.2. Objective function gradient

The Trust Region Newton algorithm as implemented in the Optimization Toolbox of
MATLAB [35] is used to solve the minimization problem of Eq. (20b). To this end, the objective
function gradient is needed. The gradient is found by taking the derivatives of P in Eq. (20a) with
respect to ai

qP
qai

¼
1

Gða0Þ
�� ��2

F

Xm

j¼1

Xm

k¼1

2GjkðaÞ
q
qai

GðaÞ

� �
jk

, (21)

where ðq=qaiÞGðaÞ is calculated by taking the partial derivative of Eq. (16) with respect to ai,
which is shown below:

qG

qai

¼ �
q
qai

ðfL�1fT
Þ,

qG

qai

¼ �
qf
qai

ðL�1 fT
Þ þ f

q
qai

ðL�1fT
Þ

� �
, ð22aÞ

qG

qai

¼ �
qf
qai

ðL�1fT
Þ þ f

qL�1

qai

ðfT
Þ þ fL�1

q
qai

ðfT
Þ

� �
. (22b)

In matrix algebra, it is shown that the partial derivative of the inverse of a matrix may be
written as

qL�1

qai

¼ �L�1
qL
qai

L�1. (23)

Hence, substituting Eq. (23) into Eq. (22b) yields

qG

qai

¼ �
qf
qai

ðL�1fT
Þ � fL�1

qL
qai

L�1fT
þ fL�1

q
qai

ðfT
Þ

� �
. (24)

From Eq. (24), it is recognized that the derivatives of FE eigenvalues and eigenvectors have to
be evaluated to calculate the objective function gradient.

2.3. Eigenpair derivatives

The calculation of eigenvalue and eigenvector derivatives has been extensively studied and
reported in many papers. In this study, the expressions derived by Fox and Kapoor [36] are used.
Differentiating the generalized eigenvalue problem with respect to the design variables and using
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the orthogonalization properties of eigenvectors, one arrives at

qlj

qai

¼ fT
j

qK

qai

� lj

qM

qai

� �
fj. (25)

While deriving Eq. (25), it is assumed that the eigenvectors have been normalized such that the
modal masses are unity. The mode vector derivative may be expressed as a linear combination of
all eigenvectors, i.e.

qfj

qai

¼
Xd

q¼1

bjqfq, (26)

where the coefficients bjq are determined using the generalized eigenvalue problem and
orthogonalization properties of eigenvectors. Provided that the eigenvectors have been normal-
ized to unit modal masses, one can get [30]

bjq ¼
fT

q
qK
qai
� lj

qM
qai

� �.
ðlj � lqÞ

h i
fj; qaj;

� 1
2
fT

j
qM
qai

fj; q ¼ j:

8<
: (27)

Because the full eigensystem is not available and far too expensive to solve for, the summation
in Eq. (26) is in practice over number5d where d is the analytical model order. The value of this
number should be high enough in view of condition of gradient matrix.
2.4. Linearization of matrix derivatives

From Eqs. (25) and (27), it can be seen that the derivatives of the structural stiffness and mass
matrices, with respect to the design variables, are required. Naturally, the analytical expressions
for these entities may be developed, but a new programming effort would be required each time
when a new type of design variable is introduced. By adopting the linearized matrix derivatives,
viz., first-order Taylor approximation at the current design point, these limitations can be
avoided. Hence, it follows that

qK

qai

¼
Kðai þ DaeiÞ � KðaiÞ

Da
,

qM

qai

¼
Mðai þ DaeiÞ �MðaiÞ

Da
, ð28Þ

where Da is the step length and ei is the vector with ith element equal to 1, and zero elsewhere. It is
observed that the expressions are exact in case the matrices are linear with respect to the ith design
variable. It should be noted that the evaluation of approximate matrix derivatives according to
Eq. (28) does not involve any additional problem solution, but it suffices to assemble and to save
the appropriate system matrix for each design variable increment, which is a minor computational
effort.
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2.5. Optimization algorithm

The optimization algorithm used to minimize the objective function, Eq. (20b), is a standard
Trust Region Newton method, which is a sensitivity-based iterative method. Consider the
minimization problem

min
a

PðaÞ. (29)

The minimization is started at a point a in n-space. To improve the performance it needs to
move to a point with a lower function value. The basic idea is to approximate P with a simpler
function q which reasonably reflects the behavior of function P in a neighborhood N around the
point a. This neighborhood is the trust region. A trial step s is computed by minimizing over N.
This is the trust region subproblem as follows:

min
s
½qðsÞ; s 2 N�. (30)

The current point is updated to be aþ s if Pðaþ sÞoPðaÞ, otherwise, the current point remains
unchanged and N, the region of trust is shrunk and the trial step computation is repeated. In each
iteration p, a quadratic approximation qðsÞ of PðaÞ at the current state vector ap has to be
minimized within the trust region Dp. In the standard trust-region method [37], the quadratic
approximation qðsÞ is defined by the truncated Taylor series of PðaÞ. The neighborhood N is
usually spherical or ellipsoidal in shape. Mathematically, the trust-region subproblem is typically
stated by

min
s

qðsÞ ¼
1

2
sTHpsþ sTgp þPp such that sk kpDp

	 

, (31)

where s is a step vector from ap and Hp, gp, PP are the Hessian (the symmetric matrix of second
derivatives), the gradient and the value of the function P at ap, respectively. kk stands for the
2-norm. After some iterations, the minimum a� of PðaÞ is reached where gða�Þ � 0. The gradient g
is obtained from Eq. (21). The Hessian of PðaÞ is approximated with the gradient information.
3. Case studies

3.1. Simulated simply supported beam

Simulated simply supported beam without damage and with several assumed damage elements
are considered. The simulated beam of 6m length is equally divided into 15 two-dimensional
beam elements as shown in Fig. 1. The density and elastic modulus of the material of the beam are
2500 kg/m3 and 3.2E+10N/m2, respectively. Similarly area of cross section and moment of inertia
of simulated beam are 0.05m2 and 1.66E�04m4, respectively.
Modal analysis is carried out by developing a program in Matlab environment to get the FE

frequencies and mode shapes. All mode shapes have been normalized to the mass matrix. To get
the assumed experimental modal parameters, several damages are introduced by reducing the
stiffness of assumed elements as shown in Fig. 1. The elastic modulus of elements 3, 8 and 10 are
reduced by 20%, 50% and 30%, respectively. The modal analysis is again carried out in this
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Table 1

Frequencies and MAC of simulated beam before updating

Mode Undamaged beam (Hz) Damaged beam (Hz) Differences in frequencies (%) MAC %

1 8.990 8.245 9.035 99.918

2 35.914 34.920 2.846 99.869

3 80.632 75.08 7.394 99.216

4 142.930 137.508 3.943 99.588

5 222.532 209.028 6.460 97.497

6 319.16 313.581 1.779 99.528

7 432.532 405.839 6.577 97.444

8 562.405 547.260 2.767 99.107

9 708.677 671.483 5.539 98.424

10 871.146 836.938 4.087 98.068

DAM DAM DAM
L = 6m

h = 0.2m

b = 0.25m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. A simulated simply supported beam.
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damaged beam to get the assumed experimental modal parameters. The initial values of
frequencies and corresponding errors and MAC of selected first ten modes are shown in Table 1.
The maximum error that appeared in frequency is 9.03% and minimum value of MAC is 97.44%.
The FE model updating procedure explained in theoretical background is implemented in

Matlab environment. In this case study, it is assumed that the first 10 bending modes are available
and measurements are obtained at all DOFs of the model. Experimental modal flexibility matrix is
calculated using the damage induced mode shape and frequency information using Eq. (11). The
first ten modes are used to calculate the mode shape sensitivity in Eq. (26). The elastic modulus of
each element is used as updating parameters. Thus, there are 15 updating parameters. The
tolerances of objective functions and other parameters are set. An iterative procedure for model
tuning was then carried out. The pairing of each mode during optimization is ensured with the
help of MAC criteria between FE mode shapes and experimental mode shapes.
The selected updating parameters were estimated during an iterative process. After some

iteration, the procedure is converged with excellent detection of damaged location and severity.
The bar corresponding to no noise case represents the detected damage pattern in Fig. 2. It is
clearly seen that the detection of damage on elements 8 and 10 is exact with small error on element
3. There is a negligible error on other elements. The excellent tuning on modal parameters is
shown in Table 2.
An important aspect in the development of any model update algorithm is its sensitivity to

uncertainty in the measurements. Experimental modal testing is always associated with some
kinds of measurement noise or error. This case study presents the results from numerical
simulations of noise conducted to study the effects of measurement noise on updating procedure.
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Fig. 2. Location and severity of damage in simulated beam after FE model updating for different cases.

Table 2

Frequencies and MAC of simulated beam after updating

Mode Before updating

(Hz)

Damaged beam

(Hz)

After updating

(Hz)

Differences in

frequencies (%)

MAC %

1 8.990 8.245 8.245 0.007 99.999

2 35.914 34.920 34.916 �0.009 99.999

3 80.632 75.08 75.044 �0.046 99.999

4 142.930 137.508 137.420 �0.063 99.998

5 222.532 209.028 208.884 �0.068 99.997

6 319.16 313.581 313.28 �0.095 99.994

7 432.532 405.839 405.283 �0.136 99.995

8 562.405 547.260 546.611 �0.118 99.992

9 708.677 671.483 670.491 �0.147 99.991

10 871.146 836.938 835.731 �0.144 99.992
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To study the effect of measurement noise, it is assumed that the first ten bending modes are
available and measurements are obtained at all DOFs of the model. Measurement noise is
simulated by adding proportional noise to each of the simulated measured mode shapes. The
noise percentage factor remains the same for each mode during a given simulation. The
proportional noise is applied to the mode shapes obtained from the simulated damaged beam.
Two cases are considered with 0.5% and 3% noise level. The experimental modal flexibility matrix
is constructed using Eq. (11) with the noisy mode shapes. Again, the elastic moduli of all 15 beam
elements are used as updating parameters.
The similar optimization procedure as explained above is carried out. The damage pattern

identified after FE model updating for two noise cases are compared in Fig. 2. In case of 0.5%
noise, the damage detection in damaged elements is good with the values of 20.52%, 49.73% and
29.6% in elements 3, 8 and 10, respectively. Some negligible values of damages have appeared on
the undamaged elements. When the noise percentage is increased to 3% as, it is observed that the
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Table 3

Frequencies and MAC of simulated beam with 3% noise after updating

Mode Before updating

(Hz)

Damaged beam

(Hz)

After updating

(Hz)

Differences in

frequencies (%)

MAC %

1 8.990 8.245 8.085 �1.940 99.993

2 35.914 34.920 34.354 �1.620 99.992

3 80.632 75.08 73.913 �1.554 99.970

4 142.930 137.508 135.333 �1.581 99.923

5 222.532 209.028 205.242 �1.811 99.952

6 319.16 313.581 308.366 �1.663 99.942

7 432.532 405.839 400.675 �1.272 99.963

8 562.405 547.260 537.816 �1.725 99.941

9 708.677 671.483 661.384 �1.503 99.930

10 871.146 836.938 825.920 �1.316 99.851
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damaged detection error is increased with values of damage detection 23%, 51.8% and 30.5% on
elements 3, 8 and 10, respectively. Also, comparatively more value of damage, for example, 9.6% in
element 11, is noticed in undamaged elements also. The tuning on modal parameters in case of 3%
noise is shown in Table 3. The table shows that tuning in frequencies and MAC values are good.
This example shows that the noise has an adverse affect on damage detection capability of

algorithm. In these simulations, it is assumed that the measurement noise is uniform for all of the
measured modes. Actually, the lower experimental modes have less error since the measurement noise
is composed of higher-frequency components. As seen from the definition of modal flexibility in Eq.
(11), a measured modal flexibility matrix has more contributions from lower modes, the procedure is
less affected by the relatively higher errors that appear in high frequency modal measurements.

3.2. Experimental beam

3.2.1. Description of experimental beam and modal parameter identification
The purpose of this experimental study is to identify the damage pattern of the damaged beam

using the FE model updating procedure explained in this paper. The cross section of the tested
concrete beam of 6m length is shown in Fig. 3. The reinforcement ratio in a beam is considered to
be within a realistic range. By a proper choice of steel quality, the interval between the onset of
cracking and beam failure can be made large enough to allow modal analysis at well-separated
levels of cracking. To avoid any coupling effect between horizontal and vertical bending modes,
the width is chosen to be different from the height of the beam. There are six reinforcement bars of
16mm diameter, equally distributed over the tension and compression sides, corresponding to
reinforcement ratio of 1.4%. Shear reinforcement consists of vertical stirrups of 8mm diameter at
every 200mm. The total mass of 750 kg results the density of 2500 kg/m3.
Six-step loaded static tests were conducted to produce the successive damage to the beams.

After each static load step, the dynamic measurements were followed up to obtain the dynamic
characteristics of damaged beam. In static setup of testing, the beam was loaded by two symmetric
point loads at a distance of 2m as shown in Fig. 3. This test setup produces a central zone of
almost uniform damage intensity. At the end of each static load step, before the dynamic test was
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Fig. 4. Observed cracks of the tested beam in each load step.

2m 2m 2m

LoadLoad

0.25m

0.
20

m

Fig. 3. Static test arrangement and cross section of simply supported beam.
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carried out, the beam surface was visually inspected to locate and quantify the cracks. Fig. 4
shows the observed crack pattern and damage for each static load step. In this study, the load step
5 (24 kN) are aimed to demonstrate the proposed damage identification procedure.
The dynamic testing was carried out on the free–free boundary condition of the beam. The

free–free boundary condition avoids the influence of poor defined boundary conditions on the
modal parameters. After static load step, the beam was unloaded, the supports were removed and
the beam was supported on flexible springs. Acceleration time-histories were vertically measured
at every 0.2m on both sides of the beam with accelerometers. No rotational and longitudinal
DOFs were measured. As a result, a total of 62 responses in the vertical direction were recorded in
one series. A dynamic force was generated by means of an impulse hammer. But the input was not
measured. Dynamic measurement was first performed for the reference (undamaged) state of the
test beam. The dynamic characteristics of the reference state serve as an initial value of parameters
for current FE model updating.
Before the system identification procedure, the original measurement data often need to be pre-

processed. The electrical signals (V) were scaled according to the accelerometer sensitivities to
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Fig. 5. Identified mode shapes of test beam.
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obtain accelerations m/s2, the DC components were removed, and the data were resampled by a
digital low-pass filter. During dynamic testing, the measurement data were sampled at sampling
frequency of 5000Hz. There were 12,288 data points for each channel. The measurement data
were resampled at a lower rate of 2500Hz. This decimation reduces the amount of data without
losing information in the frequency band of interest. The stochastic subspace identification, a
time-domain technique, is used for system identification. The method is based on the development
of a representative linear mathematical model of a dynamic system directly from the observed
time series data. The frequencies and mode shape ordinates were identified at both edges of the
beam. The average value from two sides was taken to extract the mode shapes of beam, which
results 31 measurement points along the length of beam. As explained in theoretical background,
the identified first four vertical mode shapes are normalized to initial mass matrix and are shown
in Fig. 5.

3.2.2. Model updating and damage detection

The tested beam is analytically modeled with 30 beam elements as shown in Fig. 6. The elastic
modulus and inertia moment implemented in the original FE model are 38GPa and
1.66� 10�4m4, respectively. The recognized modal parameters for the reference and damage
state from system identification and its correlation with initial FE model are shown in Table 4. In
the reference state the maximum difference in frequency is 2.18% in the fourth mode and
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L = 6m

Fig. 6. Descritization of experimental beam.

Table 4

Frequencies and MAC of experimental beam before updating

Mode Experimental value (Hz) Initial FE value (Hz) Differences in frequencies (%) MAC %

Reference state

1 21.904 22.213 1.410 99.977

2 60.329 61.065 1.219 99.939

3 117.022 119.287 1.898 99.857

4 192.026 196.320 2.187 99.754

Damaged state

1 18.005 21.870 21.466 99.881

2 50.204 60.956 21.416 99.850

3 98.219 118.218 20.361 99.796

4 161.876 194.176 19.953 99.345
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minimum value of MAC is 99.75% in the same mode. In the damaged case, however, there is a
significant difference in the frequencies values in all four modes with maximum difference 21.46%
in the first mode. A good correlation in MAC value with minimum of 99.345% in fourth mode is
observed.
In carrying out FE model updating, the first 4 bending modes in vertical direction are used in

optimization. The experimental modal flexibility matrix is calculated using the experimental mass
normalized mode shape and frequency information using Eq. (11). The objective function and
gradient are calculated with the help of Eqs. (20a) and (21) respectively. The first 15 FE mode
shapes are used to calculate the mode shape sensitivity of Eq. (26). The right pairing of
experimental and corresponding analytical mode during iteration are confirmed by using MAC
value. The elastic modulus of individual elements is used as updating parameters. As a result,
there are 30 updating parameters. Suitable tolerance of objective function and other parameters
are set. The selected updating parameters were estimated during an iterative process. The
updating is first carried out for the reference state to recognize the damage distribution before
static load is applied. After some iteration, the procedure is converged with the detection of
damage pattern coefficient ai defined in Eq. (14a). Fig. 7 shows the stiffness distribution of the
beam in reference state after updating. The distribution has random nature with decrease and
increase in stiffness along the length. The maximum decrease in stiffness is 10.37% in element 17
and maximum increase in stiffness is 5.92% in element 28. The real pattern of distribution to
compare with the updated results is difficult to know. The real pattern depends on the properties
of concrete and other uncertainties.
Elastic modulus of each element is corrected using ai according to Eq. (14b). This corrected

value of Elastic modulus is used for the updating of damaged case. The whole optimization
procedure is repeated for the damaged case. The detected damage distribution is shown in Fig. 8
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Fig. 8. Location and severity of damage after FE model updating (damaged state).
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Fig. 7. Location and severity of damage after FE model updating (reference state).
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without the assumed damage pattern [38] or damage function [39]. It is clearly seen that the
detected damage is almost symmetrical in nature. The maximum value of damage is within
elements 10–20 and the damage goes on decreasing towards both ends of the beam. The damage
distribution value of elements 10 and 20 are 32.18% and 34.76%, respectively, with maximum
value 46.97% for element 18. Even though the damaged values of elements 10–20 are not perfectly
uniform as expected, except elements 16–18 other elements in this range have almost similar
values. The obtained values of the frequency and MAC after updating for the reference state and
damage state are summarized in Table 5. The comparison of Tables 4 and 5 shows that there is
significant improvement in tuning in natural frequencies and also increase in MAC values. In the
damaged case, the initial difference of 21.46% in the first mode is decreased to 1.14% after
updating. There is also significant improvement in remaining three modes. The maximum
difference in frequency is found to be 6.85% in third mode.
The damage detection of the same tested beam was reported in literature [38,39]. It is

demonstrated that the identified damage distribution obtained in this paper is comparable with
those reported in literatures, despite all the elements in the FE model are used as updating
parameters in these case studies which is the extreme adverse condition in FE model updating.
Hence, the procedure of FE updating explained in this paper using modal flexibility residual can
be successful for the detection of damaged elements.
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Table 5

Frequencies and MAC of experimental beam after updating

Mode Experimental value (Hz) After updating (Hz) Differences in frequencies (%) MAC %

Reference state

1 21.904 21.870 �0.155 99.982

2 60.329 60.956 1.039 99.940

3 117.022 118.218 1.022 99.861

4 192.026 194.176 1.119 99.768

Damaged state

1 18.005 17.799 �1.144 99.900

2 50.204 52.676 4.923 99.881

3 98.219 104.951 6.854 99.801

4 161.876 172.429 6.519 99.670

B. Jaishi, W.-X. Ren / Journal of Sound and Vibration 290 (2006) 369–387 385
4. Conclusions

A sensitivity-based FE model updating was carried out for damage detection. The objective
function consisting of modal flexibility residual was formulated and its gradient was derived. The
optimization algorithm used to minimize the objective function and damage detection procedures
were presented. The proposed damage detection procedure was illustrated with a simulated example
of simply supported concrete beam. The identified damage pattern in this simulated example is
excellent. It has been shown that the behavior of the proposed algorithm on noise is satisfactory. The
procedure was then verified by the tested reinforced concrete beam, which is damaged in laboratory.
Without the assumption of the damaged pattern or damage function of the tested beam, the identified
damage distribution was compared with those from the tests and reported in literatures. Despite all
the elements in the FE model are used as updating parameters, which is the extreme adverse condition
in FE model updating, the damage detection is still acceptable. It is demonstrated that the proposed
FE updating using the modal flexibility residual is promising for the detection of damaged elements.
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