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Abstract

Vibrations of thin annular plates with at least one sliding or movable edge are considered. The
fundamental frequencies for the seven cases may correspond to axisymmetric or non-axisymmetric modes.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There exists extensive literature on the vibration of plates, especially with clamped, simply
supported, or free edges (e.g. Refs. [1,2]). Recently, Wang and Wang [3] pointed out that, for some
annular plates with small cores, the fundamental frequency is greatly lowered due to a mode
change from axisymmetric to a non-axisymmetric one.
Very few sources considered the fourth basic boundary condition, that of the movable or sliding

edges. On these boundaries the edges do not rotate but are free to move laterally. Plates with
movable edges model moving parts such as piston heads. McLeod and Bishop [4] formulated the
governing equations, but only solved for the full circular plate frequencies. In this note we shall
present the results for annular plates.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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2. Formulation

The general form of the lateral displacement of the vibration of a classical thin plate can be
expressed as uðrÞ cosðnyÞeiot; where (r, y) are polar coordinates, n is an integer and o is the
frequency. The function u(r) is a linear combination of the Bessel functions
JnðkrÞ; Y nðkrÞ; In krð Þ; KnðkrÞ; where k ¼ (radius)[(density)(o)2/(flexural rigidity)]1/4 is the square
root of the non-dimensional frequency [1]. The normalized bending moment is

MðrÞ ¼ u00ðrÞ þ n
1

r
u0ðrÞ �

n2

r2
uðrÞ

� �
. (1)

The normalized effective shear force is

V ðrÞ ¼ u000ðrÞ þ
1

r
u00ðrÞ � ½1þ n2ð2� nÞ�

1

r
u0ðrÞ þ n2ð3� nÞuðrÞ. (2)

Here n is Poisson’s ratio. For a full plate with a movable edge, the boundary conditions are that
the displacement and moment are bounded at the center, and that on the outer edge

u0ð1Þ ¼ 0; V ð1Þ ¼ 0. (3)

Using only the bounded functions Jn and In, Eqs. (3) yield an exact characteristic determinant for
the eigenvalue k. A root finding scheme gives Table 1 for n ¼ 0.3. For n ¼ 0, the frequencies are
independent of Poisson’s ratio. McLeod and Bishop [4] gave less accurate values of 3.84, 7.02,
10.18 for s (number of nodal circles) equal to 1, 2, 3. Note that the case s ¼ n ¼ 0 is not included
since the plate can move vertically as a rigid body. Consulting Table 1, the fundamental frequency
is 1.7557 corresponding to a non-axisymmetric mode s ¼ 0 and n ¼ 1.
The results of Ref. [4] for n40 (n ¼ 0:33) are also somewhat off. For n ¼ 1 we obtain 1.7596,

5.3292, 8.5358, 11.706 for s ¼ 0; 1; 2; 3 while the values in Ref. [4] are 0, 5.33, 8.54, 11.7,
respectively.
3. Annular plates

Consider an annular plate with (normalized) inner radius of b and outer radius of 1. There are
seven kinds of combinations involving a movable edge. Let C, S, F, M represent clamped, simply
Table 1

Frequency k for a full plate with moving edge

s n

0 1 2 3

0 — 1.7557 2.9639 4.1112

1 3.8317 5.3291 6.7010 8.0081

2 7.0156 8.5357 9.9680 11.344

3 10.174 11.706 13.170 14.585

s is the number of nodal circles and n is the number of nodal diameters (v ¼ 0:3).
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supported, free, and movable edge. Let the first letter denote the inner edge and the second letter
the outer edge. The seven cases are CM, MC, SM, MS, MM, FM, and MF. None of these cases
has been studied before. We shall be concentrating on the fundamental (lowest) frequency for
n ¼ 0:3.
For the CM case, the boundary conditions are

uðbÞ ¼ 0; u0ðbÞ ¼ 0, (4)

V ð1Þ ¼ 0; u0ð1Þ ¼ 0. (5)

Now when b-0 the clamped core is equivalent to a nailed center. Such constraint increases the
frequency for the n ¼ 0 axisymmetric mode but not the n40 modes with nodal diameters. Thus
the fundamental frequency limit is 1.7557 (n ¼ 1) as b-0. On the other hand, when b is close to
one, the plate resembles a long strip of width 1�b and one edge clamped, one edge movable. The
characteristic equation is given by

sinx coshxþ cosx sinhx ¼ 0; x ¼ kð1� bÞ. (6)

The lowest root is x ¼ 2:365, or the fundamental frequency is asymptotically

k ¼
2:365

1� b
(7)

corresponding to the axisymmetric n ¼ 0 mode. Thus the vibration switches form the n ¼ 1 mode
to the n ¼ 0 mode as the core radius is increased. The location of switch is found to be at
b ¼ 0:118 when k ¼ 2:471. Such switching phenomenon is similar to that reported in Ref. [3].
For the MC case, the boundary conditions are the same as Eqs. (4) and (5) except b and 1 are

interchanged. We find the axisymmetric n ¼ 0 case gives the fundamental frequency for the whole
range of b. When b is zero the plate becomes a full plate with clamped outer edge. The frequency is
the root of

I1ðkÞJ0ðkÞ þ I0ðkÞJ1ðkÞ ¼ 0, (8)

yielding k ¼ 3:1962. For b close to one Eq. (7) describes the asymptotic behavior.
In the SM case the boundary conditions are

uðbÞ ¼ 0; MðbÞ ¼ 0 (9)

and Eqs. (5). Similar arguments as the CM case show the fundamental frequency is 1.7557 for
n ¼ 1 as b-0. For b close to one, a strip of 1�b width, one edge movable and one edge simply
supported, gives the asymptotic fundamental frequency

k ¼
p

2ð1� bÞ
(10)

corresponding to the n ¼ 0 mode. The switching occurs at b ¼ 0:103 when k ¼ 2:148.
The MS case gives axisymmetric vibrations for the fundamental frequency. Eq. (10) still

governs the behavior for b close to one. When the core is small, the vibration mimics that of a full
simply supported plate. The frequency is governed by

½2nI1ðkÞ þ kI2ðkÞ�J0ðkÞ þ ½2kJ0ðkÞ þ 2nJ1ðkÞ � kJ2ðkÞ�I0ðkÞ ¼ 0. (11)

For n ¼ 0:3, the first root is k ¼ 2.2215.
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Fig. 1. The fundamental frequency of an annular plate with movable edge condition. Dashed lines are asymptotic

approximations, Eqs. (7,10,13). Small circles represent locations of mode changes.
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The MM case utilizes Eq. (5) both at b and at 1. We find the lowest frequency always
correspond to the n ¼ 1 mode. Unlike the previous cases, the frequency does not rise
monotonically with b. The fundamental frequency is 1.7557 when b ¼ 0, then rises to a maximum
of 2.107 when b ¼ 0:131, and decreases to 1.245 when b is close to one.
The boundary conditions for the FM case are Eq. (5) and

V ðbÞ ¼ 0; MðbÞ ¼ 0. (12)

The n ¼ 1 mode dominates the fundamental frequency which starts from 1.7557 at b ¼ 0 and
decreases to 1.233 when b-1.
The MF case is also governed by the n ¼ 1 mode. However it starts singularly from zero. Using

asymptotic expansions similar to Ref. [3] we find for small b,

k�
2

fj ln bj þ ð1þ 22nþ 9n2Þ=½8ð3� 2n� n2Þ�g1=4
. (13)

A maximum of 1.634 is reached at b ¼ 0:263. Then the fundamental frequency decreases to 1.233
when b-1.
Fig. 1 shows the results of all seven cases.
4. Conclusions

This note complements the published results on annular plates by considering the seven
cases which involve the movable edge condition. As the core size is increased, we find the
fundamental frequency my increase or decrease. The fundamental mode may be axisymmetric,
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non-axisymmetric, or a mixture of both. Our graphical Fig. 1 (instead of numerous tables)
illuminates the behavior of the fundamental frequency.
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