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Abstract

This paper presents a method for investigating the dynamics of elastic structures containing and/or
submerged in flowing fluid. The method presented is based on a boundary integral equation method in
conjunction with the method of images, in order to impose appropriate boundary condition on the fluid’s
free surface. The method of analysis can be applied to any shape of cylindrical structure partially in contact
with flowing fluid. In the analysis of the linear fluid–structure system, it is assumed that the fluid is ideal,
i.e., inviscid, incompressible and its motion is irrotational. It is assumed that the flexible structure vibrates
in its in vacuo eigenmodes when it is in contact with flowing fluid, and that each mode gives rise to a
corresponding surface pressure distribution on the wetted surface of the structure. The in vacuo dynamic
properties of the dry structure are obtained by using a standard finite element software. In the wet part of
the analysis, the wetted surface is idealized by using appropriate boundary elements, referred to as
hydrodynamic panels. The fluid–structure interaction effects are calculated in terms of the generalized
added mass coefficients, generalized Coriolis fluid force coefficients and generalized centrifugal fluid force
coefficients. In order to demonstrate the applicability of the proposed method, a circular cylindrical shell,
simply supported at both ends, was adopted for the calculations. The cylindrical shell was considered
separately with rigid and flexible extensions at its ends. To assess the influence of flowing fluid on the
dynamic behavior of the shell structure, the non-dimensional eigenfrequencies and associated eigenmodes
are presented as a function of the non-dimensional fluid velocity. The predictions compare well with
available analytical calculations found in the literature.
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see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic behavior of structures partially or completely in contact with flowing fluid is of great
importance in a variety of engineering applications, such as, vibration of flexible pipelines
conveying fluid, heat exchanger tubes in axial flow and containing flowing fluid, inflatable dams in
the presence of flowing water, etc. All these vibration problems are complicated by the
interactions that take place between structure and fluid. This is due to the vibration of the
structural surface in contact with the fluid medium imparting motion to the fluid, thus altering its
pressure, and, hence, inducing reactive forces on its surface.
It is of practical importance to estimate the effect of the induced fluid loading on the dynamic

state of the vibrating structure. When a body oscillates in an unbounded (and/or completely filled
with) inviscid quiescent fluid, the hydrodynamic inertia forces are constants, independent of the
frequency of vibration. However, in the case when the body oscillates in or near a free surface
(and/or partially filled), the hydrodynamic inertia forces exhibit frequency dependence in the low-
frequency region, but show a tendency towards a constant value in the high-frequency region.
Furthermore, additional fluid–structure interaction forces occur when the fluid is flowing.
The response of shell structures immersed in or conveying flowing fluid has been extensively

studied, and general reviews of the literature have been given by Paı̈doussis [1] and Paı̈doussis and
Li [2]. Recent books by Paı̈doussis [3,4] provide a comprehensive treatment of the subject as well
as a complete bibliography of all important work in the field.
Moreover, Amabili and Garziera [5] presented a study on the linear dynamic analysis of

cylindrical shells with flowing fluid. They investigated the influence of various complicating
effects, such as non-uniform edge boundaries; internal, external and annular flows; intermediate
constraints, etc., on the dynamic response behavior of the structure. On the other hand, a three-
part study, investigating the dynamics of cantilever cylinders in axial flow, has been reported. In
the first part, Paı̈doussis et al. [6] presented some old and new experimental results, and a
comparison with linear theory was made. In the second part [7], a weakly nonlinear equation of
motion was derived. The fluid dynamic forces were introduced in terms of virtual work
expressions, separately for the inviscid forces, and for the hydrostatic and frictional forces. The
results of calculations based on this theoretical model were presented in Part 3 [8], by means of
bifurcation diagrams, phase-plane plots and Poincaré maps. Amabili et al. [9] developed a
geometrically nonlinear shell model to study stability of shells-containing incompressible flow.
However, the fluid–structure interaction forces were calculated by using a linear potential theory.
This study has been extended by Amabili et al. [10], for investigating the nonlinear stability of
supported, circular cylindrical shells in a compressible, inviscid, subsonic flow. In an investigation
by Amabili et al. [11], the nonlinear dynamics and stability of simply supported, circular
cylindrical shells containing inviscid, incompressible fluid flow were studied. The linear potential
flow theory was again applied to describe the fluid–structure interaction forces. Lakis and
Selmane [12] presents a hybrid finite element method to investigate the large amplitude vibrations
of orthotropic cylindrical shells subjected to flowing fluid. In this study, only the linear effects of
the fluid were taken into account. Toorani and Lakis [13,14] presented a method, based on the
finite element method, refined shell theories and linear fluid dynamic theory, to analyze the
vibration of anisotropic laminated composite cylindrical shells subjected to internal and external
incompressible, inviscid flowing fluid. Recently, Toorani and Lakis [15] used the same method and
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presented the flow-induced vibration characteristics of the anisotropic laminated cylindrical shells
partially or completely filled with a quiescent liquid or subjected to a flowing fluid.
This paper presents a method for investigating the dynamics of elastic structures containing

and/or submerged in flowing fluid. The method presented is based on a boundary integral
equation method together with the method of images in order to impose appropriate boundary
condition on the fluid’s free surface. The method proposed in this study is already successfully
applied to structures partially filled with or partially submerged in a quiescent fluid (see Refs.
[16–18]). In this study, therefore, the mathematical model is extended for taking into account the
effect of axial fluid velocity. Furthermore, it should also be noted that the method proposed here
can be applied to any shape of cylindrical structure partially in contact with internal and/or
external flowing fluid, in contrast to the studies found in the literature.
In order to demonstrate the applicability of the proposed method, a circular cylindrical shell,

simply supported at both ends, was adopted for the calculations. The cylindrical shell was
considered, separately, with rigid and flexible extensions at its ends. A cylindrical shell with rigid
extensions corresponds to a finite length, flexible cylindrical shell connected to infinitely long rigid
cylindrical baffles, of the same diameter as the shell, at both ends. However, the cylindrical shell
with flexible extensions coincides with one that is infinitely long and periodically supported. For
the shell with flexible extensions, only the vibrational modes that are anti-symmetric with respect
to each support are considered. Therefore, these modes have the same in vacuo frequencies as
those of a simply supported, single-span cylindrical shell, and they are, also, the vibration modes
with the lowest frequencies.
In this investigation, it is assumed that the fluid is ideal, i.e., inviscid, incompressible and its

motion is irrotational. It is assumed that the flexible shell structure vibrates in its in vacuo
eigenmodes when it is in contact with flowing fluid, and that each mode gives rise to a
corresponding surface pressure distribution on the wetted surface of the structure. The in vacuo
dynamic analysis entails the vibration of the shell in the absence of any external force and
structural damping and the corresponding dynamic characteristics (e.g., natural frequencies
and mode shapes) of the shell structure were obtained by using a standard finite element software
(i.e., [19]).
At the fluid–structure interface, continuity considerations require that the normal velocity of

the fluid is equal to that of the structure. The normal velocities on the wetted surface are expressed
in terms of modal structural displacements and their derivatives, with respect to the x-coordinate
(see Fig. 1), obtained from the in vacuo dynamic analysis. By using a boundary integral equation
method the fluid pressure is eliminated from the problem, and the fluid–structure interaction
forces are calculated in terms of the generalized hydrodynamic added mass coefficients (due to the
inertia effect of fluid), generalized fluid damping coefficients (due to the Coriolis acceleration of
fluid) and generalized fluid stiffness coefficients (due to the centrifugal effect of fluid). However,
when the structure is in contact with an ideal, quiescent fluid, the fluid–structure interaction forces
are only associated with the inertial effect of fluid, i.e., the fluid pressure on the wetted surface of
the structure is in phase with the structural acceleration.
During this analysis, the wetted surface is idealized by using appropriate boundary elements,

referred to as hydrodynamic panels. The generalized structural mass matrix is merged with the
generalized hydrodynamic mass matrix, and the generalized structural stiffness matrix with the
generalized fluid stiffness matrix. Then, the total generalized mass and stiffness matrices are used
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Fig. 1. Cylindrical shell conveying flowing fluid, (a) with rigid extensions and (b) with flexible extensions.
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together with the generalized fluid damping matrix in solving the eigenvalue problem (Eq. (34)),
for the elastic shell immersed in and/or containing flowing fluid. To assess the influence of flowing
fluid on the dynamic behavior of the shell structure, the non-dimensional eigenfrequencies are
presented as a function of the non-dimensional flow velocity. The associated eigenmodes are also
presented for two different non-dimensional flow velocities. A very good comparison was
obtained between the calculations of the present study and results found in the literature.
2. Mathematical model

2.1. Generalized equation of motion

The equation of motion describing the response of a discretized (finite element) structure to
external excitation may be written as [20]

M €Uþ CV
_Uþ KU ¼ P, (1)

where M, CV, K denote the mass, structural damping and stiffness matrices, respectively. The
vectors U, _U and €U represent the structural displacements, velocities and accelerations,
respectively, and the column vector P denotes the external forces. For the finite element
structure, the displacements can be expressed as

UT ¼ ½U1 U2 ::::Uj ::::Un�, (2)

where Uj represents the nodal displacements at the jth node, and n denotes the number of nodes
used in the discretization. In a global xyz-coordinate system, for a shell element, each node can
have 6dof: three translations ux, uy and uz, and three rotations yx, yy and yz. Therefore, the nodal
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displacements at the jth node may be written in the following form:

UT
j ¼ ½ux uy uz yx yy yz�. (3)

In an in vacuo analysis, the structure is assumed to vibrate in the absence of any structural
damping and external forces reducing Eq. (1) to the form

M €Uþ KU ¼ 0. (4)

The trial solution is expressed in the form of U ¼ deiot; and substituted in Eq. (4). By canceling the
common factor eiot, one obtains the equation

ð�o2Mþ KÞd ¼ 0. (5)

This equation describes the simple harmonic oscillations of the free undamped structure, and the
in vacuo normal modes, d, and natural frequencies, o, are obtained from this equation.
The distortions of the structure may be expressed as the sum of the deflections in the normal

modes,

U ¼ DpðtÞ, (6)

where D is the modal matrix whose columns are the in vacuo, undamped mode vectors, d, of the
structure. p is the principal coordinates vector. By substituting Eq. (6) into Eq. (1) and pre-
multiplying by D

T, the following generalized equation in terms of the principal coordinates of the
structure is obtained:

a€pðtÞ þ b_pðtÞ þ cpðtÞ ¼ QðtÞ. (7)

Here a, b, c denote the generalized mass, damping and stiffness matrices, respectively, and are
defined as follows:

a ¼ DTMD; b ¼ DTCVD; c ¼ DTKD; Q ¼ DTP. (8)

It should be noted that the generalized mass, a, and stiffness, c, matrices are diagonal, but the
generalized damping matrix, b, is not necessarily diagonal. The generalized force matrix, Q(t)
represents the fluid–structure interaction and all other external forces (e.g., wave forces, etc.), and
it may be expressed as follows [21]:

QðtÞ ¼ �ðA€pðtÞ þ B_pðtÞ þ CpðtÞÞ þ XðtÞ, (9)

where A, B and C are the generalized added mass, generalized fluid damping, and generalized fluid
stiffness matrices, respectively, and XðtÞ denotes the generalized external force vector caused by
waves, mechanical excitation, etc.
Thus, Eq. (7) may be rewritten in the form (see, for instance, Ref. [21])

ðaþ AÞ€pðtÞ þ ðbþ BÞ_pðtÞ þ ðcþ CÞpðtÞ ¼ XðtÞ. (10)

2.2. Formulation of the fluid problem

A right-handed Cartesian coordinate system, xyz, is adopted in the present study and it is
shown in Fig. 1 for the circular cylindrical shell subjected to axial flow. The coordinate system is
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fixed in space with its origin at O, and the x-axis coincides with the center line of the cylindrical
shell in the longitudinal direction.
In the mathematical model, the fluid is assumed ideal, i.e., inviscid and incompressible, and its

motion is irrotational and there exists a fluid velocity vector, v, which can be defined as the
gradient of the velocity potential function F as

vðx; y; z; tÞ ¼ rFðx; y; z; tÞ. (11)

The velocity potential F may be written as

F ¼ Uxþ f. (12)

Here the steady velocity potential Ux represents the effect of the mean flow associated with the
undisturbed flow velocity U in the axial direction. Further, f is the unsteady velocity potential
associated with the perturbations to the flow field due to the motion of the flexible body, and
satisfies the Laplace equation

r2f ¼ 0, (13)

throughout the fluid domain.
For the structure containing and/or submerged in flowing fluid, the vibratory response of the

structure may be expressed in terms of principal coordinates as

pðtÞ ¼ p0e
lt, (14)

where p0 and l are complex non-zero constants, and t is the time. The imaginary part of l is the
circular frequency of oscillations and its real part gives an exponential growth or decay. The
velocity potential function due to the distortion of the structure in the rth in vacuo vibrational
mode may be written as follows

frðx; y; z; tÞ ¼ frðx; y; zÞp0re
lt; r ¼ 1; 2; . . . ;M, (15)

where M represents the number of modes of interest, and p0r is an unknown complex amplitude
for the rth principal coordinate.
On the wetted surface of the vibrating structure the fluid normal velocity must be equal to the

normal velocity on the structure and this condition for the rth modal vibration of the
elastic structure containing or/and submerged in flowing fluid can be expressed as (see, for
instance, Ref. [5])

qfr

qn
¼

qur

qt
þU

qur

qx

� �
� n, (16)

where n is the unit normal vector on the wetted surface and points into the region of interest. The
vector ur denotes the displacement response of the structure in the rth principal coordinate and it
may be written as

urðx; y; z; tÞ ¼ urðx; y; zÞp0re
lt, (17)

where ur(x, y, z) is the rth modal displacement vector of the median surface of the elastic structure,
and it is obtained from the in vacuo analysis.
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Substituting Eqs. (15) and (17) into Eq. (16), the following expression is obtained for the
boundary condition on the fluid–structure interface

qfr

qn
¼ lurðx; y; zÞ � nþU

qurðx; y; zÞ

qx
� n. (18)

In this study, it is assumed that the elastic structure vibrates at relatively high frequencies so
that the effect of surface waves can be neglected. Therefore, the free surface condition (infinite
frequency limit condition) for the perturbation potential can be approximated by

fr ¼ 0; on the free surface. (19)

The method of images [16,22] may be used, as shown in Fig. 2, to satisfy this boundary condition.
By adding an imaginary boundary region, the condition given by Eq. (19) at the horizontal
surface can be omitted; thus the problem is reduced to a classical Neumann case. It should be
noted that, for the completely filled elastic structure, the normal fluid velocity cannot be
arbitrarily specified. It has to satisfy the incompressibility conditionZZ

SWþSim

qfr

qn
dS ¼ 0; (20)

where SW and Sim represent the wetted and image surfaces of the elastic structure, respectively.

2.3. Evaluation of perturbation potential f

The perturbation potential, f, in a three-dimensional inviscid flow field due to the oscillating
elastic structure can be expressed by means of a distribution of unknown constant source strength,
Fig. 2. Wetted surface and image boundary for a partially filled structure.
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s, over the wetted and image surfaces of the elastic structure (see, for example, Refs. [23,24]) in the
following form:

fðrÞ ¼
ZZ

SWþSim

sðr0Þ
Rðr; r0Þ

dS; (21)

where

R ¼ ðx� x0Þ
2
þ ðy� y0Þ

2
þ ðz� z0Þ

2
� �1=2

and r ¼ ðx; y; zÞ denotes the position vector of the field point within the fluid, r0 ¼ ðx0; y0; z0Þ is
the position vector of a source point on the wetted/image surface of the structure.
The fluid–structure interaction problem may be separated into two parts: (i) the vibration of the

elastic structure in a quiescent fluid, and (ii) the disturbance in the main axial flow due to the
oscillation of the elastic structure. Thus, defining f ¼ lf1 þUf2; Eq. (18) may be divided into
two parts as

qf1

qn
¼ uðx; y; zÞ � n, (22)

qf2

qn
¼

quðx; y; zÞ

qx
� n, (23)

where f1 denotes the displacement potential due to the vibration of the structure in a quiescent
fluid, and f2 represents the disturbing effect of the term qu=qx to the main axial flow field.
Substituting boundary conditions (22) and (23) into Eq. (21), the unknown constant source

strengths can be determined from the following sets of algebraic equations

�2ps1i þ
XN

j¼1

s1j

ZZ
DSj

q
qn

1

Rðri; rjÞ

� �
dS ¼ u ðxi; yi; ziÞ � n ðxi; yi; ziÞ, (24)

�2ps2i þ
XN

j¼1

s2j

ZZ
DSj

q
qn

1

Rðri; rjÞ

� �
dS ¼

quðxi; yi; ziÞ

qx
� nðxi; yi; ziÞ, (25)

where DSj represents the area of the jth panel, N is the number of panels required to discretize the
wetted and image surfaces. s1 and s2 denotes the unknown constant source strengths of the
potential functions f1 and f2, respectively.
It should be noted that the displacement vectors u ðxi; yi; ziÞ and their derivatives

qu ðxi; yi; ziÞ=qx were obtained from the in vacuo finite element analysis.

2.4. Calculation of generalized fluid–structure interaction forces

Using the Bernoulli’s equation and neglecting the second-order terms, the dynamic fluid
pressure on the elastic structure due to the rth modal vibration becomes

Pr ðx; y; z; tÞ ¼ �r
qfr

qt
þU

qfr

qx

� �
. (26)
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Substituting Eq. (15) into Eq. (26), the following expression for the pressure is obtained:

Pr ðx; y; z; tÞ ¼ �r lfr þU
qfr

qx

� �
p0re

lt. (27)

By using the definition fr ¼ lfr1 þUfr2; Eq. (27) may be rewritten in the following form:

Pr ðx; y; z; tÞ ¼ �r l2fr1 þUl
qfr1

qx
þ fr2

� �
þU2 qfr2

qx

� �
p0re

lt. (28)

The kth component of the generalized fluid–structure interaction force due to the rth modal
vibration of the elastic structure subjected to axial flow can be expressed in terms of the pressure
acting on the wetted surface of the structure as

ZkrðtÞ ¼

ZZ
SW

Prðx; y; z; tÞuk � n dS

¼ � p0re
lt

ZZ
SW

r l2fr1 þUl
qfr1

qx
þ fr2

� �
þU2 qfr2

qx

� �
uk � n dS

¼ � l2p0re
ltr
ZZ
SW

fr1uk � n dS � lp0re
ltrU

ZZ
SW

qfr1

qx
þ fr2

� �
uk � n dS

� p0re
ltrU2

ZZ
SW

qfr2

qx
uk � ndS. ð29Þ

The generalized added mass Akr, generalized fluid damping (due to the Coriolis effect of fluid),
Bkr, and generalized fluid stiffness (due to the centrifugal effect of fluid), Ckr, coefficients can be
defined as

Akr ¼ r
ZZ
SW

fr1uk � ndS, (30)

Bkr ¼ rU

ZZ
SW

qfr1

qx
þ fr2

� �
uk � ndS, (31)

Ckr ¼ rU2

ZZ
SW

qfr2

qx
uk � ndS. (32)

Therefore, the generalized fluid–structure interaction force component, Zkr, can be rewritten as

ZkrðtÞ ¼ �Akrl
2p0re

lt � Bkrlp0re
lt � Ckrp0re

lt

¼ �Akr €prðtÞ � Bkr _prðtÞ � CkrprðtÞ. ð33Þ
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2.5. Calculation of eigenvalues and eigenvectors

The generalized equation of motion for the elastic structure, in contact with axial flow and
assuming vibrations with no structural damping, is

l2ðaþ AÞ þ lðBÞ þ ðcþ CÞ
� �

p ¼ 0, (34)

where a and c denote the generalized structural mass and stiffness matrices, respectively. The
matrices A, B and C represent the generalized added mass, generalized fluid damping and
generalized fluid stiffness matrices, respectively.
It should be noticed that the eigenvalue l is generally complex. It was observed from the

solution of the eigenvalue problem that, before the onset of the instability, the eigenvalues have
zero real part, and therefore, the fluid–structure interaction system is conservative. On the other
hand, the eigenvectors p have both real and imaginary parts, which are different from zero.
Therefore, the eigenvectors (modes) are complex. However, when the axial mean flow velocity is
zero, the fluid–structure interaction forces are only due to the inertia of the fluid. These interaction
effects are represented by a symmetric generalized added mass matrix, and, hence, the
eigenvectors only have real parts.
3. Numerical results and comparisons

A series of calculations have been performed to demonstrate the applicability of the
aforementioned theory to structures containing and/or submerged in flowing fluid. The structure
adopted is a finite length circular cylindrical shell, and it is simply supported at both ends. The
shell under consideration was analytically investigated by Weaver and Unny [25], Selmane and
Lakis [26], Amabili et al. [9] and Amabili and Garziera [5]. The circular cylindrical shell adopted
in the calculations has the geometric and material properties: length-to-radius ratio L=R ¼ 2,
thickness-to-radius ratio h=R ¼ 0:01, Young’s modulus E ¼ 206GPa, Poisson’s ratio n ¼ 0:3, and
mass density rs ¼ 7850kg=m3. Fresh water is used as the contained and/or surrounding fluid with
a density of rf ¼ 1000kg=m3.
A right-handed Cartesian coordinate system, xyz, is adopted in the present study, and it is

shown in Fig. 1 for the cylindrical shell subjected to axial flow. The coordinate system is fixed in
space with its origin at O. The x-axis lies along the length L, and coincides with the centerline of
the cylindrical shell.
For convenience, the following non-dimensional parameters are introduced as in Amabili and

Garziera [5] and Weaver and Unny [25]:

V ¼ U= ðp2=LÞ½D=ðrhÞ�1=2
n o

; O ¼ l= ðp2=L2Þ½D=ðrhÞ�1=2
n o

. (35)

Here, V and O denote the non-dimensional axial fluid velocity and non-dimensional
eigenfrequency, respectively, and l is the corresponding complex eigenvalues of the cylindrical
shell conveying and/or submerged in flowing fluid. Furthermore, D is the flexural rigidity, and it is
defined as D ¼ Eh3=12ð1� v2Þ:
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3.1. Convergence tests for finite element and boundary element mesh size

The in vacuo dynamic characteristics of the thin shell structure were obtained using the ANSYS
finite element software [19]. This produces information on natural frequencies and normal mode
shapes of the dry shell structure in vacuum. In these calculations, the cylindrical shell was
discretized with four-noded quadrilateral shell elements, including both membrane and bending
stiffness influences.
In a preliminary calculation, 512 elements were distributed over the shell structure. The

distribution over the simply supported shell consists of 32 equally spaced elements around the
circumference and 16 equally spaced elements along the length of the cylindrical shell. To test
the convergence of the calculated dynamic properties, i.e., natural frequencies and normal mode
shapes, the number of elements over the cylindrical shell surface was increased first to 1152 – 48
elements around the circumference and 24 elements along the shell and then to 2048 and 3200
elements, respectively. For the idealizations with 2048 and 3200 elements, respectively, 64 and 80
quadratic elements were distributed around the circumference, and 32 and 40 elements along the
cylindrical shell. In a final test of idealization, the number of elements was increased to 96 and 50,
respectively, around the circumference and along the cylindrical shell. Therefore, a total number
of 4800 elements were distributed over the shell structure in this final idealization. Table 1 shows
the predicted natural frequencies obtained from ANSYS, for 15 mode shapes. The mode shapes of
the shell structure in vacuum are identified with the number of standing waves around the
circumference, n, and the number of half-waves along the shell, m. A combination of m and n

forms a particular mode shape (m, n). The results occur in pairs. That is, in general, for each
natural frequency, there exists a pair of mode shapes satisfying the relevant orthogonality
conditions. Therefore, in Table 1, one result is presented for each pair of mode shapes. The in
Table 1

Convergence of FEM natural frequencies (in vacuo) for cylindrical shell simply supported at its ends (Hz)

Mode (m, n) 512 elements

idealization

1152 elements

idealization

2048 elements

idealization

3200 elements

idealization

4800 elements

idealization

1,5 96.4 96.1 96.0 96.0 96.0

2,5 244.1 242.0 241.2 240.9 240.7

3,5 403.7 398.6 396.5 395.6 395.1

4,5 530.1 524.2 521.4 520.2 519.6

5,5 620.9 618.1 616.1 615.2 615.0

1,6 105.2 104.8 104.7 104.6 104.6

2,6 207.1 205.3 204.8 204.5 204.4

3,6 346.7 341.4 339.4 338.6 338.1

4,6 475.8 467.4 464.0 462.5 461.8

5,6 580.6 572.0 568.1 566.6 565.8

1,7 130.3 129.5 129.3 129.2 129.1

2,7 197.3 195.9 195.5 195.4 195.3

3,7 312.3 307.5 306.0 305.3 305.0

4,7 435.5 426.3 423.0 421.6 420.9

5,7 547.0 535.1 530.5 528.5 527.7
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Table 2

Convergence of wet natural frequencies for cylindrical shell completely filled with water (Hz)

Mode (m, n) 512 panels

idealization

1152 panels

idealization

2048 panels

idealization

3200 panels

idealization

4800 panels

idealization

1,5 58.3 55.2 54.0 53.5 53.2

2,5 153.6 143.7 140.1 138.6 137.7

3,5 267.7 247.5 240.4 237.2 235.3

4,5 372.5 341.7 331.0 326.1 323.3

5,5 461.8 423.0 409.4 403.0 399.4

1,6 69.3 64.4 62.7 61.9 61.4

2,6 140.4 129.5 125.7 123.9 122.9

3,6 244.7 223.0 215.4 211.9 209.9

4,6 351.9 317.5 305.6 300.0 296.9

5,6 450.3 404.6 388.6 381.3 377.0

1,7 92.6 84.6 81.8 80.5 79.7

2,7 143.2 130.5 126.0 123.9 122.7

3,7 233.8 210.5 202.4 198.6 196.5

4,7 338.4 301.3 288.4 282.4 279.0

5,7 441.9 391.2 373.4 365.0 360.4
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vacuo dynamic characteristics of the shell structure are scaled to a generalized mass of 1 kgm2.
The differences in the results, shown in Table 1, indicate that the calculated values are slowly
converging with increasing number of elements. The results of the final idealization (4800
elements) were adopted for the in vacuo dynamic characteristics of the cylindrical shell simply
supported at both ends.
To test the convergence of the hydrodynamic predictions, various numbers of hydrodynamic

panels were distributed around the circumference and along the length of the wetted surface of the
cylindrical shell. The main aim of this exercise was to represent accurately the distortional mode
shapes of the wetted surface area of the structure. For the cylindrical shell completely filled with a
quiescent fluid (fresh water), five different idealizations of panel distribution over the wetted
surface of the cylindrical structure were considered (see Table 2). The hydrodynamic panels were
distributed over the wetted surface of the shell as follows: one structural element (finite element)
corresponding to one hydrodynamic panel. Therefore, the same number of hydrodynamic panels
and structural elements were adopted for the wet results presented for the completely filled shell
(see Tables 1 and 2). Table 2 shows the convergence of the predicted wet frequencies with
increasing number of hydrodynamic panels for 15 different mode shapes. It can be observed from
Table 2 that the wet frequencies are converging slowly with increasing number of hydrodynamic
panels. The differences between the last two idealizations (3200 and 4800 hydrodynamic panel
idealizations) are reasonably small for all the mode shapes presented. Therefore, it may be said
that the final idealization (4800 hydrodynamic panel idealization) adequately represents the
distortional mode shapes of the circular cylindrical shell completely filled with a quiescent fluid
(fresh water).
For the shell structure filled with flowing water, another convergence study was performed in

order to establish the number of panels necessary to obtain the converged fluid–structure
interaction effects, e.g., generalized added mass coefficients, generalized Coriolis force coefficients
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and generalized centrifugal force coefficients. Fig. 3 presents the diagonal terms of the generalized
added mass matrix for the mode shapes (m ¼ 1, n ¼ 5), (m ¼ 1, n ¼ 6) and (m ¼ 1, n ¼ 7), for six
different hydrodynamic panel idealizations. It should be noted that the generalized added mass
coefficients associated with the distortional in vacuo modes are a function of the number of waves
around the circumference and the number of half-waves along the cylindrical shell (see, for
instance, [21]). The generalized added mass values presented in Fig. 3 are obtained for the in
vacuo modes scaled to a generalized structural mass of 1 kg m2. It can also be seen from Fig. 3
that the generalized added mass terms converge with increasing number of hydrodynamic panels.
The results of the 4800 hydrodynamic panels idealization may be assumed reasonably converged,
and they were adopted throughout the calculations.
Furthermore, Figs. 4 and 5 show, respectively, the generalized Coriolis force and generalized

centrifugal force coefficients for the non-dimensional axial flow velocities V ¼ 1, 2 and 3, and for
six different hydrodynamic panel idealizations. The generalized Coriolis force coefficients matrix
is skew symmetric, and the coefficients presented in Figs. 4(a)–(c) represent the coupling between
the modes (m ¼ 1, n ¼ 5) and (m ¼ 2, n ¼ 5), (m ¼ 1, n ¼ 6) and (m ¼ 2, n ¼ 6), and (m ¼ 1,
n ¼ 7) and (m ¼ 2, n ¼ 7), respectively. On the other hand, Figs. 5(a)–(c) present the generalized
centrifugal fluid force coefficients for the diagonal terms (m ¼ 1, n ¼ 5), (m ¼ 1, n ¼ 6) and
(m ¼ 1, n ¼ 7), respectively. All the generalized fluid force coefficients presented in Figs. 4 and 5
are normalized according to a generalized structural mass of 1 kg m2. It may also be observed
from Figs. 4 and 5 that the generalized fluid–structure interaction force coefficients are converging
slowly with increasing number of hydrodynamic panels for the non-dimensional fluid velocities
V ¼ 1, 2 and 3. The fluid–structure interaction force coefficients (Coriolis and centrifugal) may be
assumed sufficiently converged for the 4800 hydrodynamic panels idealization, and therefore, they
were adopted for the dynamic properties of the cylindrical shell completely filled with and/or
submerged in flowing fluid.

3.2. Calculated results and comparisons

By solving the eigenvalue problem, Eq. (34), the non-dimensional eigenvalues and associated
eigenmodes of the cylindrical shell containing and/or submerged in flowing fluid are obtained as a
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function of the non-dimensional flow velocity. The predictions based on the proposed method are
compared with the analytical calculations reported by Weaver and Unny [25], Selmane and Lakis
[26], Amabili et al. [9] and Amabili and Garziera [5]. For the cylindrical shell subjected to flowing
water, the predictions of the proposed method are presented for various numbers of wet modes.
For the results presented in Figs. 6–14, a maximum number of 134 in vacuo modes were included
in the analysis—67 of which were symmetric and 67 antisymmetric with respect to the symmetry
plane through the center of the shell and perpendicular to the free surface of the fluid (see Figs. 1
and 2). However, 80 in vacuo normal modes—40 of which symmetric and 40 antisymmetric were
adopted for the calculations concerning the cylindrical shell completely filled with flowing fluid.
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Figs. 6(a) and (b) compare the imaginary parts of the predicted non-dimensional eigenvalues
with those obtained by Weaver and Unny [25] and Amabili et al. [9], respectively, for the first two
modes having five circumferential waves ðn ¼ 5Þ. The results presented in Figs. 6(a) and (b)
correspond to the cylindrical shell with rigid extensions. This is to say that the flexible cylindrical
shell is connected to infinitely long rigid cylindrical baffles, of the same diameter as the shell, at
both ends. For the results of the present study in Figs. 6(a) and (b), two groups of calculations
were performed. In the first group of calculations, only the flexible cylindrical shell, simply
supported at both ends, was modeled, and it was discretized by 4800 hydrodynamic panels. No
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boundary condition was imposed beyond the ends of the shell at x ¼ 0 and L. This means that the
effect of the rigid baffles beyond the simply supported ends was not taken into account in the
calculation of the hydrodynamic forces. In the second group of calculations, the flexible shell was
discretized together with the rigid cylindrical baffles, of the same length and diameter as the shell
structure, at both ends. A number of 4800 hydrodynamic panels was adopted separately for the
each rigid baffle, and the same number of panels was also distributed over the shell structure.
Therefore, a total number of 14 400 hydrodynamic panels was adopted for the shell-rigid baffles
system. The kinematic boundary condition (Eqs. (22) and (23)) was imposed on the flexible shell,
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and the rigid boundary wetted surface condition qf=qn ¼ 0 was employed for the rigid extensions.
It was observed from the analysis that two groups of calculations give almost the same results.
Therefore, only one group of the calculations is presented in Figs. 6(a) and (b). It may also be
observed from Figs. 6(a) and (b) that the non-dimensional eigenfrequencies decrease with
increasing non-dimensional fluid velocity, and the first axial mode reaches zero frequency at the
non-dimensional fluid velocity, V, 3.62 (see Fig. 6(a)). This point ðV ¼ 3:62Þ corresponds to the
static divergence of the cylindrical shell filled with flowing water. The intersection of the second
mode with the non-dimensional velocity axis ðV ¼ 4:82Þ gives the point of restabilization for the
shell–fluid system. It may be seen from Figs. 6(a) and (b) that the results of the present study
compare reasonably well with the analytical predictions of Weaver and Unny [25] and Amabili et
al. [9]. However, the differences increase between the predictions of this study and those of
Weaver and Unny [25], especially for the second mode, as the flow velocity increases. This may be
due to the use of too few terms in the calculations by Weaver and Unny [25]. For the results
presented (Figs. 6(a) and (b)), seven in vacuo modes with the axial half-wavenumbers m ¼ 127
were taken into account. However, only, the first three and four longitudinal in vacuo modes
become influential for the wet modes presented in Figs. 6(a) and (b), respectively.
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In a further study, the effect of the flexible extensions was taken into account in the calculations
of the generalized hydrodynamic properties, e.g., the generalized added mass coefficients,
generalized Coriolis force coefficients and generalized centrifugal force coefficients. The
cylindrical shell structure was assumed infinitely long and periodically supported, and a three-
span length of the infinitely long flexible structure was adopted for the calculations. It was
assumed that mode shapes are periodic functions with main period 2L. Therefore, the mode
shapes were antisymmetric with respect to each support, and they were the mode shapes with the
lowest frequencies (see, for instance, Ref. [5]). The each span of the adopted structure was
discretized by using 4800 hydrodynamic panels, and a total number of 14 400 hydrodynamic
panels was distributed over the three-span cylindrical structure for the calculations. The
hydrodynamic force calculations were performed for the mid-span section of the three-span
cylindrical shell structure. The effect of the structural vibrations in the fore and aft spans, on the
shell structure in the mid-span, was calculated in terms of the hydrodynamic force coefficients,
i.e., the generalized added mass coefficients, Coriolis fluid force coefficients and centrifugal fluid
force coefficients. The imaginary parts of the predicted non-dimensional eigenvalues are pre-
sented in Figs. 7(a) and (b), respectively, for the first two axial modes with n ¼ 5. In these figures
(Figs. 7(a) and (b)), the predicted frequency values are compared with the analytical calculations
of Amabili and Garziera [5], Amabili et al. [9] and Selmane and Lakis [26]. It can be observed
from Figs. 7(a) and (b) that the predictions compare reasonably well with those of Amabili and
Garziera [5], Amabili et al. [9] and Selmane and Lakis [26]. As noted before, the imaginary part of
the non-dimensional eigenfrequency decreases with increasing non-dimensional flow velocity, and
the first axial mode (see Fig. 7(a)) reaches zero frequency at the non-dimensional flow velocity, V,
3.43. However, there are some differences between the predictions of this study and those found in
the literature, especially for the second mode, as the critical flow velocity approached. This
indicates that the non-dimensional frequency values become more sensitive to the formulation of
the problem as the flow velocity increases.
Figs. 8(a) and (b) present, respectively, the real and imaginary parts of the non-dimensional

eigenfrequency, as a function of the non-dimensional flow velocity, for the first three axial modes
with the circumferential wavenumber, n, 5. For the results giving in these figures, the cylindrical
shell is considered with flexible extensions. In other words, three successive spans of the
periodically supported infinite long shell structure were adopted for the calculations. As seen in
Fig. 8(b), the imaginary part of the non-dimensional eigenfrequency decreases with increasing
non-dimensional axial flow velocity. The lowest mode shape reaches its zero frequency at
V ¼ 3:43, and the intersection of the second mode with the axis of non-dimensional flow velocity
at V ¼ 4:55 is the point of restabilization. Then, the first and second modes merge at V ¼ 4:58,
and this point corresponds to the onset of the coupled-mode flutter. It should also be noted that
the coupled-mode flutter cannot be decided by the linear theory (see, for instance, Refs. [5,9]).
Furthermore, the real part of the non-dimensional eigenfrequency is presented in Fig. 8(a) as a
function of the non-dimensional flow velocity, and it is proportional to damping. It should also be
noted that the system is stable when the real part of the non-dimensional frequency (O) is
negative, and it is unstable when the real part of O is positive.
Figs. 9 and 10 present the mode shapes of the cylindrical shell completely filled with flowing

fluid at the times t ¼ 0, T/8, T/4, 3T/8 and T/2 (where T is the time period) for the non-
dimensional flow velocities V ¼ 1.72 and 2.57, respectively. The first and second axial mode
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shapes with the circumferential wavenumber, n, 5 are shown, respectively, in Figs. 9(a) and (b) for
V ¼ 1:72, and in Figs. 10(a) and (b) for V ¼ 2:57. It should also be noted that the mode shapes
are complex. The real part of the first eigenvector has one longitudinal half-wave and the
imaginary part has two longitudinal half-waves (see, mode shapes at t ¼ 0 and T=2 in Figs. 9(a)
and 10(a)). On the other hand, the imaginary part of the second mode shape involves the
longitudinal mode with m ¼ 3 (see mode shapes at t ¼ 0 and T=2 in Figs. 9(b) and 10(b)). From
the comparison of Figs. 9 and 10, it can be said that the mode shapes demonstrate similar
characteristics for the non-dimensional axial flow velocities V ¼ 1:72 and 2.57.
Furthermore, the eigenvalues of the shell structure completely filled with flowing fluid were

calculated for different circumferential wavenumbers. For the circumferential wavenumbers, n,
3–7, Figs. 11(a) and (b) present the imaginary parts of the non-dimensional eigenfrequencies for
the first two axial modes, respectively. The non-dimensional eigenfrequency values decrease with
increasing non-dimensional fluid velocity, as seen in Figs. 11(a) and (b). The first modes reach
zero values at V ¼ 4.86, 3.66, 3.43, 4.08 and 4.30, respectively, for the circumferential
wavenumbers, n, 3, 4, 5, 6 and 7 (see Fig. 11(a)). These non-dimensional flow velocities
corresponding to zero eigenfrequenies are the critical flow velocities for static divergence of the
modes. These modes gain their stabilities at V ¼ 5.38, 4.55, 4.18 and 4.69 for n ¼ 4, 5, 6 and 7,
respectively (see Fig. 11(b)). It may also be observed from Figs. 11(a) and (b) that the highest
frequencies are observed for the circumferential wavenumber, n, 3, and the lowest ones for n ¼ 5
and 6, respectively, for the first and second modes.
In a separate analysis, the effect of the flowing fluid partially in contact with the cylindrical shell

structure was investigated. Figs. 12(a)–(c) present the imaginary parts of the non-dimensional
eigenfrequencies, respectively, for the 1

4
-filled, 1

2
-filled and 3

4
-filled cylindrical shells. The results are

presented for the first three axial mode shapes. The non-dimensional frequencies behave as
expected from the theory. That is to say that the imaginary parts of the non-dimensional
frequencies decrease with increasing area of contact with the fluid. The largest area of contact was
in the case of the 3

4
-filled shell, and therefore, the lowest frequencies were observed for this case.

For the partially filled structure, the image method was employed in order to satisfy the
appropriate boundary condition on the free surface ðf ¼ 0Þ. For the cases of the 1

4
-filled, 1

2
-filled

and 3
4
-filled shells, 9600, 14 400 and 19 200 hydrodynamic panels, respectively, were adopted for

the calculations. A maximum number of 134 in vacuo normal modes – 67 of which were
symmetric and 67 antisymmetric with respect to the plane passing through the center of the shell
and perpendicular to the free surface was included in the analysis.
In a further study, the effect of the external flow on the dynamic behavior of the shell structure

with flexible extensions was investigated. The imaginary parts of the non-dimensional
eigenfrequencies are presented in Fig. 13 for the empty shell structure completely submerged in
flowing water. The results are presented for the first axial modes with the circumferential
wavenumbers, n, 3–7. The lowest frequencies, again, were obtained for the circumferential
wavenumber, n, 5, and the highest values for n ¼ 3. For the completely submerged and empty
cylindrical shell, the divergence occurs at the non-dimensional axial flow velocities, V ¼ 4:94,
3.67, 3.42, 4.07 and 4.28, respectively, for the circumferential wavenumbers, n, 3, 4, 5, 6 and 7.
On the other hand, in a separate analysis, the cylindrical shell was assumed partially filled with

and partially submerged in flowing fluid. Fig. 14 presents the imaginary parts of the non-
dimensional frequency values for the half-filled and 1

4
-submerged cylindrical shell. The results in
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Fig. 14 are presented for the first three mode shapes. The imaginary parts of the non-dimensional
eigenfrequencies presented in Fig. 14 are lower than those corresponding to the 3

4-filled cylindrical
shell (see Fig. 12(c)).
4. Conclusions

A method of analysis is presented for the response behavior of elastic structures partially
filled with and/or partially submerged in flowing fluid. The method of analysis is based on a
boundary integral equation method and the method of images. An elastic circular cylindrical shell
structure, partially filled with and/or submerged in flowing water, was chosen in order to
demonstrate the applicability of the method. It can be concluded from the results presented that
the method proposed is suitable for the vibration analysis of flexible structures subjected to
flowing fluid.
The in vacuo dynamic characteristics (i.e., natural frequencies and normal mode shapes) of the

cylindrical structure were obtained by using the finite element idealization of 96 elements around
the circumference and 50 elements along the shell structure. A maximum number of 134 in vacuo
modes – 67 symmetric and 67 antisymmetric were calculated by using the ANSYS finite element
software. They were included in the wet part of the analysis for the shell structure partially in
contact with flowing fluid, and eighty in vacuo normal modes, only, were adopted for the
calculations concerning the cylindrical shell completely filled with flowing fluid.
Throughout the calculations, the normal velocities on the wetted surface were expressed in

terms of modal structural displacements, obtained from the in vacuo dynamic analysis. However,
it should be noted that the normal fluid velocities cannot be arbitrarily specified. They have to
satisfy the incompressibility condition (20). It must be realized that the method employed in this
study cannot take into account the effect of compressibility.
The simply supported shell structure was considered with rigid and flexible extensions, and the

predictions of the proposed method were compared with the analytical results found in the
literature. The non-dimensional eigenfrequencies were presented as a function of the non-
dimensional axial fluid velocity. The results were presented for various axial modes and
circumferential wave numbers. The imaginary parts of the eigenfrequencies decrease with
increasing fluid velocity, and they reach zero values at certain axial fluid velocities. The predicted
points of static divergence compare reasonably well with those found in the literature.
For the cylindrical shell conveying flowing fluid, the mode shapes are complex. The first and

second modes were presented at the times t ¼ 0, T /8, T/4, 3T/8 and T=2 (where T is the time
period) for the shell completely filled with flowing water.
The calculations were also performed for the cylindrical shell partially filled and submerged in

flowing water. The imaginary parts of the non-dimensional eigenvalues were presented for various
filling ratios. The calculated frequency values behave as expected. That is to say that the
frequencies decrease with increasing area of contact with flowing fluid.
The present study has demonstrated the versatility of the method developed through a

cylindrical shell simply supported at both ends and subjected to flowing water. However, in order
to obtain the converged hydrodynamic properties, a number of 4800 hydrodynamic panels were
adopted in the calculations for the cylindrical shell completely filled with flowing fluid.
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The structural and fluid idealizations are independent and both depending on the complexity of
the structure and the convergence of the results. To test the convergence of the wet results, various
numbers of hydrodynamic panels and in vacuo normal modes were adopted in the calculations. It
is realized from the results presented that the non-dimensional wet frequencies converge slowly
with increasing number of hydrodynamic panels. However, by using a higher-order source
strength distribution (for instance, linearly varying source strength distribution) over the
hydrodynamic panels, similar convergences can be achieved by using less number of panels. The
results of the preliminary calculations using the higher order source strength distributions are
encouraging, and they will be reported in future publications.
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