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Abstract

This work presents accurate numerical calculations of the natural frequencies for elastic rectangular
plates of variable thickness with various combinations of boundary conditions. The thickness variation in
one or two directions of the plate is taken in polynomial form. The first-order shear deformation plate
theory of Mindlin and the higher-order shear deformation plate theory of Reddy have been applied to the
plate analysis. The governing equations and the boundary conditions are derived using the dynamic version
of the principle of minimum of the Lagrangian function. The solution is obtained by the extended
Kantorovich method. This approach is combined with the exact element method for the vibration analysis
of members with variable flexural rigidity, which provides for the derivation of the exact dynamic stiffness
matrix of varying cross-sections strips. The large number of numerical examples demonstrates the
applicability and versatility of the present method. The results obtained by both shear deformation theories
are compared with those obtained by the classical thin plate theory and with published results.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Plate elements with varying thickness are used in civil, mechanical, aeronautical and marine
structures. The consideration of free vibration of such plates is essential to have an efficient and
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reliable design. The use of variable thickness helps to reduce the weight of structural elements and
improve the utilization of the material.

The classical Kirchhoff thin plate theory (CPT) is usually used to carry out vibration analysis
of rectangular plates. CPT assumptions are satisfactory for low mode computation of truly
thin plate, but they can lead to inaccuracy in higher modes calculation or when the ratio of
thickness to the dimension of plate is relatively large. This is because the effects of rotary inertia,
which is neglected in most references, and the transverse shear deformations, which cannot be
considered in the Kirchhoff theory, become significant in thick plates. For that reason a
number of shear deformation plate theories were developed. The simplest one is the first-order
shear deformation plate theory (FOPT) that is famous as the Reissner—Mindlin theory. This
approach extends the kinematic assumptions of the CPT by releasing the restriction on the
angle of shearing deformations [1,2]. The transverse shear strain is assumed to be constant
through the thickness of the plate, and a shear correction factor is introduced to correct the
discrepancy between the actual transverse shear stress distribution and those computed using the
kinematic relations of this theory. The shear correction factors depend not only on geo-
metric parameters, but also on the loading and boundary conditions of the plate. Second
and higher-order shear deformation plate theories (HOPT) [1,3,4] use higher-order polynomials
in the expansion of the displacement components through the thickness of the plate. Accord-
ing to the assumptions of HOPT the restriction on warping of the cross-section is relaxed,
and allows variation in the thickness direction of the plate. Unlike the FOPT, the HOPT requires
no shear correction factors.

By using various kinds of analytical and numerical methods, many researchers have extensively
studied free vibration of rectangular thick plates with constant thickness according to HOPT [3—6]
and FOPT [7-9] approaches and rectangular thin plate with variable thickness [10,11].
However, the analysis of rectangular thick plates with non-uniform thickness has attracted less
attention. Mikami and Yoshimura [12] have applied the collocation method with orthogonal
polynomials to calculate the natural frequencies for rectangular Reissner—Mindlin plates
with linear thickness variation. Al-Kaabi and Aksu [14] have presented a method based on a
variational principle in conjunction with finite difference technique for analysis of Reissner—
Mindlin plates of linearly [13] and parabolically [14] varying thickness. Based on the FOPT,
Mizusawa [15] has employed the spline strip method for computation of natural frequencies
for the tapered rectangular plates. In all these studies, only plates with two opposite simply
supported edges perpendicular to direction of thickness variation are considered. Cheung
and Zhou [16] have used the Rayleigh—Ritz method for free vibration solution of rectangular
Reissner—Mindlin plates with variable thickness and different boundary conditions. The variation
of the thickness in their work is described by a power function of the Cartesian coordinates.
To the best of our knowledge, no solutions have been given for the problem of free vibration
of rectangular plates with variable thickness based on the higher-order shear deformation
plate theories.

The object of the present work is to give highly accurate solutions for the free vibration problem
of rectangular plates with any general polynomial variation of the thickness, including the effect
of the shear deformations and rotary inertia. The dynamic version of the principle of minimum of
the Lagrangian function is adopted in the derivation of the governing equations and the boundary
conditions, for the Reissner—Mindlin FOPT and the HOPT of Reddy. The solution is based on
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the extended Kantorovich method [9,17,18]. According to this approach the solution is assumed
to be separable in the directions of the plate edges. Then, the solution in one direction, x for
example, is specified a priori, and the solution in the y direction is determined by solving an
ordinary differential equation derived from the associated variational process with appropriate
boundary conditions. In the next step, the obtained solution is used as the known function, while
the solution in the second direction is re-determined by another Kantorovich solution process.
These iterations are repeated until the result converges to a desired degree. In the present work
one-term approximation was used in the Kantorovich method. This expansion enables to obtain
only approximate results for the natural frequencies, and for the vibration mode shapes. The exact
modes will have curved nodal lines, and the single-term expansion will result in straight nodal
lines that are parallel to the plate edges. The convergence to approximate values of frequency is
very rapid.

In the solution in one direction, the exact element method for the vibration analysis of
members with variable cross-sections is used [19]. This approach provides for the derivation of the
exact dynamic stiffness matrix. The natural frequency is found as a value that leads to the
singularity of the stiffness matrix. Free vibrations of rectangular thick plates are analyzed by
varying the plate-aspect ratios, and the thickness-width and taper ratios. Two types of thickness
variations are considered, namely linear and parabolic, and various combinations of boundary
conditions. The results obtained by both shear deformation theories (FOPT and HOPT) are
compared with those from the classical plate theory (CPT) and with published results. Many new
results are also given.

2. Analysis of shear deformable rectangular plates

Consider an isotropic rectangular plate of planform L, by L, with variable thickness h(x,y),
which is separable function of the coordinates (x, ). The plate has arbitrary boundary conditions.
The coordinate system is taken such that the x—y plane coincides with the middle plane of the
plate (see Fig. 1).

H(y)

=

=
w VAL ——

Fig. 1. Geometry and the coordinate system of rectangular plates with linear variation of thickness in both directions.
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2.1. First-order shear deformation plate theory

According to the Reissner—Mindlin theory for harmonic motion, the displacement field is
taken as

ﬁ(x3 y’ Z’ t) = lex('x’ y’ t) = lex(x’ y)ei(”t, (la’)
Wwx, v, z, 1) = wo(x, y, 1) = wo(x, p)el™, (Ic)

where (i, 0, w) are the displacement components along the (x, y, z) coordinate directions,
respectively; Wy is the transverse deflection of a point on the middle plane, ¥, and y, denote the
rotations around to the x and y axes, correspondingly and @ denotes the angular natural
frequency. The displacement field of Eqgs. (la—) results in the following expression for strain
energy [9]:

( 2 2
alpx alﬂ) al//x alp}’
(&) + (%) +2%%
1 b A
Uni=3 [ | +10 -0 (% +%) dxdy, ®)
A

- ) - ! 2
KGR+ %) + kGh (1, +52)

where D = Eﬁ3/12/(1 —v?) is the bending rigidity of the plate, G = E/2(1 +v) is the shear
modulus, E denotes Young’s modulus of elasticity and v is Poisson’s ratio. The shear correction
factor k is introduced to compensate for the discrepancy between the true parabolic distribution
of transverse shear stresses and the constant state that resulted from the kinematic assumptions
of this theory. For a comprehensive discussion on the value of the shear correction factor see
Refs. [1,2].

For free vibration, the maximum kinetic energy can be expressed in terms of the general
displacements, Eq. (1a—), in the following form [9]:

w’p

Thax = ——
mx =22 [
4

where p is the mass density of the plate’s material.
The full energy functional IT can be written in terms of strain energy of bending and the kinetic
energy of vibration as follow

-3
- h
hw + T (lﬂ% + lﬂi) dxdy, (3)

II = Umax - Tmax- (4)

According to the Kantorovich method, the solution is assumed separable, and can be written as
wo(x, ) = w(x)W(y), (5a)

Y(x,9) = f(X)F(y), (5b)

w(x, y) = wx)W(y), (3¢)
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In the same manner, the thickness of the plate /(x, y) is separated as

h(x, y) = hoh(x)H(»), (6)

where /g is the thickness at the origin, s(x) and H(y) are the functions of variation of the thickness
in the x and y directions respectively (See Fig. 1). Based on Eqn. (6), the flexural rigidity of the
plate D(x,y) becomes

D(x,y) = dod(x)D(y), (7

where

dy = Eng /(121 — v?);  d(x) = [h(x); D) = [H)P.

For the convenience of subsequent derivation the following symbolism is defined: the lower case
letters are used for functions of the x direction only, and capital letters for functions in the y
direction. Two new variables are introduced as well

o

= E; go = kGhy. (®)

do

Substitutions of Egs. (5a—c), their derivatives and Egs. (6, 7) into Eq. (4) yield

1 / b / bs 2 2 2
II= - df<. dyDF~ +d¢*° dyD®~ +2df . $vdoDF D,
2)o Jo " ‘f—’s —— i \——-V—JS y
1 S, 3

+ df? % (1 = )doDF> +2df ¢, % (1 —v)doDF ,® +d¢’, % (1 —v)doD®*

[ —_—

S4 S5 Sé
+ hf? goHF? +2hf'w . goH FW +hw* goHW? +he* gy HO* +2hdw gyHOW ,

N~—— ~—— T N—— ~—— ———
S7 Sg Sy S1o Sn

+ hw? g HW?, —df* w’pagD F2 —d ¢’ o pagDD* —hw* o’ phg HW? | dxdy. )

: S S S

Sz 13 14 15

In order to obtain equations involving only one variable, for example x, functions in the y
direction are assumed for the time being as known, and after integration over this direction the
energy functional take the form

, Svdf’ + S2dd® + 2S3df b + Sadf* + 2Ssdf ¢ + Sed’,
1 X

m=3 / +S9hf? + 2S5hfw . + Sohw?. + Siohd® + 281k w+ Sphw? |dx,  (10)
0
—S13df? — S14d¢* — Sishw?
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where the coefficients S| through S5 are defined as

L, L,
S = / doDF*dy, S, = / do D’ dy,
0 0

L, L, 1
S = / vdgDF® ydy, S4= / 5 —v)doDF’ dy,
0 0

L, L,
y 1 Y 1
Ss = /0 5(1 —v)doDF ,@dy, Ss= /0 5(1 — v)doDP*dy,
L, L,
S7= / goHF*dy Sy =/ goH FWdy,
0 0
L, Ly
Sy = / GoHWdy, S = / goHP™dy,
0 0
L, L,
0 0
L, L,
S13 = / wzpaoD dey, Sy = / wzpaOA(pza
0 0

L,
515=/ w’p hy HW?. (11)
0

The evaluation of these constants will be performed after the assumption of the functions in the
y direction is made (see Section 3).

According to the dynamic version of the principle of virtual displacement, i.e., Hamilton’s
principle the first variation of the functional should be equal to zero. Thus, variation of Eq. (10)
and integration by parts yields

S11h¢ + Shw — Sishw — Sgh’xf — Sghf’xﬁ—
0
—S9h7xW’x — Sgl/lw,xx W

dx

Ly
ot = |
0

—S1dof = Sidf 1 — S3d p — Sadgp

S2d¢p + Szdf  + +S10he + S1ihw — Siadp+
T\ s - ssar, - Sedrb, — Sedp, )7
+ (Sshf + Sohw ) Swlp™
+ (Sidf . + S3dd) of |
+ (Ssdf + Sed )¢

Sadf + Ssd . + S7hf + Sghw,, — Si3df +
+ of

LY
o=0. (12)
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Each term in the above equation has to be equal to zero. From the first integral, the system of
differential equations is obtained:

forow: —Sohwx — Soh w + (S12 — Si5)hw

—Sghf . — Ssh.f + Sihg = 0; (132)
foréf . —=Sidf . — Sidf . + Sadf + S7hf — Sizaf + Sshw .,
+(S5 = S)dp, — Ssd b = 0; (13b)
foré¢p: —Sed¢ ., — Sed ¢ + Sadp + Siohd — S1adep + S11hw |
(53— Ss)df . — Ssdof =0. (139
The remaining expressions give the natural boundary conditions
ow: Q= (Sshf + Sohw,)|", (14a)
O : My = (Sidf .+ Ssd)|,” (14b)
3¢ M, = (Ssdf + Sed¢p ) |5, (14c)

where Q is the shear force, M, is the bending moment and M, is the twisting moment on the
corresponding edge of the plate.

The dimensionless coordinates ¢ = x/L, and # = y/L, are used for the solution of the system of
Egs. (13a—). The unknown displacements are assumed as infinite power series of the following form:

w(é) = Z wil, (15a)
i=0

GED YIS (15b)
i=0

pO=> . (15¢)
i=0

Also the flexural rigidity and thickness parameters of the plate are taken in polynomial form as
follows

d&) =Y d;&, (16a)
j=0

h@) = e, (16b)
j=0

where m, n are integers expressing the number of terms in each series. This description is very
general, and many functions can be represented in this way to any desired accuracy.

All the polynomial coefficients w;, f; and ¢; of Egs. (15a—) can be found based on the first two
terms of the each series [9,19]. Recurrence formulas for calculations of the wiy», f;,, and ¢, , are
obtained by substituting the assumed polynomial functions of Egs. (15a—, 16a—b) and their
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derivatives into the system of Egs. (13a—) (See Appendix A). The first two terms of each series
should be found using the boundary condition [9,19]. Based on this solution technique, the exact
shape functions for dynamic stiffness matrix assembling can be calculated. The degrees of
freedom, for the FOPT formulation, are the lateral displacement and two rotations around the x
and y axes at both ends of the strip element. The detail derivations of the stiffness matrix terms are
given in Ref. [9].

2.2. Higher-order shear deformation plate theory

The displacement fields for the Third-order shear deformation plate theory of Reddy [1] are

taken as
a(x,y,z,1) = (zwx jhz (w +aw0>> e, (17a)
4z3 Owy o1
i )= - — — ) |e” 17b
) = (2, = 5o (0 ) ) (170)
W, y, 2, ) = woe'’. (17¢)

Based on the above displacement fields, the strain energy of the plate can be written as

follows [9]
/ / 2+ %y 2+i il 2+i 2w\’
105 105 \ oy 21 \ox? 21 \ 9y?

320, 0w 329y, aszv 68 0y, 0, 1 3w wo
105 ox ax2 105 dy )2 105 0x Oy 21 0y* 0Ox2

16 0y, 0o 16 3, &), (1—v) (68 oy, \* 68 (%Y,
105 0x 92 105 dy ox? 2 105 \ oy 105 \ ox
1360y,00, , 4 (wy P64 Pwody, 64 BPw Y,
105 0y Ox 21 \Oxoy 1050x0y 0y 105 0x0y ox

2 Gh(lﬁ +6w> +§Gﬁ<n// —I—a—W>2}dxdy. (18)
15 15 Yoy
Utilization of the Kantorovich solution technique and integration over the y direction yields
[ S1df> + Sadd” + Szdw?, + Sadw? — 2Ssdf W s
+2Ssdpw + 2S7df ¢ — 28sdf W + 2Sodpw yx
U= l/LX +2S10dww 1x + Sna'f2 + SlquS’zx +2Si3df ¢, dx, (19)
0

+S14dw?, — 2S1sdw of — 2S16dw <  + Si7hf”
+2S18hj'w,x + S19/’IW,2X + S20h¢2 + 2521hq§w + S2217W2
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where the S-coefficients are defined as

L,
v 68
S| = —doDF*d
1 /0 105 0 Y,

L,
S3 = / —d()DW2 dy,
21

105

L 16
Ss = / —dyDFW dy,
0

L,
v 68
S, = ——dyD®* d
2 /0 105 407 %y Vs

L,

v 1

S4=/ —doDW?, dy,
0 21 VY

S —/L'v 16 Do, w . d
6 = A 105 0 2V yy Ay,

Ly 68 L 16
S; = ——vdyDF® ,dy, Sz= —<vdoDFW ,, dy,
0 0

105

105

L 1e L
Sy = / ——=vdoD® W dy, Sio= / 57 VDWW 5 dy,
0 0

105

105

21

Ly 34 5 Ly 34 2
S| = — (1 —v)doDF* dy, Sp,= —< (1 =v)doD®" dy,
0 o4 0 105
b2(1 —v) 2
7 doDW?, dy

Ly 34
Sz = / —— (1 =v)doDF ,®dy, Si4= /
0 0

105

L 16

L, 1
S15 = / —6(1 — V)d()DF,dey, S16 = / —(1 — V)d()D@W dy,
0 0

105

105

Ly 8 Ly 8
Sy = / S GhoHF dy, Si5 = / S GhoHFW dy,
0 0

15

15

15

15

Ly 8 5 L, 8 5
S19 = — GhoHW dy, SZO = — GhoHQD dy,
0 0

L},. 8 Ly 8
Sy = / — GhyH®W ,, dy, Sy = / — GhyHW?, dy.
0 0

15

15

473

(20)

The assumed free vibration is harmonic and based on the displacement field of Eqs. (17a—c), the
expression of kinetic energy takes the following form [9]:

P
2J Ja

17 32 4 17 13,2
315h 'TDX +315h lp}’
8 p3y 9w 8 p3 0w
+315h l/jx 0x + 315h l'by dy dxdy

2
2 B (Owg 2 B (0w
+hw* + 55 (ax) + 353

oy

1)

Separation of the variables (Eqs. 5a—) and integration over assumed direction, using the notation

of Egs. (7) and (8), yield

1

. Ly ( =Sydf? — Sauddp® + 2Sasdf w — 2Srsdpw .
- 5/0 —Sohw? + Szgdw’zx — Shodw? X

(22)
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where S»3 through Sy are

S = /Ly iwz apDF* d S —/Ly in apA®* d
23 = A 315 pao Y, 24 = A 315 pao ),
Ly 4 5 Ly 4 5
= S DFW d = - Ad d
S2s /o 3152 P Wdy, S /0 315 @ Pdo W, dy,
L, L,
‘ 2 2 i S 2
S27 = —Q p/’l()HW dy, Szg = — pa()AW dy.
0 0 252
b1, 2
Sz = / L wPpaD W, dy, (23)
0 252 Y

According to Hamilton’s principle the first variation of the functional should be equal to zero
oIl =oU — 06T = 0. (24)

After integrating the expressions of virtual energy by parts and collecting the coefficients of ow, of
and J¢, the three equations of motion for the strip element are obtained in following form:
for dw:

S3AW xxxx + 283d W xxx + S3d xxWxx + (2810 — S14)dw o — S19hW 1y

+828dW xx + (2810 — S14)d W — S19h Wy + Sasd W x + S1od W

+S4dw + (S22 + Sa7)hw + Sadw — Ssdf . — 2Ss5d f 1 — Ssd xnf =0; (25a)

+(S15 — S9)df . — S1shf  + Sasdf . + Sisd of — Sishf + Sasd f

+S9d . + S16d P . + (289 + S16)d <P + Sod xxP + Sedp + S21hp + Srd

for of:

Ssdw xxx + Ssd W xx + (Sg — S15)dw , + Sighw
—Sasdw x + Ssd xw — Sidf . — Sidf +Sudf | =0; (25b)
+S17hf + Sudf + (S13 — S7)dd . — S7d

for d¢:
(S9 + S16)dw xx + St6d xw x + Sedw + Sr1hw + Srsdw
(S7 = Su)df  — Sidxf —Sndd . — S1d ¢, = 0. (25¢)
+S2d¢ + Sroh + Srudd

The natural boundary conditions (forces and moments at the ends of strip elements) are obtained
as
_S3dW,xxx - S3d,xW,xx + (S14 - SIO)dW,x + Sl9hW,x
—Szgdw,x — S31W,x — S33W — Slod,xw L
W 0= L §df .+ Ssdof « — Sisdf + Sishf — Sasdf 0" (262)

—(S9 + S16)d¢p , — Sod ¢
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Swy i R= (S3dwxn — Ssdf . + Sodp + S1odw) [, (26b)
8f : My = (S1df  — Ssdw x + S7dp — Ssdw)|}, (26¢)
3¢ : M, = (S12d¢  + Ssdf — Sisdw ) [g” (26d)

Note that unlike the FOPT, an additional higher-order bending moment R appears in the HOPT
approach.

The dimensionless variables ¢ and 7, and the assumption of polynomial variation of the all
functions over the strip, Eqs. (15a—c) and (16a-b), are used again for the solution. The recurrence
formulas for the polynomial terms, which are obtained by substituting the assumed functions into
the Egs. (26a—c) [9], are given in Appendix B. The rest of procedure is the same as in [9].

3. Numerical examples and discussion

In order to obtain a high precision solution for the free vibration problem of thick plates with
polynomial variation of thickness, and simultaneously demonstrate the applicability and
versatility of the present method, numerical calculations have been performed for a large number
of plates with variable thickness for different taper ratios, length—width ratios, thickness—width
ratios and various combinations of boundary conditions. The frequencies are expressed in terms
of the dimensionless factor 4 = a)L)z,(phO /do)"? /7*. Nine dimensionless frequency values are given
for each case based on the three plate theories (CPT, FOPT, HOPT). The mode shapes of
vibration are defined by m and n, where these integers indicate the number of half-waves in the x
and y directions, respectively. In all calculations, Poisson’s ratio v is taken as 0.3. For the FOPT
solutions the shear correction factor k£ = 5/6 is adopted [1,2]. The types of boundary conditions
which are used are:

Simply Supported-S  for FOPT: w=¢ =0, M, =0,

for HOPT: w=¢ =0,M;, = R=0;
Simply Supported-S* for FOPT: w=0,M, = M, =0,

for HOPT: w=0,M, =R =M, =0;

Clamped - C for FOPT: w=f=¢ =0,
for HOPT: w=we=f=¢ =0;
Free - F for FOPT: Q=M,=M,=0,

for HOPT: Q= M, =R= M, =0.

The plates are described by a symbolism defining the boundary conditions at their edges starting
from x=0 to x=L,, y=0, y= L, consequently. For example, CCFS denotes a plate with
clamped edges at x =0 and x = L,, free at y = 0 and simply supported at y = L,. Two types of
the thickness variations are considered, namely linear and parabolic variations. The linear
variation of thickness is shown in Fig. 1 and defined as
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where f8, and f, are the taper ratios in the x and y directions respectively defined as f8, =
(ho — h(L:))/ho and B, = (hy — H(L,))/ho.

Three forms of the parabolic variation of the thickness in the x direction are investigated,
namely arched, concave, and symmetric concave variations (Fig. 2). The arched form is given by

h(x,y) = ho(1 = 8&%), 8 =1—hg/ho. (28a)

Fig. 2. Parabolic variations of the plate thickness: (a) arched form; (b) concave form; (c) symmetric concave form.

Table 1

Comparison of the frequency factors / for x direction tapered Reissner-Mindlin square plates, (v = 0.3, k = n°/12,
B, =0.5)

Work ho/L, Mode

1,1 1,2 2,1 2,2 1.3 3,1 3.2 23
SSSS
Present 0.1 1.4504 3.4743 3.5058 5.4838 6.5345 6.7038 8.5303 8.5921
Mizusawa [15] 1.4504 3.4743 3.5058 5.4840 6.5347 6.7039 8.5302 —
Present 0.2 1.3738 3.1096 3.1276 4.6613 5.4883 5.5657 6.8435 6.8725
Mizusawa [15] 1.3738 3.1096 3.1276 4.6613 5.4881 5.5656 6.8437 6.8726
Present 0.4 1.1664 2.3603 2.3637 3.2845 3.7942 3.8050 4.5043 4.5105
Mizusawa [15] 1.1665 2.3603 2.3637 3.2845 3.7942 3.8050 4.5043 4.5105
Work ho/L, Mode

1,1 1,2 2,1 1,3 2,2 23 3.1

SSFF
Present 0.1 0.7201 1.2119 2.5569 2.6320 3.5362 49141 5.2300
Mikami and [12] 0.7226 1.2118 2.5561 2.6309 3.5362 — —
Mizusawa [15] 0.7201 1.2119 2.5570 2.6320 3.5362 49142 —
Present 0.2 0.6999 1.1414 2.3663 2.3780 3.1050 4.1894 4.5840
Mikami and Yoshimura [12] 0.7000 1.1410 2.3661 2.3776 3.1054 — —
Mizusawa [15] 0.6999 1.1414 2.3663 2.3780 3.1050 4.1894 4.5840
Present 0.4 0.6368 0.9668 1.9134 1.8534 2.2922 2.9752 3.3735
Mikami and Yoshimura [12] 0.6370 0.9666 1.8532 1.9135 2.2924 — —

Mizusawa [15] 0.6368 0.9668 1.8534 1.9013 2.2922 2.9751 3.3735
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The concave parabolic variation is expressed by

h(x,p) = ho(6EF = 26¢ + 1), 6 =1—hy/hy.

The symmetric concave shape is given by

h(x,y) = ho(40& — 45¢ + 1), 6 =1~ hosp/ho.

477

(28b)

(28¢)

The results obtained by the three theories are presented in table form for the different
configurations of the rectangular plates. For each case the thickness-width ratio //L, are varied
from 0.1 to 0.4. Note that ratios /L, = 0.4 does not really ascribe to a plate, but it is used for
comparison and confirmation of the obtained results.

Table 2
Frequency factor 1 for CCCC plates with linear thickness variation in the x direction
L./L, Theory hy/L, Mode
L1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
. =025
1 CPT — 3.1767 6.4782 11.6375 6.4650 9.5610 14.5677 11.5703 14.5959 19.4425
FOPT 0.1 29359 5.6690  9.5269 5.6634 8.0155 11.5315  9.5017 11.5459 14.6648
0.2 2.4762 4.4051  6.8797 4.4053 59646  8.1386  6.8771  8.1431 10.0038
0.3 2.0522  3.4468  5.1920 3.4483 4.5704  6.0848 51926  6.0865  7.3726
0.4 1.7180 2.7842  4.1282 2.7855 3.6567  4.8110  4.1288° ~ 4.8116  5.7875
HOPT 0.1 2.9401 5.6848  9.5699 5.6789 8.0466 11.5932  9.5434 11.6079 14.7608
0.2 24955 4.4654  7.0156 4.4650 6.0651 83127 7.0112 83187 10.2488
0.3 2.0894 35478 53939 3.5488 4.7268  6.3379  5.3933  6.3413  7.7148
0.4 1.7713 29142 43699 29150 3.8486  5.1120 43696  5.1140  6.1863
1.5 CPT — 2.3805 3.6844 58725 57909 7.0641  9.1165 10.8686 12.2946 14.2793
FOPT 0.1 2.2374 33882  5.2347 51371 6.1415  7.7319  9.0369  9.9931 11.3724
0.2 1.9385 2.8357 4.1795 4.0448 4.7456  5.8304  6.6004  7.1829  8.0699
0.3 1.6404 23380  3.3354 3.1826 3.7119  4.5069  4.9999 54159  6.0548
0.4 1.3935 19517 27316 2.5773 3.0040  3.6265 3.9824 43038  4.7980
HOPT 0.1 22397 3.3932  5.2452 5.1494 6.1591  7.7575  9.0732 10.0391 11.4289
0.2 1.9503 2.8575  4.2217 4.0959 4.8098 59151  6.7236  7.3244  8.2310
0.3 1.6644 23792  3.4094 3.2711 3.8172  4.6407 5.1863  5.6237  6.2889
0.4 1.4290 2.0100  2.8303 2.6920 3.1374  3.7935 4.2070 4.5552  5.0792
2 CPT — 2.1598 28153  3.9554 5.5555 6.3038  7.3752 10.5530 11.5590 12.6485
FOPT 0.1 2.0390 2.6267  3.6327 4.9549 5.5385  6.3948  8.8360  9.4841 10.2428
0.2 1.7778 22507  3.0364 3.9236 4.3202  4.9328  6.4936  6.8522  7.3504
0.3 1.5097 1.8911  2.5044 3.0929 3.3926  3.8605 4.9298  5.1743  5.5432
0.4 1.2846 1.6006  2.0940 2.5053 2.7508  3.1283  3.9298  4.1162  4.4060
HOPT 0.1 2.0409 2.6298  3.6377 4.9661 5.5530 6.4130  8.8695  9.5258 10.2903
0.2 1.7881 22652 3.0583 3.9717 4.3768  4.9977  6.6110  6.9860  7.4930
0.3 1.5312 19195  2.5455 3.1778 3.4869  3.9656  5.1098  5.3712  5.7506
0.4 1.3167 1.6417 21519 2.6162 2.8708  3.2609 4.1472 43506  4.6564




478 L Shufrin, M. Eisenberger | Journal of Sound and Vibration 290 (2006) 465489

In order to initiate the iterative procedure, initial functions should be assumed. According to
the present formulations of the two higher-order shear deformation theories, the solution is a set
of the dependent functions of the displacements. Therefore, in order to obtain correct relations
between the assumed functions, so that they may satisfy any boundary conditions, the initial
displacements are chosen as the lateral deflections and bending rotations of a Timoshenko beam
for FOPT and high-order beams for HOPT [20]. Both polynomials are taken from the appropriate
direction of the plate as a unit width strip. Although the beam shapes are not always congruent
with the plate’s displacement, the iteration convergence proves to be really fast. In the previous
applications of the extended Kantorovich method [9,18] it has been shown that the initial assumed
function is neither required to satisfy the essential boundary conditions nor the natural boundary
conditions, and the quality of the assumption influences only the number of iterations. In the

Table 3
Frequency factor A for CFFF plates with linear thickness variation in the x direction

L./L, Theory  hy/L, Mode

1,1 2,1 3,1 1,2 2,2 32 1,3 2,3 3.3

B, =05
1 CPT  — 03859 1.8485 4.7650 0.7563 24184 53746 19438 40317 7.2149
FOPT 0.1 03828 17835 4.4122 0.7350 22981 4.9206 1.8669 3.7320  6.4338
0.2 03737 1.6278 3.7222  0.6970 20598 4.1058 1.7335 32321 5.2280
0.3 03610 14435 3.0866 0.6500 1.8029 3.3869 1.5831 27623  4.2552
0.4 0.3458 1.2687 2.5955 0.6004 1.5752 2.8423 14380 23804 3.5464
HOPT 0.1 03828 17842 44171 07352 22995 49268 1.8675 3.7353  6.4439
0.2 03738  1.6324 3.7478 0.6979 20674 4.1356 1.7356 32463  5.2684
0.3 03614 14553 3.1380 0.6524 1.8198 3.4433 1.5876 2.7905 4.3263
0.4 0.3467 12889 2.6671 0.6048 1.6017 29186 14452 24223  3.6403

1.5 CPT — 0.1713  0.8201  2.1130 0.4645 1.3244 2.6892 1.6458 2.7964 4.3733
FOPT 0.1 0.1708  0.8063  2.0369 0.4519 1.2778 2.5535 1.5995 2.6447  4.0433

0.2 0.1684 0.7703  1.8578 0.4323 1.1906 2.2856 1.5120 2.3811  3.4888

0.3 0.1654 0.7210 1.6490 0.4083  1.0872 1.9997 1.4055 2.1054 2.9691

0.4 0.1617  0.6665 1.4544 0.3824 09852 1.7482 1.2958 1.8601  2.5482

HOPT 0.1 0.1708  0.8064 2.0376 0.4520 1.2783  2.5547 1.5995 2.6459  4.0465

0.2 0.1684 0.7710 1.8623  0.4327 1.1927 2.2926  1.5127 2.3859  3.5018

0.3 0.1654 0.7230  1.6604  0.4094 1.0923 2.0154 1.4069 2.1157 2.9955

0.4 0.1618 0.6705 1.4735 0.3843 09940 1.7728 1.2982 1.8770  2.5888

2 CPT — 0.0963  0.4606 1.1860 0.3353  0.9033  1.7220 1.5252  2.3179  3.2957
FOPT 0.1 0.0961 0.4560 1.1607 0.3262 0.8758 1.6558 1.4899  2.2177  3.0957

0.2 0.0952 0.4436  1.0968 0.3132 0.8283  1.5283 1.4191 2.0355 2.7496

0.3 0.0941 04256 1.0129 0.2974 0.7707 1.3807 1.3292  1.8324  2.3988

0.4 0.0927 0.4042 0.9248 0.2802 0.7109 1.2393  1.2638  1.6419  2.0959

HOPT 0.1 0.0962 0.4560 1.1609 0.3263 0.8760 1.6564 1.4900 2.2183  3.0972

0.2 0.0952  0.4438 1.0980 0.3134 0.8293  1.5310 1.4194 2.0377 2.7556

0.3 0.0941 0.4261 1.0163 0.2980 0.7731 1.3871 1.3299 1.8372 24118

0.4 0.0927 0.4053 0.9312 0.2813  0.7152 1.2500 1.2696 1.6501  2.1173




L Shufrin, M. Eisenberger | Journal of Sound and Vibration 290 (2006) 465-489 479

hy/L,=0.1 hy/L,=0.2

1.7577

=
1.9465 1.7697

Fig. 3. Free vibration modes and normalized frequency factors for CFFF plates with linear thickness variation in the x
direction: L,/L, = 2.0, f, = 0.25: HOPT solution.

present work, the maximal tolerance for the relative error between the iteration steps is taken as
0.0001%. Unlike most of the other numerical methods, in which a better result is obtained by
increasing the number of unknowns, the solution in the extended Kantorovich method is
improved by continuous enhancement of the operator between successive iteration steps, without
additional unknowns.

3.1. Plates with linear thickness variation in the x direction

It appears that there are no available results for rectangular plates with variable thickness
computed based on any HOPT. Thus, the confirmation of the obtained results is made only with
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;j:;i:ncy factor A for CCCC square plates with linear thickness variation in the both directions
B, Theory hy/L, Mode
L1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
p. =025
0.25 CPT — 2.7667 5.6312 10.0754 5.6312 8.3356 12.7168 10.0754 12.7168 16.9537

FOPT 0.1 2.6022 5.0733  8.6089 5.0733 7.2403 10.5229  8.6089 10.5229 13.4632
0.2 2.2620 4.1002  6.4940 4.1002 5.6032  7.7258  6.4940  7.7258  9.5497
0.3 1.9215 3.2805  5.0065 3.2895 4.3892  5.8875  5.0065 58875  7.1625
0.4 1.6368 2.6965  4.0235 2.6965 3.5552  4.7022  4.0235 4.7022  5.6735
HOPT 0.1 2.6048 5.0832  8.6359 5.0832 7.2606 10.5643  8.6359 10.5643 13.5291
0.2 22749  4.1421 6.5921 4.1421 5.6763  7.8568  6.5921 7.8568  9.7365
0.3 1.9479 33650  5.1574 3.3650 4.5104  6.0855  5.1632  6.0887 = 7.4302
0.4 1.6765 2.7986  4.2192 277986 3.7105  4.9490 4.2192 49490  6.0012

0.5 CPT — 23209 4.6823  8.2375 4.7261 7.0243 10.7602  8.4456 10.6858 14.3012
FOPT 0.1 2.2208 4.3495  7.3887 43771 6.3217  9.3160  7.5108  9.2594 11.9744

0.2 1.9951 3.6870 59211 3.6943 5.1208  7.1690 59556  7.1420  8.9131

0.3 1.7458 3.0609  4.7226 3.0587 4.1284  5.6032  4.7272 55906  6.8489

0.4 1.5210 2.5639  3.8633 2.5588 3.4021  4.5387 3.8614  4.5325  5.4969

HOPT 0.1 22222 43545 74020 4.3826 6.3334  9.3408  7.5265  9.2842 12.0152

0.2 2.0026 3.7119 59804 3.7208 5.1695  7.2616  6.0212  7.2324  9.0474

0.3 1.7645 3.1060  4.8310 3.1110 4.2169  5.7586  4.8412  5.7407  7.0627

0.4 1.5477 2.6374  4.0091 2.6339 3.5228  4.7383  4.0109 4.7264  5.7617

B, =05
0.5 CPT — 1.9473  3.9309 6.9087 3.9309 59193 9.0421 6.9087 9.0421 12.0635
FOPT 0.1 1.8870 3.7253 6.3773 3.7253 5.4755 8.1202 6.3773 8.1202 10.5425

0.2 1.7410 3.2764 5.3441 3.2764 4.6231 6.5491 5.3441 6.5491 8.2249

0.3 1.5654  2.8060 4.3987 2.8060 3.8389 5.2674 4.3987 5.2674 6.4883

04 1.3947  2.4028 3.6690 2.4028 3.2241 4.3392 3.6690 4.3392 5.2862

HOPT 0.1 18876 3.7292 63851 3.7281 54820 8.1324 63845  8.1352  10.5669

0.2 1.7453  3.2906 5.3936 3.2913 4.6543 6.6099 5.3802 6.6100 8.3036

03 1.5755 2.8391 44729 28390 3.9002 53784 44734 53784  6.6475

0.4 1.4119 2.4543 3.7759 2.4543  3.3138 4.4913 3.7759 4.4913 5.4973

existing FOPT solutions. Table 1 shows a comparison study of the natural frequency factors 4 for
two types of rectangular plates. As can be seen, similar or more precise results are achieved for
every case.

The natural frequency factors A for CCCC and CFFF plates tapered in the x-direction
calculated by using the three theories are given in Tables 2 and 3. The frequencies decrease with an
increase of the thickness-width ratio (4/L,) for constant values of L,/L,. It is seen that this effect
i1s more pronounced for higher modes. Such behavior is due to the influence of rotary inertia and
shear deformations. Also, the discrepancy between the CPT results and the higher theories
(HOPT, FOPT) becomes more significant because the CPT does not take into account the
additional flexibility due to the shear stresses.
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The comparison of the HOPT and FOPT results for the tapered SSSS square plate shows
the difference between the results of these theories is very small in the cases of low thickness—
width ratios, and exceeds 1% only for relatively thick plates (#/L, = 0.3,0.4) for the higher
modes (two and more half waves). Also the influence of the thickness variation becomes smaller as
the aspect ratio L./L, increases. This effect ascribes to more flexibility of the longer plates.

The first seven modes for rectangular CFFF plate with linear variation of the thickness are
presented in Fig. 3. It is seen that the increase in the thickness—width ratio causes not only the
decrease of the values of the natural frequency factor, but also change the order of mode shapes
(the 6th and 7th mode interchange).

3.2. Plates with linear thickness variation in both directions

The dimensionless factor of natural frequencies for CCCC and CFCF plates with linear
variation thickness in the both directions are given in Tables 4 and 5. The first six modes for free
vibration of the CFCF plate tapered in both directions are shown in Fig. 4. Although for this case
the assumed separation, Egs. (5a—), provides only for approximate solution, the obtained shapes
are true in principle.

lziel:jciiesncy factor A for CFCF square plates with linear thickness variation in the both directions
B, Theory  hy/L, Mode
L1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
=025
0.25 CPT — 0.5787  1.9491 47245 1.9491 3.6621 6.6644 4.7245 6.6644 9.7979

FOPT 0.1 0.5683  1.8698 4.3850 1.8698 3.3970 5.9657 4.3850 5.9657 8.4416
0.2 0.5476 ~ 1.7033  3.7335 1.7033  2.9287 4.8490 3.7335 4.8490  6.5565
0.3 0.5206  1.5116  3.1186 1.5116 2.4825 39319 3.1186 3.9319 5.1739
0.4 0.4909  1.3308 2.6312 1.3308 2.1192 3.2594 2.6312 3.2594 4.2207
HOPT 0.1 0.5685 1.8707 4.3889 1.8707 3.4003 59760 4.3889 59760  8.4640
0.2 0.5481 1.7079  3.7524 1.7079 2.9442 48873 3.7524 48873  6.6237
0.3 0.5218 1.5223  3.1589  1.5224 2.5132 4.0007 3.1589 4.0007 5.2861
0.4 0.4930 1.3487 2.6888 1.3487 2.1641 3.3528 2.6888  3.3528  4.3682

0.5 CPT — 0.5204 1.5659 3.6115 1.7129 3.0779 5.5512 4.0509 5.6196 8.2003
FOPT 0.1 0.5144  1.5225 3.4491 1.6634 29172 5.1270 3.8322 5.1794 7.3421

0.2 0.5012  1.4307 3.1064 1.5499 2.6046 4.3596 3.3716 4.3852 59722

0.3 0.4830 1.3155 2.7260 1.4087 2.2748 3.6484 28937 3.6605 4.8501

0.4 0.4617 1.1962 23817 1.2667 19844 3.0859 2.4891 3.0936 4.0271

HOPT 0.1 0.5144  1.5229 34505 1.6639 29191 5.1320 3.8347 5.1853  7.3535

0.2 0.5015 1.4328 3.1143 1.5529 2.6142 4.3831 3.3857 4.4117 6.0179

0.3 0.4837 1.3206 2.7469 1.4163 2.2953 3.6953 29250 3.7116 4.9315

0.4 0.4630 1.2054 24128 1.2800 2.0162 3.1535 25366 3.1654 4.1372
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A1,1=0.5015 Az1=1.4328 A12=1.5529
A22=2.6142 A31=3.1142 A12=3.3857

Fig. 4. Free vibration modes for CFCF square plate with linear thickness variation in both directions: /iy/L, = 0.2,
B, =0.25, B, =0.5, v=0.3: HOPT solution.

Table 6

Comparison of the frequency factors A for Reissner-Mindlin S*S*S*S* square plates with parabolic thickness variation

in the x direction, (arched form, 6 = 0.5, v = 0.3,k = n2/12)

hy/L,  Work Mode
1L 2@ 3(12) 422 513 631 732 8(@23)
0.1 Present 1.5568  3.7959  3.8085  5.8475  7.2049  7.2655  9.0839  9.1839
Al-Kaabi and Aksu [14]  1.5825  3.8732  3.8864 5.8834  7.4975 7.5683  9.1543  9.2762
0.2 Present 1.4279  3.2864 33032  4.7969 58422 58488  7.0432  7.0825
Al-Kaabi and Aksu [14] 1.4526  3.3301 33452 48023 58752 5.8790  6.9424  6.9761
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Table 7
Frequency factor 4 for CCCC square plates with parabolic thickness variation in the x directions, (arched form)
0 Theory  hy/L, Mode
1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
0.25 CPT — 33157  6.7387 12.1298  6.8267 10.0079 15.2278 12.2594 15.3302  20.3699
FOPT 0.1 3.0415 5.8365 9.7926  5.8986 8.2714  11.8566 9.8721 11.8998 15.0623
0.2 2.5344  4.4779 6.9824  4.5100 6.0684 8.2589 7.0162 8.2702  10.1398
0.3 2.0813  3.4768 52382 3.4945 4.6162 6.1380 5.2541 6.1418 7.4313
0.4 1.7319  2.7952 4.1521  2.8067 3.6791 4.8374 4.1610 4.8390 5.8171
HOPT 0.1 3.0465 5.8544 9.8405 5.9174 8.3072  11.9257 9.9223 119714 15.1703
0.2 2.5565  4.5438 7.1279  4.5791 6.1795 8.4472 7.1695 8.4646  10.4066
0.3 2.1230  3.5851 54512 3.6076 4.7855 6.4082 5.4773 6.4182 7.7980
0.4 1.7906  2.9327 44043  2.9493 3.8835 5.1560 4.4240 5.1638 6.2286
0.5 CPT — 29428 5.9543 10.7304 6.0915 8.9525 13.5535 10.7897 13.8529  18.2497
FOPT 0.1 2.7420  5.2909 8.9859  5.4058 7.6223  10.9760 9.0766  11.1258  14.0809
0.2 2.3434  4.1952 6.6405  4.2697 5.7661 7.9029 6.7123 7.9491 9.7694
0.3 1.9623  3.3237 5.0699 3.3712 4.4605 5.9663 5.1128 5.9835 7.2572
0.4 1.6545  2.7036 4.0551  2.7360 3.5884 4.7417 4.0810 4.7494 5.7207
HOPT 0.1 2.7454  5.3031 9.0192 5.4186 7.6483  11.0260 9.1099 11.1809 14.1628
0.2 2.3595  4.2446 6.7523  4.3229 5.8551 8.0531 6.8323 8.1146 9.9924
0.3 1.9944  3.4098 52422  3.4649 4.6040 6.1933 5.3019 6.2284 7.5768
0.4 1.7018 2.8176 42663 2.8584 3.7656 5.0132 4.3107 5.0368 6.0886
Table 8
Frequency factor A for CCCC square plates with parabolic thickness variation in the x directions, (concave form)
0 Theory hy/L, Mode
1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
025 CPT — 3.0380 6.2144 11.1380 6.1022 9.1095 13.8996 10.8766 13.8533 18.5053
FOPT 0.1 2.8280  5.4937 9.2460 54175 7.7458 11.1863 9.1072 11.1680  14.2399
0.2 24144  4.3255 6.7669  4.2899  5.8505 8.0060 6.7211 8.0022 9.8532
0.3 2.0202 3.4123 5.1402  3.3954 4.5188 6.0249 5.1225 6.0241 7.3063
0.4 1.7023  2.7701 4.1009 2.7605 3.6310 4.7804 4.0918 4.7799 5.7535
HOPT 0.1 2.8316  5.5076 9.2843 54302 7.7727 11.2411 9.1412  11.2211  14.3245
0.2 24311  4.3801 6.8932 4.3408  5.9407 8.1662 6.8369 8.1594  10.0771
0.3 2.0533  3.5060 5.3309 3.4838 4.6624 6.2612 5.3013 6.2574 7.6241
0.4 1.7503  2.8926 43318 2.8768 3.8102 5.0641 4.3105 5.0603 6.1271
0.5 CPT — 2.3878  4.9025 8.7425 4.6537 7.1385 10.8896 8.1054 10.8098  14.5002
FOPT 0.1 22835 4.5231 77170 4.3327  6.4168 9.3996 7.2995 9.3726  12.1072
0.2 2.0494  3.7933 6.0592 3.6893 5.1880 7.2173 5.8872 7.2188 8.9821
0.3 1.7915  3.1256 47835 3.0742 4.1753 5.6344 4.7155 5.6393 6.8881
0.4 1.5591  2.6074 3.8976  2.5811  3.4362 4.5618 3.8663 4.5648 5.5225
HOPT 0.1 22850 4.5294 7.7358  4.3375  6.4291 9.4270 7.3118 9.3971  12.1505
0.2 2.0573  3.8233 6.1356  3.7129  5.2391 7.3159 5.9421 7.3121 9.1247
0.3 1.8090  3.1841 49126 3.1223  4.2681 5.7962 4.8176 5.7978 7.1134
0.4 1.5870  2.6905 4.0637  2.6519  3.5627 4.7677 4.0054 4.7688 5.7981
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Table 9
Frequency factor 4 for CCCC square plates with parabolic thickness variation in the x directions, (symmetric concave
form)

o Theory hy/L, Mode

1,1 2,1 3.1 1,2 2,2 3.2 1,3 2,3 33

025 CPT — 3.0944  6.3631 11.3249 59777 9.1365 14.0013  10.5448  13.7220 18.4921
FOPT 0.1 2.8829 5.6132 9.3636  5.3408 7.7823  11.2528 8.9202 11.1268  14.2551

0.2 2.4653  4.4062 6.8235 4.2703  5.8885 8.0423 6.6586 8.0103 9.8723

0.3 2.0651  3.4700 5.1736  3.4013  4.5503 6.0484 5.1044 6.0394 7.3215

0.4 1.7411  2.8154 4.1253 27756  3.6568 4.7988 4.0891 4.7951 5.7664

HOPT 0.1 2.8866  5.6283 9.4064 5.3523 7.8094 11.3113 8.9504 11.1778  14.3415

0.2 24822  4.4655 6.9629 43169 59799 8.2121 6.7636 8.1631  10.1006

0.3 2.0985 3.5710 5.3816  3.4834 4.6961 6.2958 5.2695 6.2680 7.6439

0.4 1.7898  2.9467 43749  2.8849  3.8395 5.0950 4.2935 5.0721 6.1474

0.5 CPT — 2.5494 52154 9.1261  4.4997 7.2047 11.1009 7.6484  10.5409  14.4563
FOPT 0.1 2.4367  4.7909 7.9973  4.2182  6.4917 9.5571 6.9687 9.2326  12.1207
0.2 2.1852 3.9874 6.2143  3.6437 5.2693 7.3133 5.7265 7.2047 9.0165

0.3 1.9087  3.2658 4.8745 3.0746  4.2482 5.6962 4.6488 5.6635 6.9251
0.4 1.6600 2.7142 3.9593  2.6046  3.4975 4.6065 3.8434 4.5960 5.5529
HOPT 0.1 24384  4.7987 8.0212 4.2222  6.5044 9.5888 6.9782 9.2545  12.1653

0.2 2.1938  4.0240 6.3099 3.6633 5.3216 7.4261 5.7704 7.2886 9.1713
0.3 1.9279  3.3361 5.0336  3.1151  4.3430 5.8780 4.7324 5.8079 7.1552
0.4 1.6903  2.8126 4.1603  2.6653  3.6265 4.8340 3.9600 4.7850 5.8362

3.3. Plates with parabolic thickness variation in the x-direction

For confirmation, the available results from Ref. [14] are compared in Table 6 with those
from the current study. It is seen that there is only a few percent difference between the results.
This is because the results predicted by the energy-based finite difference solution technique [14]
are generally higher than the expected value. The dimensionless values of natural frequencies for
the three types of parabolic variation of thickness are given in Tables 7-9 for CCCC boundary
conditions.

4. Conclusions

The free vibrations of rectangular thick plates with variable thickness and different boun-
dary conditions have been investigated by using the extended Kantorovich method.
This approach is combined with the exact element method for the vibration analysis of members
with variable cross-section. Two shear deformation theories, in which the effects of both
transverse shear stresses and rotary inertia are accounted for, have been applied to the ana-
lysis. The number of numerical examples demonstrates the applicability and versatility of the
present method.
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The advantages of the proposed method are:

e Any polynomial variation of the thickness throughout the plate can be considered.

e The shape functions are exact solutions for the system of the differential equations of motion
and they are derived automatically. As a result, the solution for the free vibration problems is
accurate (depending only on the accuracy of the numerical calculations), as the only
approximation is assuming a one-term separable solution.

e The exact solution is guaranteed when at least two edges of constant thickness direction of the
plate are simply supported and the problem is separable (Levy case). For other cases, it has
been found that the proposed separation of variables, Eqs. (5a—c), leads to accurate natural
frequency values and good approximation for the free vibration modes.
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Appendix A. Recurrence formulas for FOPT solution

Fori=0...00:

1
Soho(i + 1)(i + 2)

Wip2 =

=S > i —j+ )i = j + 2w
j=1

— 89> (j+ Dh1(i—j + Dwijyr — SsLye >+ Dhjsifo

j=0 j=0

+(S12 = SIDLLY hywij = SsLy > k(i —j+ Df iy + SnLi> ko, |
=0 =0 =0

1
S = S G+ DG+ 2)

=81 dii—j+ D —j+2f i
j=1

= S1Y GA DG =)+ 1D 1 = S3Le Y+ Ddji iy
j=0 J=0

+SALLY dif i+ S1LL Y hfi = SullY dif i
Jj=0 Jj=0 Jj=0

+ SsLy > hi(i—j+ Dwijer +(Ss = S3)Le Y _di(i —j+ Dby |
j=0 Jj=0
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1

Pir2 = Sedo(i + 1)(i + 2)

—Se Y di(i—j+ i —j+ D4
j:l

— 86> U+ Ddjali —j+ Dy = SsLe Y _(+ Ddjiif i

J=0 j=0

+ S dii i+ S0l b — Sull> dig;
j=0 j=0 j=0

+SnL; Z}l_/wi—j+(53 — Ss5)Ly Z dii —=j+ Dfiji |-
=0

j Jj=0

Appendix B. Recurrence formulas for HOPT solution

In contrast with the FOPT analysis, when unknown polynomial terms could be found one after
another, in the current HOPT formulation the following algorithm should be used to calculate
them.

Firstly, the f, term is calculated for i = 0 from the following expression:

6Ssdows + (Sg — 515)Lid0W1 + SlgLi/’l()Wl — 525Lid0w1
+S1uLdof o+ Si7Lihof o + SxLidof o + (S13 — S7)Lidod,
+285d 1wy — S]Lxd]fl + SgLidﬂ/V() — S7L§.d1(]50

/>

~28,Ld,

Then for i =0...00, the ¢;,, terms are determinated by

1

Piv2 = S1ado(i + 2)!

=812 ) diktioi =k +2)! = SisLy Y (k + DS g
k=1

k=0

+ Sie Z(k + Ddpiwicg1(i —k +1) = Sz Z(k + Ddir1pi g =k + 1)
k=0 k=0

+ (S9 + Si6) Z diWigi2(i — k +2)! + Se L2 Z diwi—k + S L} Z hiwi—k
=0 =0 =0

+ SxL} Zakwi—k + (87 — S13) Ly defi—k+1(i —k+1)
=0 k=0

i i i
+ SHL2> didy g+ S0LEY i j+SuLly > ard; |-
=0 =0 =0
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Now the terms w;., and f;43 can be found from the system of two equations:
A wira+ AV fiy5 = BY,
Ag,+l)wz+4 + A(l+1)fl+3 B(Ql):

where the terms A, B are defined by the following expression:
AP} = =Ssdo(i + 4)(i + 3)(i + 2)(i + 1),
APy = SsLido(i + 3)(i + 2)(i + 1),
A = —=Ssdo(i + 3)(i + 2)(i + 1),
A5, = S\ Lydo(i + 2)(i + 1),

B =, Z diwi—ja(i — k +4)! — SsL, Z dif i3 — k + 3)!
k=1 k=1
+83 ) (k+2)ldisawigiali — k+ 21+ SoL2 > (k +2)dii26h;
k=0 k=0

— S50y Z(k + Dldpsof i1 (0 =k + 1) + 2853 Z(k + Ddiriwiogy3(i — k + 3)!

k=0 k=0

— SyoL2 Z(k + Dhipiwigen (i — k 4+ 1) + SisL3 Z(k + DS i
k=0 k=0

+ (2810 — S14)L2 Z(k + Ddiy1wiogpr(i =k + 1) + SeL; Z dipi_y
k=0 k=0

+ 8L (k4 Ddisiwiogpi(i = k+ 1)+ SasLy > (k + Ddiyifig

k=0 k=0
—285Le Y (k+ Ddipif i geyoli = K+ 2)1 = SisLy Y (k + Dhieerf i
k=0 k=0

+ (289 + S16)L2 Z<k + D19 r (i =k + 1) + SioL3 Z(k + 2)ldisowi i

k=0 k=0

+ (Sa + Sy LY thwz K+ SpL? dewz 4+ SaL} dewz +
=0 =0

+ (2810 — S1a)L3 Z diWigia(i — k +2)! — S1o L2 Z hiwi—k2(i — k + 2)!

k=0 k=0

+ Sy L? dewz j2(i — k 4+ 2)! 4+ (San + Sa7) L4 thW, 4+ Sy Lt th¢ K

k=0 k=0 k=0
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+ Sszi dewi—k + S4Li dewl-_k - SlgLi, thfi—k+1(i —k + 1)
k=0 k=0 k=0

+(Sis = SOLIY dif i g1 =k + 1)+ SosL3S difi i =k + 1)

k=0 k=0
+SoLL Y diijinli = k42! + Si6L7 Y diigeinli =k + 21+ Sa6Ly Y dihiy
k=0 k=0 fe=0
B(2i) =Ss dewi_k+3(i —k+3)! = 8L, defi—k+2(i —k+2)
k=1 k=1
+ 85> (k+ Ddiepiwigrali — k + 21+ SsL2> (k + Deljprwii
k=0 k=0
- S1L, Z(k + Ddpsrf i — k+1) = S7L3 Z(k + Ddi19;
k=0 k=0

+ (Ss — Sis)L? Z AW (i — k + 1) + Sis L2 thwi—k+l(i —k+1)
=0 =0

— SosLYY diwigeni (i —k+ 1)+ SULYY dif i+ SuLLY i iy
k=0 k=0 k=0

+ S23L§c defi—k + (Sl3 - S7)Li de(bi—k—i-l(i —k + 1)
=0

k=0 k=
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