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Abstract

The free vibration response of dual-span extensional and inextensional circular curved beams constrained
by an intermediate elastic support is studied. The elastic constraint consists of a transverse and rotational
spring, as well as a tangential spring, which couples the extensional motion of one span with the other.
Wave propagation techniques are used to formulate the eigenvalue problem, which result in exact
eigensolutions. The effects of the support type and stiffness on the transverse and tangential modes are
examined. In addition, the influence of the curvature on the free response of the extensional curved beam is
also addressed. For certain support conditions, the extensional and inextensional curved beams have
similar behavior. In general, however, the behavior of the system is shown to depend strongly on the type of
support, the modeling of the beam as extensional or inextensional, and whether the natural frequencies are
above or below the cut-off frequency.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of planar curved beams, arches and rings have been the subject of numerous
studies due to their wide variety of potential applications, such as bridges, aircraft structures, and
turbomachinery blades. These structures are modeled as either extensional (including the
extension of the neutral axis) or inextensional (neglecting the extension of the neutral axis).
Literature reviews on the vibration of curved beams, rings and arches are found in Refs. [1–3].
see front matter r 2005 Elsevier Ltd. All rights reserved.
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While most studies of curved beams focus on single spans with classical boundary conditions,
in some applications, multiple spans and elastic supports are encountered. As a result, curved
beams with elastic supports and multiple spans have also been addressed. Wasserman [4]
determined the exact expressions for the lowest natural frequency and critical load of single-span
circular arches with flexible boundary conditions. Wang and Lee [5] presented a dynamic
slope-deflection method for the free vibration of multi-span circular frames. Filipich et al. [6]
studied the vibration of an arch elastically restrained against rotation at one end and with
an intermediate support. They solved the problem using three different methods. Petyt and
Fleischer [7] studied multi-span curved beam using finite elements and confirmed their results
experimentally. Culver and Oestel [8] used the Rayleigh–Ritz method together with the
Lagrange multiplier concept to determine the natural frequencies of a two-span horizontally
curved beam.
The above studies, however, focus on solution methods rather than physical behavior. For

multi-span systems, the coupled response can be quite complex and can depend on many factors.
When studying the vibration of curved beams, one of the primary issues to consider is whether the
beam is modeled as extensional or inextensional. The extensional model includes the stretching of
the neutral axis during vibration, while the inextensional model neglects the stretching of the
neutral axis. This fundamental difference results in each model having its own unique
characteristics. For example, wave analyses have shown that a cut-off frequency exists for the
extensional model, and that the behavior of the extensional model above and below the cut-off
frequency is quite different [17]. For the inextensional model, no cut-off frequency exits. It would
be expected then that the coupled response of multi-span curved beams would depend strongly on
whether the beams are modeled as extensional or inextensional.
Another important issue for multi-span beam systems is the issue of coupling. This interaction

between spans can have a significant affect on the overall behavior of the system. For example, it
is well known that for weakly coupled, nearly periodic systems, the modes can be highly localized
to one span if a small disorder is introduced into the system. This phenomenon is known as mode
localization and it has been studied on many physical systems [9–11]. The occurrence and degree
of mode localization has been shown to depend on both the disorder and the type of coupling
that exists between the spans [12–14]. Thus, both the modeling of the curved beam and its
supports may have a significant affect in determining the free vibration response of multi-span
curved beam systems.
The purpose of this paper is to study the coupled, free vibration response of a two-span curved

beam. The coupling of the spans is through an intermediate elastic support, which consists of a
transverse, tangential and rotational spring. The eigenvalue problem is formulated using wave
propagation techniques. These techniques include both propagating and attenuating wave
components, which results in the formulation being exact. The effects of the elastic support on the
coupled response of both extensional and inextensional curved beam models are studied. In
general, it is found that each type of elastic support affects the curved beam system differently. It
is also observed that the behavior of the extensional and inextensional models is, in general,
different. However, under certain conditions, they can exhibit similar behavior. The exact
behavior depends upon whether the beam is modeled as extensional or inextensional, the type
of intermediate support, and whether the natural frequencies are above or below the
cut-off frequency.
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2. Problem formulation

2.1. Harmonic wave solutions

Consider a thin curved beam, as shown in Fig. 1, where M is the bending moment, N the tensile
force, and V the shear force. Neglecting the effects of rotary inertia, shear deformations, and
damping, the coupled equations of motion governing the transverse (radial) displacement, W, and
the tangential displacement, U, of the centroidal axis are
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where E denotes the Young’s modulus, I the second moment of inertia of the cross-section about
the centroid, y the angular coordinate, R the constant radius of curvature for the given range of
angle y, A the cross-sectional area, r the mass density, T the time variable. Details of deriving
these equations of motion are found in Refs. [15,16].
Introduce the following non-dimensional variables and parameters:
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where T0 is a characteristic time constant and k is the curvature parameter [15]. Applying Eq. (2)
to Eq. (1) yields the normalized equations of motion
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Fig. 1. Schematic of a curved beam and sign conventions.
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The equations for an inextensional curved beam are found by letting w ¼ �du=dy [15]. In this
case, Eq. (3) reduces to
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In order to assess the wave propagation in the curved beam model, it is first necessary to
determine the condition under which the following wave solutions

wðy; tÞ ¼ Cwe
iðgy�otÞ; uðy; tÞ ¼ Cue

iðgy�otÞ; i ¼
ffiffiffiffiffiffiffi
�1
p

; 0pyp2p (5)

satisfy Eq. (3), where g and o are the non-dimensionalized wavenumber and frequency,
respectively, and are defined as g ¼ RG and o ¼ OT0. Upon substituting the harmonic solutions
in Eq. (5) into Eq. (3) and imposing the condition for non-trivial solutions, the dispersion
equation for the extensional curved beam is found to be

g6 � ð2þ k2o2Þg4 þ f1� ð1þ k2
Þo2gg2 þ ðk2o2 � 1Þo2 ¼ 0. (6)

Eq. (6) indicates that there are six wave components (three in each direction) exist governing the
dynamics of the extensional curved beam in motion. Solving Eq. (6) for g results in four different
sets of roots, indicating that four distinct wave motions exist in an extensional curved beam
depending on o and k. These four harmonic wave motions are defined as [17]:

Case I (all six g’s are real): all wave components propagate.
Case II (two real g’s a and four complex g’s): two wave components propagate and four others
are spatially varying.
Case III (two real g’s and four imaginary g’s): two wave components propagate and four others
attenuate (near field components).
Case IV (four real g’s and two imaginary g’s): four wave components propagate and two others
attenuate.

The exact expressions of harmonic wave solution for these four cases can be found in Ref. [17].
It should be noted that there exists a non-zero cut-off frequency, oc, such that above this
frequency the beam has coupled transverse (flexural) and tangential (extensional) modes, with the
extensional mode dominating. This cut-off frequency is determined by taking the long-wavelength
limit of Eq. (6), which gives oc ¼ 1=k. This is the frequency when the wavelength of extensional
waves in a straight rod is equal to 2pR, and is known as the ring frequency in cylindrical shell
dynamics [18].

2.2. Wave reflection and transmission

When a wave is incident upon a discontinuity such as an intermediate support, a different
waveguide, or a boundary, it is reflected and/or transmitted at different rates depending on the
properties of the discontinuity. A schematic of the system considered here is shown in Fig. 2.
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It consists of two sub-spans (spans 1 and 2) having a radius (R1 and R2) and span angle (y1 and
y2). The sub-spans are attached by an intermediate support that consists of an elastic rotational
constraint, Kr, an elastic transverse constraint, Kw, and an elastic tangential constraint, Ku. The
tangential constraint is applicable since the curved beam is extensional. The non-dimensional
elastic constrains are expressed as

ku ¼
KuR3

1

EI
; kw ¼

KwR3
1

EI
and kr ¼

KrR1

EI
. (7)

The wave components are grouped into 3� 1 vectors of positive-traveling waves C+ and
negative-traveling waves C�; i.e.,

Cþ ¼ fCþ1 Cþ2 Cþ3 g
T; C� ¼ fC�1 C�2 C�3 g

T. (8a, b)

When a set of positive-traveling wave C+ is incident upon a discontinuity, it gives rise to a set of
reflected waves C– and transmitted waves D+. These waves are related by

C� ¼ rCþ; Dþ ¼ fDþ1 Dþ2 Dþ3 g
T ¼ tCþ, (9a, b)

where r and t are the 3� 3 reflection and transmission matrices, respectively. By imposing the
geometric continuity and the force and moment balance conditions at the discontinuity, the wave
reflection and transmission matrices, r and t, can be obtained for each of the four Cases [17].
Now consider the curved beam elements to have different curvatures. Although the procedure

described here remains the same, for simplicity, assume that the A, r, and E of the two beam
elements are the same. Let the subscripts l and r denote the left and right sides, respectively, and
s ¼ Rr=Rl (curvature ratio). Then, the modified dispersion equation on the right side of the
discontinuity is

g6r � ð2þ s2k2o2Þg4r þ f1� ðs
2 þ k2

Þs2o2gg2r þ ðs
2k2o2 � 1Þs4o2 ¼ 0. (10)

It is possible that a wave propagating on the left side becomes attenuating after crossing the
discontinuity and vice versa. Hence, for an extensional curved beam, there are mathematically 16
(four in each span) possible combinations of wave motions to be considered. However, since
Cases I and II have identical forms for their wave solutions, the actual number of combinations to
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be considered is nine. The wave motion at boundaries can be determined in a similar manner as
above [17].

2.3. Free vibration analysis

The wave reflection and transmission matrices are now combined with the transfer matrix
method to analyze the free vibration of the curved beam with multiple discontinuities. The
technique is known as the phase or wave-train closure principle, and it has been applied to straight
beams [19–21]. Consider a curved beam with constant R with n discontinuities and arbitrary
boundaries as shown in Fig. 3. Define Ri as a generalized reflection matrix which relates the
amplitudes of negative and positive traveling waves at station (discontinuity) i and Ti as the field
transfer matrix between station i and i+1 which relates the wave amplitudes by

wþðy0 þ yÞ ¼ Twþðy0Þ or w�ðy0 þ yÞ ¼ T�1w�ðy0Þ. (11)

Based on these definitions, the following relations can be found:

w�n ¼ Rnw
þ
n ðRn ¼ rnÞ, (12)

w�ij ¼ Rijw
þ
ij

i ¼ 2; 3; . . . ; n� 1 ðstation #Þ;

j ¼ l ðleftÞ or r ðrightÞ;

(
(13)

w�1 ¼ T1w
�
2l, (14)

wþ1 ¼ R1w
�
1 ðR1 ¼ r1Þ, (15)

wþ2l ¼ T1w
þ
1 , (16)

where in Eq. (13),

Ril ¼ ri þ tiðR
�1
ir � riÞ

�1ti; Rir ¼ TiRðiþ1ÞlTi. (17a, b)

For waves traveling across a curvature change, the formulation of Ril requires
particular attention. For example, if the wave motions in spans 1 and 2 are governed by
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Fig. 3. Curved beam with multiple discontinuities and arbitrary boundary conditions.
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Cases II and III, respectively,

R2l ¼ rII�III þ tIII�IIðR
�1
2r � rIII�IIÞ

�1tII�III. (18)

Combining Eqs. (12)–(17),

ðR1T1R2lT1 � I3�3Þw
þ
1 ¼ 0. (19)

Then, the frequency equation can be found from

CðoÞ ¼ Det R1T1R2lT1 � I3�3½ � ¼ 0. (20)

The corresponding modeshapes can be also found in a similar manner by relating wave
amplitudes between two adjacent sub-spans. The displacement at any point in the span i (or
between station i and i þ 1) may have a form of

wiðxÞ ¼ TiðxÞCþi þ T�1i ðxÞC
�
i ; yipxpyiþ1, (21)

where Cþi and C�i denote the amplitudes of positive- and negative-traveling waves, respectively, in
span i as in Eq. (8). Since

C�i ¼ RirC
þ
i , (22)

wiðxÞ ¼ ðTi þ T�1i RirÞC
þ
i . (23)

Define Si as a generalized transmission matrix which relates the amplitudes of incoming and
outgoing waves at station i; i.e.,

Cþi ¼ SiC
þ
i�1, (24a)

Si ¼ ðI3�3 � riRirÞ
�1tiTi�1. (24b)

Combining Eqs. (23) and (24) gives the displacement of span i as a function of the wave
amplitudes in span i � 1:

wiðxÞ ¼ ðTi þ T�1i RirÞSiC
þ
i�1. (25)

Assuming a disturbance arises in the first span, the modeshape of span i may then be
generalized in terms of Cþ1 as

wiðxÞ ¼ fTiðxÞ þ T�1i ðxÞRirg
Yi

j¼2

SjC
þ
1 , (26)

where the relationships among the three individual wave components Cþk (k ¼ 1; 2, and 3) can be
readily found in Eq. (19).
3. Results and discussion

The results for the first four modes are presented for various support conditions and curvatures.
The transverse and tangential modes are determined for both the extensional and inextensional
models. For each natural frequency, the corresponding modeshape and amplitude ratio for the
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two sub-spans are determined. The amplitude ratio Ra is defined as

Ra ¼

A1j j

A2j j
; A1j jo A2j j;

A2j j

A1j j
; A2j jp A1j j;

8<
: (27)

where A1 and A2 are the maximum amplitude in each of the sub-spans. The amplitude ratio,
which is determined for both the transverse and tangential modes, varies from 0 to 1. The smaller
Ra is, the more localized the mode. In the context of mode localization, the modes will become
highly localized if the sub-spans are weakly coupled and if there is a small disorder present in the
system. For the curved beam model, a disorder can be introduced in two different ways. First,
both sub-spans have the same radius (R1 ¼ R2) but different span angles (y1ay2). Second, both
sub-spans can have different radii (R1aR2) but the same span angle (y1 ¼ y2). Both cases are
considered here. In addition, the coupling between the spans will be mono-coupling (spans are
coupled through only one of the elastic constraints). This will allow the effect of each type of
elastic support to be studied individually.
For the extensional beam model, it is known that the behavior of the system above and below

the cut-off frequency oc is physically different [17]. Because of this, the effect of the various elastic
supports for an extensional beam system above and below oc will also be investigated. Upon
choosing suitable parameters, it was found that for a total span angle (yt ¼ y1 þ y2) of 801 and
1701, the first four natural frequencies for these two cases fall above and below oc, respectively.
Unless otherwise specified, these angles and clamped boundary conditions are used in all
subsequent calculations.

3.1. Effect of transverse support stiffness

In this section, the effects of kw on the free response are studied. The parameters used in the
following results are: curvature parameter k ¼ 0:1=

ffiffiffiffiffi
12
p

, and R1 ¼ R2. To suppress direct
extensional and rotational coupling (energy transfer) between the two sub-spans, let ku ¼ kr ¼ 1.
This will limit the coupling to the transverse motion of each span. Thus, the coupling effects due
to the extensional mode are not directly present since ku ¼ 1, however, the extensional effects do
manifest themselves indirectly through the transverse motion due to the coupling between the
transverse and tangential modes. The disorder here is introduced into the system through the sub-
span angles. The disorder is chosen to be 0.5% of the total span angle yt. Therefore, for yt ¼ 801,
y1 ¼ 40:41 and y2 ¼ 39:61, and for yt ¼ 1701, y1 ¼ 85:851 and y2 ¼ 84:151. Figs. 4 and 5 show the
amplitude ratio for the first four transverse and tangential modes of the extensional and
inextensional curved beam models for varying kw. The solid (filled) symbols are the extensional
model. Fig. 6 shows some representative mode shapes along with the corresponding equilibrium
configuration. It should be noted that these are the complete mode shapes; i.e., the sum of the
tangential and transverse mode shapes.
In Fig. 4, the results for yt ¼ 801 (all natural frequencies of the extensional model are above oc)

are presented. The curves for the inextensional model are relatively flat and are clustered between
0.8 and 1.0, indicating that the transverse support stiffness appears to have a rather small effect on
the modes. Fig. 4 also shows that modes 1 and 2 of the extensional model appear to be
significantly more affected by the support stiffness than all of the other modes. The amplitude
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ratio for these two modes decreases significantly as the support stiffness increases, resulting in the
modes becoming more localized as the transverse support stiffness increases. This trend is
observed for both the tangential and transverse modes.
In Fig. 5, the results for yt ¼ 1701 (the first four natural frequencies of the extensional model are

below oc) are shown. For kw41000, the amplitude ratio of all of the modes decreases at the
support stiffness increases. This suggests that both the extensional and inextensional models are
significantly affected by the support stiffness, particularly as the support stiffness increases and
becomes large. Fig. 5 also shows that certain modes have a similar qualitative and quantitative
behavior. For example, both the transverse and tangential results show that the curves for modes
1 and 2 and modes 3 and 4 converge together as kw becomes large. This is true for both the
extensional and inextensional models. Thus, for large values of kw, certain pairs of modes have
almost identical amplitude ratios. The plots also indicate that the curves for modes 1 and 2 are
nearly identical for both the inextensional and extensional models, which is true for both the
transverse and tangential modes.
Also note that when comparing Figs. 4 and 5, it is seen that when the natural frequencies are

below oc, both the extensional and inextensional models show the same qualitative trends with
respect to the elastic support while when the natural frequencies are above oc they do not. It has
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been shown that, in general, the behavior of single-span inextensional and extensional curved
beam models below oc are very similar, with each model exhibiting modes which are primarily
flexural [17]. Thus, with respect to the behavior of curved beams above and below the cut-off
frequency, both the single-span curved beam and the dual-span curved beam exhibit similar
characteristics.

3.2. Effect of tangential support stiffness

The effects of ku on the amplitude ratio are presented using the same parameters as those in the
previous section with kw ¼ kr ¼ 1. In this case, the energy transfer between the sub-spans is
directly through the extensional mode only. Figs. 7 and 8 show the amplitude ratio for a total
span angle of 801 and 1701, respectively, with varying ku. Fig. 9 shows some representative
modeshapes for a total span angle of 1701.
In Fig. 7, the amplitude ratio for the inextensional model, in general, varies between 0.1 and 1

for all four modes, with the amplitude ratio decreasing as ku increases. The extensional
results show a much different trend than those of the inextensional model. First, it is noticed
that the amplitude ratio curves for modes 1 and 4 and modes 2 and 3 are paired together and
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follow the same trend as ku increases. While modes 1 and 4 experience little or no localization,
modes 2 and 3 are highly localized. Moreover, the amplitude ratio for modes 2 and 3 are nearly
identical.
In Fig. 8, it is again seen that the modes tend to be paired together and have similar behavior.

For the extensional model, the pairing of modes depends whether ku is above or below some
critical value. For example, it is seen that for kup2500, modes 2 and 3 and modes 1 and 4 are
paired together. However, for ku42500, modes 1 and 2 and modes 3 and 4 are paired together.
This same behavior is also observed for the inextensional model. This complex behavior is
believed to be attributed in part to the fact that below oc (Fig. 8) there exits the possibility of three
different types of wave motions (Cases I, II or III) for the extensional model. However, above oc

(Fig. 7), the extensional model is governed by only one wave motion (Case IV). It should also be
noted that both the extensional and inextensional models are governed by the same three wave
motions (Cases I, II or III) below the cut-off frequency. Thus, the qualitative behavior of the
extensional and inextensional models below the cut-off frequency is expected to be similar, as seen
in Figs. 8 and 9.
Comparing Figs. 7 and 8, it is observed that the general trends for the curves in each plot are

quite different, indicating that the effect of the tangential constraint on each system is different. In
Fig. 7, modes 1 and 4 and modes 2 and 3 of the extensional model have very similar behavior.
However, in Fig. 8, modes 1 and 2 and modes 3 and 4 have similar behavior. This observed
behavior is seen to occur for both the transverse and tangential modes. The results seen here
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suggest that for the tangential constraint, the behavior of a particular mode or pair of modes
depends upon whether the natural frequencies are above or below the cut-off frequency.
In comparing all of the above figures, several things are observed regarding the effect of the

support stiffness on the amplitude ratio. First, the general behavior of the curves for each type of
elastic support is different, indicating that each elastic support affects the curved beam models
differently. Second, the general trends for the beam system above and below the cut-off frequency
are noticeably different. This suggests that the affect of the support depends strongly upon
whether the natural frequency of the system is above or below the cut-off frequency. Third, the
trends observed for the transverse and tangential modes are very similar. Thus, practically
speaking, for both the extensional and inextensional models, it is only necessary to study either
the tangential or transverse modes to assess the qualitative affects of the support stiffness.

3.3. Frequency loci

Another way to assess the coupling between the two sub-spans is to plot the natural frequencies
versus the disorder. The disorder here is introduced through the sub-span angles (R1 ¼ R2; y1ay2).
Figs. 10 and 11 show the frequency loci curves for the first four modes with kr ¼ 500, ku ¼ kw ¼1
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(a) ku ¼ 1000, (b) ku ¼ 19 500. The thin solid line denotes the equilibrium configuration.
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for the inextensional and extensional models, respectively. The horizontal axis represents the
amount of angular disorder (Dy) present in the system, i.e., when y1 ¼ y2, Dy ¼ 0.
For the inextensional model, Fig. 10 shows the frequency loci curves for total span angles of 801

and 1601. Both plots exhibit curve veering and have similar behavior. In particular, the veering
occurs in pairs, namely, modes 1 and 2 and modes 3 and 4. In the regions where this curve veering
occurs, the modes are highly localized. It is well known that eigenvalue curve veering occurs for
weakly coupled, nearly periodic systems, and associated with this curve veering is a strong
localization of the modes known as mode localization [10]. In fact, the behavior exhibited in Fig. 10
is typical of many weakly coupled, nearly periodic systems [10,14]. In Fig. 11, the frequency loci
curves for total span angles of 801 and 1601 for the extensional model are shown. It should be noted
that the cut-off frequency is oc ¼ 34:64. Thus, the first four natural frequencies for the 801 total
span angle are above oc and the first four natural frequencies for the 1601 total span angle are below
oc for the given range of Dy. Again, in the regions of curve veering, the modes are highly localized.
It is clear from the figures that the behavior of the system above and below oc is quite different.
The complex frequency veering exhibited by the extensional model below the cut-off frequency

in Fig. 11(b) is due to the fact that the extensional curved beam system has two coupling
mechanisms. The first mechanism is the inter-span coupling between adjacent spans which is due
to the rotational spring kr. The second mechanism is the inherent intra-span coupling between the
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flexural (transverse) and extensional (tangential) modes due to the extensibility of the neutral axis.
Based on the definition of mode localization, a periodic or nearly periodic system exhibits strongly
localized modes if the system is weakly coupled and contains a small disorder. While the first
coupling mechanism provides the necessary condition for mode localization, the second coupling
mechanism acts to augment the coupled behavior produced by the first mechanism.
The effect of the second coupling mechanism can be seen in Fig. 12, which shows the transverse

amplitude ratio for the extensional and inextensional models for varying kr. Note that Figs. 11(a)
and 12(a) present results above the cut-off frequency and Figs. 11(b) and 12(b) present results
below the cut-off frequency. From Fig. 12(a), it can be seen that the amplitude ratio of the first
four modes of the extensional and inextensional models above the cut-off frequency are all nearly
identical (all curves overlap). However, below the cut-off frequency (Fig. 12(b)), the amplitude
ratio of the four inextensional modes and the first and second extensional modes are nearly
identical, while the amplitude ratio of the third and fourth modes of the extensional are
significantly lower (more strongly localized). This decrease or shift in amplitude ratio of the third
and fourth extensional modes in Fig. 12(b) is due to second coupling mechanism shown in Fig.
11(b). Thus, based on the results here, the second mechanism appears to amplify the mode
localization.
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It should be noted that this second coupling mechanism is only present in the extensional model
and not the inextensional model since it is the extensibility of the neutral axis which couples the
transverse and tangential modes. Also, while the second coupling mechanism is always present in
the extensional model, the extent to which it will influence the first coupling mechanism appears to
depend upon whether the natural frequencies are above or below the cut-off frequency. For all of
the various cases considered in this study, the second coupling mechanism affected only those
natural frequencies that were below the cut-off frequency. It is therefore believed that the effect of
the second coupling mechanism on the mode localization of natural frequencies above the cut-off
frequency is negligible. While other factors such as curvature and boundary conditions may alter
the characteristics of the second coupling mechanism, the effects of these factors are not addressed
here. Thus, the results here confirm that there can be a significant difference in the coupled
behavior of the extensional and inextensional models.

3.4. Effect of curvature

The results in this section focus on how the curvature affects the response of the curved beam
model. First, a disorder is introduced into the system through the sub-span radii. That is, y1 ¼ y2
but R1aR2. As seen from Eqs. (3) and (4), while the equations for the extensional curved beam
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model contain the curvature parameter k, the equations for the inextensional curved beam model
do not. Thus, the inextensional curved beam model is independent of k (and hence R). As a result,
the radii imperfection R1aR2, while affecting only the inter-span coupling for the inextensional
curved beam model, will affect both the inter- and intra-span coupling of the extensional curved
beam model. Therefore, for the inextensional curved beam model, the radii disorder will have a
qualitatively similar behavior as the angular disorder presented in the previous sections. For this
reason, the behavior of extensional curved beam model is the focus of this section and only results
pertaining to it are presented here.
The case of kr ¼ 1000, ku ¼ kw ¼ 1 is presented in Fig. 13 which shows the amplitude ratio

versus the ratio of the radii as well as the natural frequencies of the system. Representative
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modeshapes are shown in Fig. 14. It is observed that as the radii of each span become slightly
different, the amplitude ratio becomes quite small, indicating that the modes are highly localized.
Fig. 13 also shows that over the range of s considered, the natural frequencies of modes 1 and 3
are nearly constant while modes 2 and 4 are substantially changed by the disorder. Although the
frequencies of modes 1 and 2 remain nearly constant, it is interesting to note that the amplitude
ratio of modes 1 and 2 decrease significantly. Thus, it appears that the radii disorder can affect the
natural frequency of each mode differently.
4. Conclusion

The free vibration response of dual-span circular curved beams constrained by an intermediate
elastic support is studied. The curved beams are modeled as either extensional or inextensional
with the intermediate elastic constraint consisting of a transverse, tangential and rotational spring.
The eigenvalue problem is formulated using wave propagation techniques in conjunction with the
wave-train closure principle. Because both propagating and attenuating wave are included in the
analysis, the results are exact. The effects of the support type and stiffness on the transverse and
tangential modes are examined. It is found that each type of elastic support affects the response of
the coupled system differently. This is true for both the extensional and inextensional curved beam
models. In addition, for the extensional model, the behavior also depends upon whether the
natural frequencies of the system are above or below the cut-off frequency. This is due in part to
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the inherent coupling that exists between the transverse and tangential modes, which exists only in
the extensional curved beam model. Both the span angle disorder and the radii disorder produce
highly localized modes, and in general, each mode is affected differently. Under certain
conditions, however, particular pairs of modes of the extensional and inextensional models have
very similar behavior. For both extensional and inextensional models, trends observed for the
transverse and tangential modes are nearly identical.
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