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Abstract

In this paper, the stochastic stability of uncontrolled and controlled Duffing–van der Pol systems under
Gaussian white-noise excitation is investigated. On the one hand, Lyapunov exponent as a measure is used
to estimate the local stability with probability one for the trivial solution of uncontrolled and controlled
systems. The difference in Lyapunov exponents between these two kinds of systems is given. On the other
hand, the boundary classification of Hamiltonian as a criterion is chosen to judge the global stability of
coupled Duffing–van der Pol systems. And the Hamiltonians associated with controlled and uncontrolled
systems are also expressed.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the last century, the theory of stochastic optimal control for systems under random
excitations has developed rapidly with wide applications in many scientific fields, especially in
economics and physics [1–4]. For the problem of stochastic stabilization control, the purpose is
mainly to design a control law to make unstable random dynamic systems become stable, or to
enhance the stability balance of a stable random dynamic systems. Besides, the dynamic stability
see front matter r 2005 Elsevier Ltd. All rights reserved.
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and control of stochastic systems under parametrical and external excitations were paid attention
to by several researchers [5–8], mainly focusing on linear systems.
In recent years, based on the stochastic averaging method for quasi-Hamiltonian systems

[9–11], Zhu and his co-workers proposed a stochastic dynamical stability strategy [12–14], which
can be applied either to linear or nonlinear systems under random excitations. By applying the
stochastic averaging method, the system can be described in averaged Ito stochastic differential
equations, whose solutions are Markov processes. Generally, the Lyapunov exponent is a measure
to judge the stability of a random system [15]. However, the ergodic control based on the
Lyapunov exponent can only estimate local stability with probability one for a trivial solution of
the system. For a random controlled system governed by one-dimensional diffusion process, the
classification of boundaries for the governing FPK equation can be applied to judge the global
stability of the system. Recently Zhu and Huang [16] discussed the stability problems of two
linearly and nonlinearly coupled van der Pol oscillators. In the present paper, we apply the same
strategy to a two-dof coupled Duffing–van der Pol quasi-non-intergrable Hamiltonian system
with nonlinear damping to achieve stochastic stabilization and stochastic stability control, which
to our knowledge has not been studied yet.
The paper is arranged as follows. Firstly, the local and global stability for coupled Duffing–van

der Pol systems subjected to parametric random excitations are analyzed in detail by means of the
Lyapunov exponent and the boundary classification. Secondly, the stochastic stability of
unbounded control within semi-infinite time interval for coupled Duffing–van der Pol systems is
investigated in a similar way. Finally, the numerical results of stochastic stability for uncontrolled
and controlled Duffing–van der Pol systems are compared through illustrative figures.
2. Stochastic average for Duffing–van der Pol systems

The Duffing model of an electro-magnetized vibrating beam and the van der Pol model of an
electrical circuit with a triode value whose resistance changes with current are two of the most
common examples in nonlinear oscillation texts and research articles. In recent years, the coupled
Duffing–van der Pol systems has attracted the attention of researches because of their special
nonlinear characters in dynamical theories [17]. Moreover, some of the modified Duffing–van der
Pol systems are being used to analyze the vibration behavior in electronic oscillator in practice
[18,19]. Thus we consider a two-dof Duffing–van der Pol systems subject to random parametric
excitation in this article to explore the stability and control of it, of which the Lagrange motion
equation is given here as

€X 1 þ b1ð1� l1X 2
1 � l1X 2

2Þ
_X 1 þ ao2

1X 1ðo2
1X

2
1 þ o2

2X
2
2Þ þ o2

1X 1 ¼ b1X 1x1ðtÞ;
€X 2 þ b2ð1� l2X 2

1 � l2X 2
2Þ
_X 2 þ ao2

2X 2ðo2
1X

2
1 þ o2

2X
2
2Þ þ o2

2X 2 ¼ b2X 2x2ðtÞ;
(1)

where parameters bi; li; b2
i ði ¼ 1; 2Þ are positive parameters and small enough of order �, a is the

parameter for strongly nonlinear stiffness term, and xiðtÞ ði ¼ 1; 2Þ are mutually independent
Gaussian white-noise with zero mean and noisy intensity 2Di, Di are also positive and small
parameters. So Eq. (1) defines a quasi-Hamiltonian system with light damping forces and strong
nonlinear restoring forces.
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The canonical Hamiltonian equations

_qi ¼
qH

qpi

; _pi ¼ �
qH

qqi

, (2)

lead to the following stochastic differential equations in the sense of Stratonovich with zero
Wong–Zakai correction terms

_qi ¼
qH

qpi

_pi ¼ �
qH

qqi

� cii

qH

qpi

� �
þ f iixiðtÞ

ði ¼ 1; 2Þ (3)

with

cii ¼ bið1� liq
2
1 � liq

2
2Þ; f ii ¼ biqi, (4)

where qi and pi ði ¼ 1; 2Þ express generalized displacement and generalized momentum
respectively, the Hamiltonian HðtÞ represents the total energy of the uncontrolled systems. By
letting e ¼ 0 and ignoring small terms, the Hamiltonian can be expressed as follows:

H ¼ 1
2
ðp21 þ p2

2Þ þUðq1; q2Þ; Uðq1; q2Þ ¼
1
2
o2

1q
2
1 þ

1
2
o2

2q
2
2 þ

a
4
ðo2

1q
2
1 þ o2

2q
2
2Þ

2. (5)

The Hamiltonian system governed by Eq. (1) is non-integrable, since Uðq1; q2Þ is non-separable
when aa0. The damping is light and random excitations are weak, so Eq. (1) describes a quasi-
non-integrable Hamiltonian system [5]. By applying the stochastic averaging method of quasi-
non-integrable-Hamiltonian system [9], the Hamiltonian HðtÞ converges in probability to a one-
dimensional diffusion process, governed by

dH ¼ mðHÞ dtþ sðHÞ dBðtÞ. (6)

It is seen that H ¼ 0 is a trivial solution of the systems, and what we care about most is the
stability of this trivial solution. Therefore, we pay special attention to the neighbor of this solution
to keep the analysis simple. Note that the drift coefficient mðHÞ and diffusion coefficient sðHÞ can
be computed approximately by integrating in the state–space [5]. They are

mðHÞ ¼ m1H þm2H
2 þm3H

3; H ! 0, (7)

s2ðHÞ ¼ s21H
2 þ s22H

3; H ! 0, (8)

where

m1 ¼
1

2

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� b1 � b2

� �
, (9)

m2 ¼
1

6

b1l1 þ b2l2
o2

1

þ
b1l1 þ b2l2

o2
2

� �
þ
a
3
ðb1 þ b2Þ, (10)
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m3 ¼ �
a
4

b1l1 þ b2l2
o2

1

þ
b1l1 þ b2l2

o2
2

� �
, (11)

s21 ¼
1

3

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
; s22 ¼ �

a
2

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
. (12)

3. Lyapunov exponent and stochastic stability

In the theory of stochastic stabilization, the Lyapunov exponent can be a measure to judge the
stability of a random system. Letting Z ¼ ½qT; pT�T, one can see from Eq. (1) that Z ¼ 0 is a trivial
solution of the original systems. The definition for the local stability and the asymptotic stability
of the trivial solution are given as follows.
For any small �40, the trivial solution Z ¼ 0 is known to be stable with probability one if

lim
z0k k!0

P sup
tX0

Zðt; z0Þ
�� ��o�

� �
¼ 1

and the trivial solution Z ¼ 0 is known to be asymptotic stable with probability one if

lim
z0k k!0

P lim
t!1

Zðt; z0Þ
�� �� ¼ 0

n o
¼ 1,

where z0 ¼ Zð0Þ is the deterministic initial state and Zk k denotes the norm of Z which is usually
Euclidean norm, i.e. Zk k ¼ ðZiZiÞ

1=2. On the basis of Oseledec Multiplicative ergodic theorem,
the Lyapunov exponent of the linearized equations is defined as

l ¼ lim
t!1

1

t
ln Zðt; z0Þ
�� ��

and the most important character is that the sign of largest Lyapunov exponent determines the
stability behavior of random system [15]. And the necessary and sufficient condition for the
asymptotic stability with probability one of the system’s trivial solution is that the largest
Lyapunov exponent should be less than zero.
However, for the two-dof Duffing–van der Pol systems, the linearized equations are 2� 2

dimensions which are very difficult to obtain the analytical expression of the largest Lyapunov
exponent. To overcome this difficulty, Zhu and Huang [20] proposed a new norm H1=2 to replace
the Euclidean norm and gave the explanation for the rationality of this norm.
Firstly, we apply Lyapunov exponent method to estimate the stability of coupled Duffing–van

der Pol systems. The Lyapunov exponent can be evaluated by introducing the transformation
Y ðtÞ ¼ H1=2ðtÞ, and the diffusion process governing Y ðtÞ can be obtained by the Ito differential
rule on the basis of averaged Ito differential equation (6), that is

dY ðtÞ ¼ aðY Þ dtþ bðY Þ dBðtÞ. (13)

The drift term aðY Þ and diffusion term bðY Þ satisfy the following equations:

aðY Þ ¼ 1
2

Y�1mðY Þ � 1
8

Y�3s2ðY ÞjH¼Y 2 ; b2
ðY Þ ¼ 1

4
Y�2s2ðY ÞjH¼Y 2 . (14)
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Substituting Eqs. (9)–(12) into Eq. (14), we can rewrite the drift coefficient aðY Þ and diffusion
coefficient bðY Þ as

aðY Þ ¼ 1
2
ðm1 �

1
4
s21ÞY þ

1
2
ðm2 �

1
4
s22ÞY

3 þ 1
2

m3Y
5, (15)

b2
ðY Þ ¼ 1

4
s21Y

2 þ 1
4
s22Y

4. (16)

The linearized Ito equation at Y ¼ 0 is of the form

dY ¼ a0ð0ÞH dtþ b0ð0ÞH dBðtÞ, (17)

whose solution is

Y ðtÞ ¼ Y ð0Þ exp

Z t

0

a0ð0Þ �
1

2
b0

2
ð0Þ

� �� �
dsþ

Z t

0

b0ð0Þ dBðsÞ. (18)

Then the Lyapunov exponent corresponding to the new norm is

lu ¼ lim
t!1

1

t
lnY ðtÞ ¼ a0ð0Þ �

1

2
b0ð0Þ ¼

1

2
m1 �

1

4
s21. (19)

According to the necessary and sufficient condition for asymptotic stability with probability one
of the trivial solution, when luo0, namely

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
o

3

2
ðb1 þ b2Þ,

H ¼ 0 is locally asymptotic stable.
Secondly, we discriminate the stability for coupled Duffing–van der Pol systems by the

boundary classification. The ergodic control based on the Lyapunov exponent is effective to
estimate local asymptotic stability with probability one for a trivial solution of the systems, but
incapable of global stability. For this reason, the boundary classification of Hamiltonian governed
by averaged Ito equation is applied to judge the global stability for randomly controlled systems.
Note that the asymptotic expressions for aðY Þ and b2

ðY Þ as Y ! 0 are

aðY Þ ¼ 1
2
ðm1 �

1
4
s21ÞY þ oðY Þ; Y ! 0, (20)

b2ðY Þ ¼ 1
4
s21Y

2 þ oðY 2Þ; Y ! 0. (21)

The left boundary H ¼ 0 is a singular boundary of the first kind. The diffusion exponent, drift
exponent and character value are, respectively,

x1 ¼ 2; y1 ¼ 1; c1 ¼
4m1 � s21

s21
¼ 5� 6ðb1 þ b2Þ=

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
. (22)

On the basis of the classification for boundary in Table 4.5.2 in [21], Y ¼ 0 is repulsively natural if
c141, strictly natural if c1 ¼ 1, and attractively natural if c1o1.
The right boundary H !1 is the singular boundary of the second kind, and the asymptotic

expressions for aðY Þ and b2ðY Þ as Y !1 are

aðY Þ ¼
1

2
m3Y

5 þ oðY 5Þ ¼ �
a
8

b1l1 þ b2l2
o2

1

þ
b1l1 þ b2l2

o2
2

� �
Y 5 þ oðY 5Þ; Y !1, (23)



ARTICLE IN PRESS

W. Xu et al. / Journal of Sound and Vibration 290 (2006) 723–735728
b2ðY Þ ¼
1

4
s22Y

4 þ oðY 4Þ ¼ �
a
8

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
Y 4 þ oðY 4Þ; Y !1. (24)

The diffusion exponent, drift exponent and character value are, respectively,

x2 ¼ 4; y2 ¼ 5; c2 ¼
4m3

s22
¼ 2

b1l1 þ b2l2
o2

1

þ
b1l1 þ b2l2

o2
2

� ��
D1b

2
1

o2
1

þ
D2b

2
2

o2
2

� �
. (25)

Note that y24x2 � 1, aðþ1Þo0 and y241. Refer to Table 4.5.3 in [21], it is concluded that the
right boundary H !1 is the entrance. In the case where the left boundary being attractively
natural and the right boundary being entrance are the necessary conditions of global asymptotic
stability for the trivial solution of the systems, to summarize the constrained condition, the trivial
solution H ¼ 0 is globally asymptotically stable only if c1o1, that is

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
o

3

2
ðb1 þ b2Þ. (26)

This coincides with the result derived by Lyapunov exponent. Hence, the trivial solution H ¼ 0 is
not stable if

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
4

3

2
ðb1 þ b2Þ. (27)

4. Stochastic stabilization control

After obtaining the unstable condition (27) for uncontrolled system, the key problem now turns
to search an effective controlled strategy to realize the stability control from unstable to stable.
So we impose the controlled terms on the coupled Duffing–van der Pol oscillators, whose motion
equations can be expressed as follows:

€X 1 þ b1ð1� l1X 2
1 � l1X 2

2Þ
_X 1 þ ao2

1X 1ðo2
1X

2
1 þ o2

2X
2
2Þ þ o2

1X 1 ¼ b1X 1x1ðtÞ þ u1,

€X 2 þ b2ð1� l2X 2
1 � l2X 2

2Þ
_X 2 þ ao2

2X 2ðo2
1X

2
1 þ o2

2X
2
2Þ þ o2

2X 2 ¼ b2X 2x2ðtÞ þ u2. ð28Þ

The Hamiltonian of these systems converges to a partially averaged Ito differential equation

dH ¼ m̄ðHÞ dtþ sðHÞ dBðtÞ, (29)

where

m̄ðHÞ ¼ mðHÞ þ
qH

qp1

u1 þ
qH

qp2

u2

	 

(30)

and mðHÞ is in accordance with Eq. (7). Now we design a control strategy to change the systems
from unstable to stable. Consider the unbounded control within semi-infinite time interval ½0; 1�.
Select the performance index

JðuÞ ¼ lim
T!1

1

T

Z T

0

½f ðHÞ þ huTNui� dt, (31)



ARTICLE IN PRESS

W. Xu et al. / Journal of Sound and Vibration 290 (2006) 723–735 729
where matrix N is positive definite and diagonal. For convenience, suppose N has the form

N ¼
N1 0

0 N2

" #
with Ni40 ði ¼ 1; 2Þ.

The dynamical programming equation corresponding to this problem is

min
u

1

2
s2ðHÞ

d2V

dH2
þ huTNui þ

dV

dH
mðHÞ þ

qH

qpi

ui

	 
� �
þ f ðHÞ

� �
¼ w, (32)

where

w ¼ lim
T!1

1

T

Z T

0

½f ðHÞ þ u�TNu�� dt

is the optimal average cost function, u� is the optimal control. By the necessary conditions of Eq.
(32), the optimal control terms can be derived

u�i ¼ �
1

2Ni

dV

dH
pi. (33)

Replacing ui in equality (32) by u�i , we obtain the final dynamical programming equation:

1

2
s2ðHÞ

d2V

dH2
þmðHÞ

dV

dH
�

1

4Ni

qH

qpi

� �2
* +

dV

dH

� �2

þ f ðHÞ ¼ w (34)

and the controlled terms can be rewritten as

hu�1p1 þ u�2p2i ¼ �
p21
2N1
þ

p2
2

2N2

	 

dV

dH
. (35)

Now, we apply Lypunov exponent method to check the stability of controlled systems for trivial
solution. Taking the average for formula (35) in the state–space, we obtain

hp2
1i ¼ hp

2
2i ¼

1
2

H þ oðHÞ; H ! 0. (36)

It is easy to find the drift coefficient and diffusion coefficient approach the following equations as
H ! 0:

mðHÞ ¼
1

2

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� ðb1 þ b2Þ
� �

H þ oðHÞ ¼ m1H þ oðHÞ; H ! 0, (37)

s2ðHÞ ¼
1

3

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
H2 þ oðH2Þ ¼ s21H

2 þ oðH2Þ; H ! 0. (38)

For satisfying the dynamical programming equation, it is necessary to assume that

f 1ðHÞ � w ¼ f 0H þ oðHÞ; H ! 0. (39)

The solution of final dynamical programming equation can be obtained as

dV

dH
¼ k þ oðH0Þ; H ! 0, (40)
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where

k ¼ 4½m1 þ ðm
2
1 þ f 0n0=2Þ

1=2
�=n0; n0 ¼

1

N1
þ

1

N2

� �
. (41)

Therefore, the fully averaged Ito differential equation for Eq. (29) can be derived by taking

m̄ðHÞ ¼ m1H �
1
4

n0kH þ oðHÞ; H ! 0. (42)

The largest Lyapunov exponent for trivial solution of controlled systems can be expressed as

lc ¼
1
2
½m̄0ð0Þ � 1

2
ðs0ð0ÞÞ2� ¼ 1

2
m1 �

1
8

n0k �
1
4
s21 (43)

and the trivial solution is local asymptotic stable, if lco0.
Comparing the two largest Lyapunov exponents derived by the uncontrolled and controlled

Duffing–van der Pol systems, the difference between them is

lu � lc ¼
1
8

n0k. (44)

Then the key is how to select f 0 and Ni to realize the optimal stability control.
Now we apply the boundary classification method to check the stability of systems. For the left

boundary H ¼ 0, the drift coefficient and diffusion for controlled Ito differential equation
approach the following equations as H ! 0.

m̄ðHÞ ¼ m1H �
1
4 n0kH þ oðHÞ; H ! 0, (45)

s2ðHÞ ¼
1

3

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
H2 þ oðH2Þ ¼ s21H

2 þ oðH2Þ. (46)

The diffusion exponent, drift exponent and character value are, respectively,

x3 ¼ 2; y3 ¼ 1; c3 ¼ ð2m1 �
1
4

n0kÞ=s21. (47)

According to the classification for the boundary of Hamiltonian [21], the left boundary H ¼ 0 is
an attractively natural boundary if c3o1, and this requires that

ð2m1 �
1
4

n0kÞos21.

For the right boundary H !1, we note that the drift coefficient and the diffusion one for the
controlled Ito differential equation approach the following equations as H !1

mðHÞ ¼ m3H
3 þ oðH3Þ ¼ �

a
4

b1l1 þ b2l2
o2

1

þ
b1l1 þ b2l2

o2
2

� �
þ oðH3Þ; H !1, (48)

s2ðHÞ ¼ s22H
3 þ oðH3Þ ¼ �

a
2

D1b
2
1

o2
1

þ
D2b

2
2

o2
2

� �
þ oðH3Þ; H !1. (49)

The diffusion exponent, drift exponent and character value are, respectively,

x4 ¼ 3; y4 ¼ 3; c4 ¼ �
2m3

s22
. (50)
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By the hypothesis for the parameters, a is a positive constant, which leads to the result that
mðþ1Þ ¼ �1. On the other hand, if y44x4 � 141, on the basis of classification for singular
boundary H !1 of second kind, then the right boundary H !1 is an entrance boundary.
The requirement for asymptotic stability in probability one of the trivial solution H ¼ 0 is that

the left boundary H ¼ 0 is attractively natural and the right boundary H !1 is an entrance or
repulsively natural. Therefore, c3o1 is the only restraint for asymptotic stability for trivial
solution. By Eq. (47), it should be

ð2m1 �
1
4

n0kÞos21. (51)

5. Numerical results

The results derived above are shown in the following figures. Fig. 1 displays the Lyapunov
exponents of uncontrolled Duffing–van der Pol systems (1) and controlled systems (28) under
Gaussian white-noise excitations. Corresponding to the same set of parametric values, the
Lyapunov exponent of uncontrolled systems are always positive and the trivial solution is locally
unstable. However, by selecting the exact controlled values for parameters n0 and k according to
the condition (43), the Lyapunov exponent becomes negative, which means the trivial solution
turns to be locally stable. The energy functions of uncontrolled systems (1) and its averaged
system (6) are given in Fig. 2. Note that the parametric value satisfies the restrictive condition (27).
The energies are explosive and have an increasing tendency in the neighborhood of the trivial
solution with the time. This implies that this solution of uncontrolled systems (1) and its averaged
system (6) are globally unstable. Comparatively, the energy functions HðtÞ of both controlled
systems (28) and (29) are given in Fig. 3. By the review inequality (51), we can find the parametric
values selected fulfill the conditions (27) and (51). In this case, the energy functions tend to the
0.005

-0.005

λ u
, λ

c

-0.01

0 0.1 0.2 0.3 0.4 0.5 0.6
D1

0.7 0.8 0.9 1

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

0

λc

λu

Fig. 1. The Lyapunov exponent of uncontrolled and controlled systems with Gaussian excitation. The parameters are

as follows: o1 ¼ 1, o2 ¼ 2, a ¼ 2, b1 ¼ 0:001, b2 ¼ 0:002, l1 ¼ 0:4, l2 ¼ 0:6, b1 ¼ 0:3, b2 ¼ 0:5, D2 ¼ 0:2, N1 ¼ 1,

N2 ¼ 2, f 0 ¼ 0:001.
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0.4

0.5

0.6

t

H
(t

)

0.7

0.8

0.9

1

(1)

(6)

Fig. 2. The energy functions HðtÞ of uncontrolled systems (1) and its averaged systems (6) with initial values

q1ð0Þ ¼ 0:15, p1ð0Þ ¼ 0:12, q2ð0Þ ¼ 0:09, p2ð0Þ ¼ 0:08. The parameters are as follows: o1 ¼ 1, o2 ¼ 2, a ¼ 2, b1 ¼ 0:001,
b2 ¼ 0:002, l1 ¼ 0:4, l2 ¼ 0:6, b1 ¼ 0:3, b2 ¼ 0:5, D1 ¼ 0:1, D2 ¼ 0:2.

0
0 50 100 150 200 250

t

H
(t

)

0.04

0.045

0.03

0.035

0.02

0.025

0.01

0.015

0.005
(29)

(28)

Fig. 3. The energy functions HðtÞ of controlled systems (28) and its averaged systems (29). N1 ¼ 1, N2 ¼ 2, f 0 ¼ 0:001.
The rest parameters and the initial values are the same with Fig. 2.
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trivial solution H ¼ 0 consistently with the time. This in return verifies that condition (51) does
play a significant role in conversion from unstable to stable globally. Figs. 4 and 5 show the
Hamiltonian functions of both uncontrolled systems and controlled systems with a different
parameter f 0 ¼ 0:02 from those of in Figs. 2 and 3. It is seen that the variations of Hamiltonian
functions of either for uncontrolled systems or for controlled systems are almost synchronous
with the time. It illustrates that the parametric value f 0 can improve the effectiveness of the
stochastic averaging method.
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value are the same with Fig. 4.
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6. Conclusions

In the present paper, the stability and control of two-dof coupled Duffing–van der Pol systems
under stochastic Gaussian excitations are investigated in detail. It has been shown that the
considered systems can be reduced into a one-dimensional diffusion process. In this way, two
different approaches have been followed to identify the stability property of systems. The method
of Lyapunov exponent based on ergodic theorem can estimate the local stability and boundary
classification of Hamiltonian can examine the global stability for uncontrolled systems. By using
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these two methods, the conditions restricting local stability and global stability are obtained. For
the unstable uncontrolled systems, the dynamical behavior changes from unstable to stable by
applying the strategy of dynamical programming rule and by selecting the controlled parametric
value exactly. The numerical results illustrate the effectiveness of controlled terms.
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