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Abstract

Transient response of an overcritical high-speed rotor is considered. A rapid increase of unbalance
initiates a series of rotor–stator collisions succeeded by full annular rub during which a very high dynamic
load can develop, exceeding by several times that due to separate collisions. The main reasons leading to
such a potentially catastrophic response are highlighted.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A specific malfunction of rotor operation known as full annular rub, characterized by a
continuous contact between rotor and stator, has been considered in a number of studies. In Ref.
[1] Muszynska notes: ‘‘The most important is the self-excited backward precession of the shaft,
known as ‘‘dry whip’’. In this mode the shaft rolls while sliding against the seal in the direction
opposite to the direction of rotation and maintains contact with the seal. High normal forces and
corresponding friction forces at the contacting surfaces may lead to extremely severe damage in
merely a few seconds. Most often seals are damaged or destroyed.’’ (Here the seal constitutes a
stationary surface joined to the stator, with which the rotating part contacts.) Muszynska and
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

cx, cy direction cosines of vector q in frame of
reference Oaxy

d ¼ 25N s=m total dissipative force character-
istic of both supports

dt ¼ 1� 104 N s=m internal friction parameter
of the contact zone material

ex ¼ 0:15� 10�3 m mass centre deflection from
rotor geometrical centre O

ex1 ¼ kuex mass centre deflection from rotor
geometrical centre O after the separa-
tion of mass mu

Ft sliding friction force during impact or
continuous rub

Fn impact (or continuous rub) force in
radial direction

Fnx, Fny, Ftx, Fty projections of the forces Fn, Ft

in frame of reference Oaxy

Fin radial inertia force of rotor translatory
motion during rotor fast rolling

g ¼ 9:81m=s2 acceleration due to gravity
IC ¼ 9� 10�3 kgm2 rotor moment of inertia

with respect to its mass centre C

ICn rotor moment of inertia with respect to
centre C after mass separation

IC1 ¼ 8:91� 10�3 kgm2 rotor moment of iner-
tia with respect to its new mass centre
C1 after mass mu separation

k ¼ 20� 103 N=m the total radial stiffness of
both rotor supports

kt ¼ 8� 108 N=m contact spring stiffness
ku ¼ 3 coefficient of deflection ex increase
L0 rotor angular momentum about mass

centre C before mass separation
L1 total angular momentum of mass mu

and rotor about centre C upon mass
separation

Mmot ¼ 0:3Nm or 0 driving torque applied to
rotor by engine

Mimp impact (or continuous contact) force
moment about centre Oa

m ¼ 5 kg rotor mass
mu ¼ 0:0248 kg mass that separates from rotor

rim
f ¼ _q3=2p Hz rotation velocity of the rotor
f max ¼ 150Hz ¼ 943 rad=s rotation velocity in

stable operating regime of the rotor
f rol ¼ 770Hz rotation velocity of ‘‘fast rolling’’

without slipping
Qi; i ¼ 1 . . . 3 generalized forces
qi; i ¼ 1 . . . 3 generalized coordinates
r ¼ 0:06m rotor radius
ra ¼ 0:063m radius of stator contact ring
T rotor kinetic energy
Ttra kinetic energy of rotor curvilinear

translatory motion during fast rolling
t1 ¼ 29:1 s instant of mass mu separation
vCx, vCy absolute velocity projections of rotor

mass centre C in fame of reference Oaxy

vDC ¼ 56:7m=s relative velocity of mass mu

with respect to mass centre C at the
separation instant

vK absolute velocity of rotor rim point K

nK=Oa
relative velocity of K to Oa caused by
rotation of Oaxy system

vKn, vKt velocity vK projections in fame of
reference Knt

vKx, vKy velocity vK projections in fame of
reference Oaxy

vrx, vry components of the relative velocity of K

in the rotating coordinate system Oaxy

Greek letters

D radial deformation of material during
impact or continuous contact

Dvy ¼ 0:283m=s additional (instant) mass cen-
tre velocity change along Oay-axis

m ¼ 0:08, 0.2 or 0.3 Coulomb friction coeffi-
cient between rotor and stator contact
ring

r rotor geometrical centre displacement
from rotation axis Oaza
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Goldman [2] present the results of numerical and experimental studies for an unbalanced rotor in
regimes in which contact between rotor and stator occurs. In stationary regimes, harmonic and
subharmonic as well as chaotic forms of vibration are present. A regime when rotor is in
continuous contact with stator and the direction of rotor centre rotation is opposite to the shaft
rotation direction is also observed. Choy et al. [3] consider a rotor with 4dof. The effect of rotor
and casing inertia parameters, contact surface friction, and nonlinearity of turbine blade radial
and lateral stiffness on dynamics of the system is studied. It is found that rotor motion may
transfer from rigid to chaotic bouncing and then to full rub. Dai et al. [4,5] compare experimental
data and modelling results for a rotor with four degrees of freedom. A situation is considered
when contact of the rotor with a stationary surface takes place in the low critical frequency zone
of the rotor due to the action of external harmonic electromagnetic excitation force with
correspondingly low frequency. If the amplitude of the excitation force exceeds a certain level,
then partial as well as full rubbing behaviour is observed. The aim is to determine the relation
between contact zone stiffness and the conditions for occurrence of full rubbing. Choi [6] presents
test and modelling results for rotor–stator contact situations. The rotor mass is about 1 kg, the
natural frequency 23Hz, and the rotation speed varies up to 1200 rpm (20Hz). Backward rolling
and backward slipping regimes are observed. It is established that the friction coefficient between
the rotor and stator is the major parameter governing the occurrence of these regimes.
In the present paper, a specific case is considered when full annular rub sets in owing to a

sudden increase of unbalance of a high-speed rotor operating at overcritical speed. In this case,
particularly large dynamic loads arise which can cause catastrophic consequences within a few
hundredths of a second. The process resembles explosion. The development of the process in time
and its physical essentials are analysed. The dynamics of rotor total kinetic energy variation are
considered. Kinetic energy is partially dissipated by friction and partially transferred to the kinetic
energy of translatory motion, which causes huge dynamic loads in the contact zone. The main
reasons for this behaviour are indicated.
2. Model

2.1. Differential equations of motion

A simple model is considered: an axisymmetric rotor with symmetrically arranged supports
shown schematically in Fig. 1(a). The axis of rotation is horizontal. The rotor consists of a
flywheel mounted on a rigid shaft. The rotor has only a static unbalance; its dynamic unbalance is
taken equal to zero. Hence, the rotor is restricted to in-plane motion and the problem reduces to
rotor motion analysis in the vertical plane of symmetry Oaxaya, Fig. 1(b).
The bearing supports are linearly elastic, the transmitted force being proportional to the radial

displacement of the rotor axis; the total stiffness of both supports is denoted by k. Vibration
dampers are connected in parallel, the damping force being proportional to the radial velocity of
the rotor axis; the damping constant of both supports is denoted by d.
The rotor motion is composed of rotation and translation. Two coordinate systems are

therefore introduced, a fixed frame of reference Oaxaya, the origin of which, Oa, coincides with the
geometrical centre O of the rotor in static equilibrium, Fig. 1(a), and a rotating frame of reference
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Fig. 1. Vertical cross-sections of rotor in static equilibrium (a) and rotor in motion (b).
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Oaxy, Fig. 1(b). Three generalized coordinates determine the rotor position, namely coordinates
q1 and q2 for translatory motion, and coordinate q3 for rotation. A static unbalance is created by
displacing the mass centre C in the radial direction a distance ex. As previously mentioned, the
stator is symmetrically arranged around the balanced rotor. Contact between rotor and stator is
assumed to occur in the plane of symmetry, as indicated in Fig. 1(a).
The projections of the absolute velocity of rotor mass centre C in the frame of reference Oaxy

are

vCx ¼ _q1 � _q3q2 vCy ¼ _q2 þ _q3 q1 þ ex

� �
. (1)

Then the kinetic energy is given by

T ¼
1

2
m v2Cx þ v2Cy

� �
þ

1

2
IC _q

2
3. (2)

By applying the Lagrange equation

d

dt

qT

q _qi

� �
�

qT

qqi

¼ Qi; i ¼ 1; 2; 3,

we obtain

m €q1 �mq2 €q3 � 2m _q3 _q2 �m _q23 q1 þ ex

� �
¼ Q1,

m €q2 þm q1 þ ex

� �
€q3 þ 2m _q3 _q1 �m _q2

3q2 ¼ Q2,

IC þm q1 þ ex

� �2
þ q22

j kn o
€q3 �mq2 €q1

þm q1 þ ex

� �
€q2 þ 2m _q1 _q3 q1 þ ex

� �
þ 2m _q2 _q3q2 ¼ Q3. ð3Þ
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The generalized forces are determined by the following expressions:

Q1 ¼ � d _q1 � _q3q2

� �
� kq1 þ Fnx þ F tx,

Q2 ¼ � d _q2 þ _q3q1

� �
� kq2 þ Fny þ F ty,

Q3 ¼ d _q1 � _q3q2
� �

q2 � d _q2 þ _q3q1
� �

q1

�mg q1 þ ex

� �
sin q3 þ q2cos q3

� �
þMmot þM imp. ð4Þ

Here Mmot is the torque exerted by the engine on the rotor. Forces Fn, Ft shown in Fig. 1(b) and
their moment, Mimp, about the centre Oa arise during rotor–stator contact. In the absence of
contact, these forces and their moment vanish.

2.2. Effect of increase of unbalance

In normal overcritical operation, the rotor self-centres around its mass centre, a recognized
advantage during overcritical rotation. Rotor–stator contact may occur due to lack of sufficient
clearance between parts, in particular after a rapid increase of rotor unbalance. The latter may be
caused by a redistribution of mass within the rotor, or by an unsymmetrical loss of mass from the
rotor. The latter case is considered here, namely, a mass loss of mu on radius r, from the opposite
side of the rotor relative to the initial unbalance, at point D, Fig. 1(b). (The mass may separate
from any point on the rotor rim; the location is not crucial for transient rotor dynamics.
The specific case described above is chosen to simplify the analysis; note also that it leads to the
largest unbalance increase for a given mu). The mass mu separates from rotor due to centrifugal
forces and causes increase of deflection ex by a factor of ku, i.e. ex1 ¼ kuex. The lost mass mu and
the resulting deflection are interrelated as follows:

mu ¼ m
ex1 � ex

rþ ex1
. (5)

In the stable self-centring service regime, the relative motion of the rotor in Oaxy frame of
reference has ceased and rotor mass centre C almost coincides with centre Oa.
In the following, alterations in Eqs. (3) and (4) after separation of mass mu are derived. At the

instant of mass separation, the velocity of mass mu is equal to that of the rotor rim point D.
Therefore upon mass separation, the total angular momentum about centre C of both objects, the
separated particle (i.e. material point) and the rotor, is equal to that of the rotor before
separation. This means that the angular velocity of the plane motion of the rotor, _q3; does not
change either. It can be also proved as follows. The angular momentum L0 about mass centre C
before mass separation is

L0 ¼ IC _q3. (6)

The relative velocity of the separated mass mu with respect to centre C is

vDC ¼ _q3 rþ exð Þ. (7)

The moment of inertia of the rotor, ICn, about centre C is no longer central after mass loss and
is given by

ICn ¼ IC �mu rþ exð Þ
2. (8)
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If one assumes that the angular velocity of the plane motion has also changed and equals _q3n

then, upon mass separation, the total angular momentum L1 of the material point and rotor about
centre C becomes

L1 ¼ mu _q3 rþ exð Þ
2
þ IC �muðrþ exÞ

2
	 


_q3n. (9)

Due to conservation of the angular momentum, L0 ¼ L1; it follows from Eqs. (6), (9) that

IC _q3 ¼ mu _q3ðrþ exÞ
2
þ IC �muðrþ exÞ

2
	 


_q3n. (10)

It is concluded from Eq. (10) that _q3n ¼ _q3; as it was stated above.
The central moment of inertia IC1 about the new mass centre C1 is determined using the relation

ICn ¼ IC1 þ m�muð Þ ex1 � exð Þ
2. (11)

Taking into account Eq. (8) we obtain

IC1 ¼ IC �mu rþ exð Þ
2
� m�muð Þ ex1 � exð Þ

2. (12)

The total momentum of the separated mass and the rotor upon separation also has to be equal
to that of the rotor before separation; therefore by projecting momentum change vectors on the
Oay axis we obtain

�muvDC þ m�muð ÞDvy ¼ 0, (13)

where Dvy is the additional change in rotor mass centre velocity along Oay-axis. Accounting for
Eq. (7) we obtain

Dvy ¼
mu _q3 rþ exð Þ

m�mu

. (14)

One can also verify that the total kinetic energy is not changed by the separation of mass mu.
Consequently, differential equations (3) and relations (1), (2), (4) still apply upon mass

separation with the following modifications: ex, IC, m have to be substituted by ex1, IC1, m1 ¼

m�mu correspondingly, and the instantaneous alteration of generalized velocity _q2 by Dvy has to
be taken into account.

2.3. Contact forces

Consider the forces acting at the rotor–stator contact. The contact is modelled by introducing a
spring at a contact point with a parallel dashpot modelling material internal friction (Fig. 1b). It is
assumed that the contact spring is linear and the internal friction force in the material is
proportional to deformation rate, the factor of proportionality being dt. Since the deformation of
the rotor and the stator ring in the radial direction is likely to be very small, we make the
simplifying assumption that the rotor radius r remains constant during contact. The Coulomb
friction force at the contact point is taken proportional to the normal pressure at this point, the
factor of proportionality being m.
In order to determine the forces acting at the rim point K, the absolute velocity (i.e. the velocity

with respect to stator) of this point, vK, has to be established. The velocity can be expressed as

vK ¼ vK=Oa
þ vrx þ vry, (15)
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where vK=Oa
is the relative velocity of point K with respect to Oa caused by rotation of Oaxy

system,

vK=Oa
¼ _q3 rþ rð Þ ¼ _q3 ra þ Dð Þ (16)

and vrx, vry are the components of the relative velocity of K in the rotating coordinate system
Oaxy. Motion of the rotor in the rotating frame of reference Oaxy is translatory, therefore all
points on the rotor have the same velocity of relative motion

vrx ¼ _q1; vry ¼ _q2. (17)

Noting that the magnitude and direction cosines of the displacement vector q of the rotor
geometrical centre O are given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
1 þ q22

q
; cx ¼ cos a ¼

q1

r
; cy ¼ sin a ¼

q2

r
, (18)

the projections of vK on axes Kn, Kt and Oax, Oay are

vKn ¼ _q2cy þ _q1cx; vKx ¼ _q1 � ra þ Dð Þ _q3cy;

vKt ¼ _q3 ra þ Dð Þ þ _q2cx � _q1cy; vKy ¼ _q2 þ ra þ Dð Þ _q3cx:
(19)

The radial deformation and its rate are

D ¼ rþ r� ra; _D ¼ vKn. (20)

If Dp0 then the rotor does not touch the stator, and consequently impact forces are zero.
During contact, the impact force component Fn in the radial direction and its projections on the
axes Oax, Oay are determined by the relations:

Fn ¼ �ktD� dt
_D; Fnx ¼ Fncx; Fny ¼ Fncy. (21)

When FnX0, contact is lost. This condition reflects the fact that interaction between rotor and
stator contact ring can end in the final phase of impact already before condition D ¼ 0 is fulfilled,
if elastic and internal friction forces acting in opposite directions are equal.
The magnitude of the Coulomb friction force is

F t ¼ mFn. (22)

Vector Ft is directed opposite to the velocity component vKt at the contact point. This condition
is fulfilled if their scalar product is negative:

Ft � vK ¼ F tx � vKx þ F ty � vKyo0. (23)

Then

F tx ¼ F tcy ¼ �mFny; F ty ¼ �F tcx ¼ mFnx. (24)

If condition (23) is violated for the given signs of friction force projections, then signs in (24)
have to be reversed: F tx ¼ mFny; F ty ¼ �mFnx:
The moment of the Coulomb friction force Ft about centre Oa is

M imp ¼ F ty ra þ Dð Þcx � F tx ra þ Dð Þcy. (25)
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3. Numerical analysis

The numerical values of the rotor system parameters are given in the Nomenclature. The rotor
is powered by a constant driving torque Mmot ¼ 0:3Nm. Fig. 2 shows the variation of the

generalized coordinates q1, q2 and displacement r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q2

2

q
of the rotor geometrical centre O

during the first 6.5 s of the startup process, when the critical angular velocity zone is being passed,
the eigenfrequency being 10Hz. After 28.3 s the design rotation velocity (150Hz) is reached and
driving torque Mmot is switched off. Upon completion of the transient process the relative rotor
motion in the rotating frame of reference Oaxy ceases because velocities _q1 ¼ _q2 ¼ 0:
(Consequently, centre Oa is the instantaneous velocity centre for the plane motion of the rotor.)
Self-centring has occurred and rotor mass centre C is located at a distance of 0.7 mm from the
rotation axis, i.e. centre Oa.
The driving torque is switched off before the sudden unbalance increase in order to clarify the

physical essence of the evolution of dynamic loads and the mechanical energy of the system
without the contribution of Mmot.
The initial mass centre deflection from the rotor geometrical centre O is assumed as ex ¼

0:15� 10�3 m (which corresponds to an unbalance mex ¼ 75 g cm). The rotor unbalance increase
factor is taken as ku ¼ 3. Then the rotor mass loss according to Eq. (5) is mu ¼ 24:8 g, i.e. 0.5% of
rotor mass. Consequently, unbalance of rotor attains the value of m�muð Þkuex ¼ 223:9 g cm:
Central moment of inertia decreases by 1% and becomes IC1 ¼ 8:91� 10�3 kgm2 as given
by Eq. (12).
At the end of the transient process, at time instant t1 ¼ 29:1 s, mass mu separates from the rotor

with relative velocity vDC ¼ 56:7m=s with respect to mass centre C. Simultaneously, an
instantaneous additional change by Dvy ¼ 0:283m=s of velocity _q2 and hence also rotor mass
centre velocity along the Oay axis occurs. Rotor collisions with the contact ring begin.
Fig. 2. Rotor startup process.
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The radial component of rotor impact force Fn and rotor angular velocity f as functions of time
are shown in Figs. 3 and 4 correspondingly. Three cases with comparatively high, intermediate,
and low values of Coulomb friction coefficient m are compared here in order to illustrate the effect
of sliding friction on rotor dynamics.
For m ¼ 0:08, a series of separate collisions of about 0.15 s total duration is initiated by

unbalance increase. Then a continuous rotor–stator contact sets in, during which rotor rolling
with simultaneous sliding takes place at a very low force Fn, and the rotation velocity gradually
decreases. The horizontal parts of the graphs of the rotation velocity, Fig. 4, correspond to
contact-free rotor motion, whereas the steep parts reflect the decrease of rotation velocity during
each impact.
For m ¼ 0:3 continuous stator–rotor contact occurs already after a few collisions due to the

higher friction force. In a very short time (0.023 s) rotor velocity drops from 150 to 45Hz and at
Fig. 3. Radial component Fn of impact force for m ¼ 0:08, 0.2 and m ¼ 0:3.

Fig. 4. Variation of rotation velocity f ¼ _q3=2p of the rotor for m ¼ 0:08, 0.2 and m ¼ 0:3.
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the same time the radial component of contact force Fn increases to 400–450 kN, thus exceeding
by several times the radial impact forces of the separate collisions.
Fig. 5 shows the variation of radial force Fn during several collisions, and the subsequent rapid

increase of the force. The variation of rotor kinetic energy in the same time interval is shown
in Fig. 6.
The series of collisions is succeeded by rotor rolling along the contact ring accompanied by

slipping but without distinct impacts. When force Fn reaches its maximum value, slipping stops,
the rotor engages in rolling without slipping, and very rapid relative motion of rotor geometrical
centre O in rotating frame of reference Oaxy begins (Fig. 7). The trajectory of rotor geometrical
centre O in fixed frame of reference Oaxaya is shown in Fig. 8 for m ¼ 0:3 and in Fig. 9 for
m ¼ 0:08.
Fig. 5. Impact force Fn during transition from separate collisions to continuous rotor–stator contact.

Fig. 6. Variation of rotor kinetic energy T (m ¼ 0:3).
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Fig. 7. Variation of the generalized coordinate q1 in rotating axes Oaxy and variation of radius vector q.

Fig. 8. Trajectory of rotor geometrical centre O in fixed frame of reference Oaxaya during time interval 29.0–29.13 s in

the case of m ¼ 0:3.
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The generalized coordinate q1 in the rotating frame of reference (Fig. 7) varies sinusoidally with
the frequency of E770Hz and slowly decreasing amplitude rE3.5mm. Such a full annular rub
regime may be characterised as ‘‘fast rolling’’. The situation is similar to a planetary transmission
mechanism when at a low rotor velocity of f ¼ _q3=2p ¼ 45 Hz (Fig. 4) point K (i.e. the contact
point of the rotor and the stator ring) moves along the stator ring with very large rotation velocity
frol in the direction opposite to rotor rotation. The rotation of rotor geometrical centre O about
centre Oa has the same velocity frol. Rotation velocity frol depends on the difference between
rolling radius and rotor radius (Fig. 10):

f rol ¼
_q3

2p
r

ðra þ DÞ � r
¼
_q3
2p

r

r
¼ 771:4 Hz; (26)
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Fig. 9. Trajectory of rotor geometrical centre O in fixed frame of reference Oaxaya during time interval 29.0–29.35 s in

the case of m ¼ 0:08.

Fig. 10. Scheme of velocities for rotor rolling along the contact ring without slipping.
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that also corresponds to the estimated vibration frequency of coordinate q1 as seen in Fig. 7. The
fast rolling causes very large radial force Fn.
The relative motion of the rotor in rotating frame of reference Oaxy is curvilinear translatory

motion, therefore all rotor points have the same velocity and acceleration. Trajectories of the
points are similar, mutually displaced helices with gradually decreasing radius vector q. The
trajectories are very close to circular with radius rE3.5mm in the beginning of the fast rolling
process. Let us estimate the radial inertia force Fin and kinetic energy Ttra due to this translatory
motion. Accounting for rotor point velocities in translatory motion vC1 ¼ vO ¼ 2p f rolr ¼
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16:9m=s (assuming f rol ¼ 770Hz, as obtained using the graph in Fig. 7), we obtain

T tra ¼ m1 2pf rolr
� �2.

2 ¼ 713:3 J,

F in ¼ m1 2pf rol

� �2r ¼ 407:6 kN. ð27Þ

The kinetic energy of the rotor before separation of mass mu is T ¼ 4000 J (Fig. 6). At the instant
of mass separation, t1 ¼ 29:1 s, the variation of kinetic energy is negligible. Then rotor collisions
with stator begin. During collisions, within approximately 0.02 s, the kinetic energy is reduced by
about 1000 J by friction forces acting in the contact zone. After that the continuous rotor-stator
contact sets in—rotation with slipping. In this regime during about 0.003 s sliding friction forces
further reduce the kinetic energy by 1950 J. At the onset of fast rolling without slipping, the
remaining kinetic energy of the rotor is only T ¼ 1050 J (Fig. 6), i.e. 25% of the initial value. This
kinetic energy is composed of the energy of rotor translatory motion T tra ¼ 713:3 J and kinetic
energy of rotation (with rotation velocity f ¼ _q3=2p � 45 Hz). Consequently, the major part of
the remaining kinetic energy has been rapidly transferred from rotational to translatory form. The
inertia force of translatory motion, Fin, agrees with the values of radial reaction force Fn shown in
Figs. 3 and 5.
Note that large dynamic loads develop only at rotor–stator contact zone. The load on the

bearings is due to elastic and dissipative forces, and its level is moderate. During the fast rolling of
the rotor, the elastic force per bearing is rk=2 ¼ 35N. The load per bearing due to dissipative
forces is vOd=2 ¼ 212N, where the velocity of the rotor geometrical centre O (Fig. 10) is vO ¼

2pf rolr ¼ 16:9 m=s:
In the following, the effect of the contact spring stiffness variation on rotor dynamics is

considered. The changes in dynamic response are also evaluated when collisions begin at lower
rotor velocity f (i.e. lower than the operating velocity fmax). Fig. 11 shows the variation of the
radial component Fn of impact force for m ¼ 0:3 and three values of the stiffness, namely kt, 2kt

and 0.5kt. Such a large variation of stiffness has only a minor effect on the collision process.
Fig. 11. Contact spring stiffness effect on the variation of the radial component Fn of the impact force. Modelling

results for stiffness kt ¼ 8� 108 N=m, 2kt and 0.5kt are compared.
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A nonlinear contact zone stiffness characterization would of course be more realistic. But it
appears acceptable to linearize the contact zone response because the collision process is of short
duration and therefore only the work of the elastic forces during impact is important. It should
also be noted that variation of the internal friction parameter dt of the contact zone material has a
very limited effect on the modelled collision process.
The transient dynamics when the mass mu separates at rotation velocity f below operating

velocity f max ¼ 150Hz is shown in Figs. 12–17 (at m ¼ 0:3 and kt ¼ 8� 108 N=m). For f ¼
100Hz (Fig. 12), the collision process resembles that of f max ¼ 150Hz case shown in Fig. 3, but
the maximum value of the magnitude of force Fn is reduced from 455 to 237 kN. For f ¼ 75Hz
(Fig. 13), this force is further reduced to 136 kN. Furthermore, if mass mu separates at t1 ¼ 9:4 s
when rotation velocity f ¼ 49:8Hz (Fig. 14), the rotor does not touch the contact ring during
transient process because the gap between the stator contact ring and the rotor rim exceeds the
maximum displacement of the rotor geometrical centre. A short transient process is initiated at
t1 ¼ 9:4 s that leads to the new self-centring position of the rotor. The initial part of the transient
process is shown in Fig. 15, and the rotor geometrical centre trajectory during time interval
9.3–9.8 s is plotted in Fig. 16. Mass separation within the rotor critical angular velocity zone (at
t1 ¼ 2:2 s, f ¼ 11:8Hz) also does not cause collisions, Fig. 17.
The onset of the fast rolling regime is governed primarily by rotor support stiffness, rotation

velocity, Coulomb friction coefficient between rotor and stator contact ring, the gap between
them, and the magnitude of the sudden unbalance increase. The development of rotor/stator
rubbing is also affected by such parameters as contact zone stiffness, rotor mass and inertia
moment, rotor and contact ring dimensions, dissipative characteristics. The effect of the system
parameters is interrelated. For more compliant rotor supports, smaller rapid unbalance increase
would be necessary for initiating rotor–stator contact. At larger rotation velocity, rotor inertia
forces at the instant of unbalance increase would be larger. This interplay of system parameters
can be characterized by the ratio of maximum rotation velocity and critical velocity. The critical
angular velocity is determined by rotor mass and support stiffness. More compliant rotor
Fig. 12. Radial component Fn of impact force if mass mu separates at t1 ¼ 19:1 s when rotation velocity f ¼ 100Hz.

The maximum value of the magnitude of Fn is 237 kN.
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Fig. 13. Radial component Fn of impact force if mass mu separates at t1 ¼ 14:15 s when rotation velocity f ¼ 75Hz.

The maximum value of the magnitude of Fn is 136 kN.

Fig. 14. Variation of the rotor geometrical centre displacement r if mass mu separates at t1 ¼ 9:4 s when rotation

velocity f ¼ 49:8Hz. Rotor does not touch the contact ring during transient process leading to the new self-centring

position of the rotor.
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supports at larger rotor mass lead to lower critical velocity. It follows from the modelling results
that higher rotation velocity at the instant of mass loss translates into higher likelihood for fast
rolling regime onset and higher forces in the rotor/stator contact zone.
The model analysed above, which assumes linear elasticity in the contact region, is somewhat

artificial. The high radial load at contact point K would cause plastic deformation within the
contact zone in an engineering application. Heat development due to friction may also cause
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Fig. 15. Rotor geometrical centre displacement r. The initial part of the transient process of Fig. 14 corresponding to

time interval 9.3–9.8 s.

Fig. 16. Trajectory of rotor geometrical centre O in fixed frame of reference Oaxaya during time interval 9.3–9.8 s of the

transient process shown in Fig. 15.
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degradation. The rapid progress of the impact process with large energy dissipation and huge
dynamic load is crucial for the safety of rotors. The aim of the reported numerical analysis is
confined to revealing the principal behaviour of the system, including the possibility of a
dangerous accident.
Runge–Kutta fourth-order numerical integration method was applied in the numerical analysis.

The integration step in startup process modelling was chosen as 1� 10�4 s. Thus 67 integration
steps were performed during one revolution at rotation velocity f max ¼ 150Hz. The collision
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Fig. 17. Variation of the rotor geometrical centre displacement r in the critical velocity zone of the rotor. Graph a—

mass mu separates at t1 ¼ 2:2 s when rotation velocity f ¼ 11:8Hz. Graph b—transient process in the absence of mass

separation.
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process was modelled using integration step of 5� 10�6 s. Since the duration of a collision varies
between 1� 10�4 and 3� 10�4 s, 25–60 integration steps were performed during each collision.
Note that during fast rolling the rotation velocity of rotor geometrical centre O is 770Hz and
period 1.3� 10�3 s. Consequently, the integration step used in collision modelling is acceptable
also for the fast rolling process.
4. Results

Very high contact forces with ensuing possible catastrophic failure may occur in rotor systems
subjected to rapid increase of unbalance. The stepwise increase initiates a series of separate
collisions of short duration succeeded by a continuous rotor–stator contact, during which rotor
rolling along the contact ring with simultaneous sliding takes place, followed further by fast
rolling without slipping. The development of this process upon the first collision is very rapid.
During few hundredths of a second (0.023 s for the modelled rotor system), about 75% of rotor
kinetic energy is dissipated by the friction forces in the rotor–stator contact zone. At the same
time the angular velocity of the rotor drops significantly (�3 times); most of the remaining kinetic
energy is transferred to the kinetic energy of translatory motion. Simultaneously with the angular
velocity decrease, the radial component of the rotor–stator contact force increases dramatically
(modelled rotor with only 5 kg mass develops radial force of �400 kN), exceeding by several times
the radial force developed in the separate collisions. Following the rapid drop of angular velocity,
the rotor starts rolling along the contact ring without sliding. The contact point and the large
radial force exerted at this point move round the stator ring in the direction opposite to that of
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rotor rotation with very high rotation velocity (770Hz for the modelled system) exceeding by
several times the operating rotation velocity of the rotor (150Hz for the modelled system).
Under such dynamic loads, plastic deformation can arise in the contact zone and the stator can

be destroyed. The process resembles explosion due to its very rapid progress and sudden huge
dynamic load.
The main reasons that can lead to such an accident are as follows:
�
 high angular velocity of the rotor at the instant of rapid increase of the unbalance (if the rotor
velocity is not high enough, rotor–stator contact does not lead to an accident because the rotor
can slide along the contact surface without fast rolling);

�
 very compliant rotor supports that lead to a large difference between the angular velocity in
normal operation and the critical angular velocity of the system;

�
 small clearance between the rotor and the stator contact ring;

�
 high sliding friction coefficient between the rotor and the contact ring.
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