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Abstract

In this paper, the force criteria for stick and non-stick motions in harmonically forced, friction-induced
oscillators are developed from the local theory of non-smooth dynamical systems on connectable domains.
The periodically driven, linear oscillator with a simple dry friction is considered as a sampled problem to
demonstrate the methodology presented in this paper. With appropriate mapping structures, the force
criteria give the analytical predictions of the stick and non-stick, periodic motions for such an oscillator.
Furthermore, the effects of external excitations and friction forces on the stick and non-stick motions are
discussed, and the corresponding regions of specified motions in parameter space are obtained. The sliding
and grazing phenomena for this oscillator are also presented in this paper. However, an extensive
investigation on sliding and grazing bifurcations should be carried out in sequel. The displacement, velocity
and force responses for stick and non-stick, periodic motions are illustrated for a better understanding of
the dynamics mechanism of stick and non-stick motions of the dry-friction oscillator. The force criteria and
mapping techniques are also applicable to multi-body contact dynamics. The methodology presented in this
paper can be applied for numerical predictions of motions in nonlinear, non-smooth dynamical systems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Friction-induced oscillations extensively exist in engineering, such as disk brake systems,
turbine blades and string music instruments. The discontinuity of the system, caused by friction
forces, makes this oscillation problem difficult to solve theoretically and numerically. Therefore,
the friction-induced oscillations have been of great interest for a long time. An idealized
mechanical model for the friction-induced oscillator is introduced in this paper through the
simplest mechanical problem. Consider a periodically forced oscillator consisting of a mass (i), a
spring of stiffness (k) and a damper of viscous damping coefficient (), as shown in Fig. 1(a). This
oscillator slides or rests on the horizontal belt surface traveling with a constant speed (V). The
absolute coordinate system (x,?) is for the mass. Consider a periodical force Qycos Q¢ exerting on
the mass, where Q, and © are the excitation strength and frequency, respectively. Since the mass
contacts the moving belt with friction, the mass can move along, or rest on, the belt surface.
Further, a kinetic friction force shown in Fig. 1(b) is described as

= ,ukFNa X € [V, OO),
Fr(x){ € [—wmFn. wFn], x=7V, (1)
- _,ukFNa DS (—OO, V]:

where x=dx/dt, i, and Fy are a friction coefficient and a normal force to the contact surface,
respectively. For the model in Fig. 1, the friction force is Fy = mg where ¢ is the gravitational
acceleration.

For the mass moving with the same speed of the belt surface, the non-friction forces acting on
the mass in the x-direction is defined as

Fy=A4ycos Qt —2dV —cx forx=1V, 2)
where Ay = Q,/m, d = r/2m and ¢ = k/m. This force cannot overcome the friction force for stick

motions, 1.e., |FS|<‘FJ-‘ and Fy =, Fy/m. Therefore, the mass does not have any relative
motion to the belt. In other words, no acceleration exists, i.e.,

=0 forx="V. (3)

If |F,|> |F r|, the non-friction force will overcome the static friction force on the mass and the
non-stick motion will appear. For the non-stick motion, the total force acting on the mass is

F = Agcos Qt — Frsgn(x — V) —2dx —cx forx#V; 4)

sgn (- ) is the sign function. Therefore, the equation of the non-stick motion for this oscillator with
the dry friction is

X+2dx 4 cx = Ag cos Qt — Frsgn(x — V) forx#V. (%)

Based on the above model, Luo and Gegg [1] generalized the mathematical model for friction-
induced oscillators. The mechanism of the stick and non-stick motions for such a model was
briefly studied to obtain the conditions for the onset and vanishing of stick motion in such a non-
smooth dynamical system. The comprehensive investigation of the generalized friction-induced
oscillator will be carried out in this paper. Under different parameters, periodic motions in
parameter space will be discussed for a better understanding of the dynamics mechanism of the
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Fig. 1. The mechanical model of a linear oscillator with dry friction: (a) schematic and (b) friction force.

harmonically forced, linear oscillator with dry friction. The regions of specific periodic motions in
parameter space will be presented for practical applications in engineering.

Den Hartog [2] initialized an investigation on the periodic motion of the forced linear oscillator
with Coulomb and viscous damping in 1930. From mathematical points of views, Levitan [3]
discussed a friction oscillation model with the periodically driven base in 1960, and the stability of
the periodic motion was presented. In 1979, Hundal [4] further discussed the dynamical responses
of the base driven friction oscillator. In 1986 Shaw [5] investigated the stability for such a non-
stick, periodic motion through the Poincare mapping. In 1992, Feeny [6] investigated the non-
smoothness of the Coulomb friction oscillator and presented the stick region analytically and
graphically. In 1994, Feeny and Moon [7] did the experimental and numerical investigations of
chaos in a dry-friction oscillator. In 1996 Feeny [8] gave the systematical investigation of the
nonlinear dynamics of oscillators with stick—slip friction. In 1997 Hinrichs et al. [9] investigated
the dynamics of oscillator with impact and friction (also see Ref. [10]). The stick and non-stick
motions were observed, and chaos for a nonlinear friction model was presented. In 1998,
Natsiavas [11] investigated the stability of piecewise linear oscillators with viscous and dry friction
damping through the perturbation of the initial conditions (also see Ref. [12]). Leine et al. [13]
determined the limit cycles of the nonlinear friction model by the shooting method. In 1999,
Virgin and Begley [14] used the interpolated cell mapping method to obtain the grazing
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bifurcation and attraction basin of an impact-friction oscillator. In addition, the approximate
solutions of responses in friction-induced oscillation were of great interest in recent years. In 2001,
Ko et al. [15] investigated the fiction-induced vibrations with and without external excitations. In
2002, Andreaus and Casini [16] achieved the closed-form solutions of the Coulomb friction-
impact model without external excitations. The approximate, analytical amplitude for stick—slip
vibration with nonlinear friction model was presented by Thomsen and Fidlin [17] in 2003. Kim
and Perkins [18] used the harmonic balance/Galerkin method to investigate non-smooth stick—slip
oscillator. In 2004, Pilipchuk and Tan [19] investigated the friction-induced vibration of a two-
degree-of-freedom (2dof) mass—damper—spring system interacting with a decelerating rigid strip.

In 1995, Luo [20] initialized the mapping structure concept to determine the periodic motion for
impact oscillators (also see, Refs. [21,22]). This methodology was used to investigate the periodic
and chaotic motions of the periodically driven piecewise linear systems in Refs. [23,24]. A
generalized methodology for complex periodic motions was given through investigation of such a
piecewise linear system [25]. In 1994, Pfeiffer [26] considered the impacts and frictions to
investigate the unsteady process in machines. To further investigate the non-smooth dynamical
systems, in 1996 Glocker and Pfeiffer [27] developed the theory for multi-body dynamics with
unilateral contacts by using analytical dynamics. In 1999, Pfeiffer [28] gave a brief survey of the
theory of the unilateral multi-body dynamics, and presented some typical applications (also see
Ref. [29]). From mathematical points of view, in 1964, Filippov [30] presented differential
equations with discontinuous right-hand sides, which started from the Coulomb friction
oscillator. The concept of differential inclusion was introduced via the set-valued analysis, and
the existence and uniqueness of the solution for such a discontinuous differential equation were
discussed. The comprehensive discussion of such discontinuous differential equations can be
referred to Ref. [31]. However, Filippov’s theory mainly focused on the existence and uniqueness
of the solutions for non-smooth dynamical systems. The local singularity caused by the separation
boundary was not discussed. In order to analyze the complexity of non-smooth dynamical
systems, in 2005, Luo [32] developed a general theory for the local singularity of non-smooth
dynamical systems on connectable domains. The local singularity of non-smooth dynamical
systems near the separation boundary was discussed. The imaginary, sink and source flows were
introduced in Ref. [33] to determine the sliding and source motions in non-smooth dynamical
systems.

In this paper, the force criteria for stick and non-stick motions in a forced linear oscillator with
dry friction will be developed. The mapping structures of periodic motions in such an oscillator
will be constructed. The parameter studies for stick and non-stick, periodic motions will be
completed by use of the force criteria. The displacement, velocity and force responses of the stick
and non-stick, periodic motions will be simulated for a better understanding of the dynamics
mechanism of stick and non-stick motions.

2. Basic theory

A brief introduction to non-smooth dynamical systems in Refs. [32,33] is presented to
investigate the dynamics mechanism of stick and non-stick motions. Consider a planar, dynamic
system consisting of n-dynamic sub-systems in a universal domain Q c %, divided into n
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Fig. 2. Connectable sub-domains in phase space

accessible sub-domains Q;; and the union of all the accessible sub-domains | J;_,;, as shown in
Fig. 2. On the ith sub-domain, there is a continuous system in form of

x=FO(x,t,p,m) =19 (x,p,) +gx,t,m), x=(x»)" €Q, (6)

where g = (¢,,9,)" is a bounded, periodic vector function with period T and a parameter vector
= (m,7,...,T,)" €R". Note that the superscript “T” represents the transpose. The vector

, T
field £ = <f(1'),f(2')> € %% with parameter vectors p; = (Mnaﬂiz, e ,,um)T e N is C"-continuous
(r=2). In all the accessible sub-domains £,, the dynamical system in Eq. (6) is continuous and the
corresponding continuous flow is x?(r) = @V (x(19), 1, p;, m) with xO(z9) = D (x(1), 19, p;, )

accordingly.
The non-smooth dynamic system theory holds for the following conditions

Al. The switching between two adjacent sub-systems possesses time continuity.
A2. In an unbounded, accessible sub-domain €, for the bounded domain D,=Q; the
corresponding vector field and its flow are bounded, i.e.,

¥

< K, (const) and HQE”H <K, (const)on D; fort € [0,00). @)

A3. In a bounded, accessible domain ;, for the bounded domain D;=Q,, the corresponding
vector field is bounded, but the flow may be unbounded, i.e.,

As in Ref. [33], the real (or true) and imaginary (or fictitious) flows concepts are re-stated herein.
The real (or true) flow ng) (?) in the sub-domain ; is governed by the dynamical system on its own
domain. The definition is given as follows.

<ooonD; forte]0,00). ®)

ng) H <K (const) and Hd)fi)
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Definition 1. The C" "' continuous flow Xf-i)(t) =@ gjxgi)(lo), t,p; ) is a real (or true) flow in the ith
open sub-domain €2;, if the flow XEI)(Z) is determined by a C" -cofitinuous system (r>1) on Q;in a
form of

. ) . . . \T
Xgl) = F(l) <Xgl), 1, ui) c m2, Xgl) — (xgl),ygl)) €0, (9)
with the initial condition

x(10) = 0O (x(10), 10, ;). (10)

In the sub-domains Q;, F? xgi) .1, ui) =F Si)(t). ¥ xgi)(t), to,B; ) = d)gi)(t). xgi)(t) denotes the flow
in the ith sub-domain Q,, governed by a dynamical system defined on the ith sub-domain Q;.
Consider the jth imaginary (or fictitious) flow in the ith domain €; is a flow in ©; governed by the
dynamical system defined on the jth-sub-domain ;. The flow is not a true one governed by the
non-smooth dynamical system, thus this flow is also termed the imaginary (or fictitious) flow in
this sense.

Definition 2. The C" " '(r>1)-continuous flow xgj)(t) is termed the jth-imaginary (or fictitious) flow
in the ith open sub-domain ; if the flow x?)(t) is determined by application of a C"-continuous
system, defined on the jth open sub-domain Q;, to the ith open sub-domain €; i.e.,

0 = F0) (ng)’ : uj> e, XV = <x5/>, ygj)>T co. (11

with the initial conditions
x(10) = @9 (x(t0). 10, ;). (12)
Consider a boundary of any two adjacent sub-domains, formed by the intersection of the sub-
domains, i.e., 0Q; = Q;NQ; (i,j €, {1,2,...,n},j#1), as shown in Fig. 3. In phase space, the

separation boundary is assumed to be determined by ¢;(x,y) = 0 where ¢;; is a C'-continuous
function.

Definition 3. The boundary set in the 2-D phase space is defined as

0Q; =0Q;NQ; = {(x, |@;i(x,y) =0 where ¢ is Cl—continuous} cnl. (13)

Definition 4. For a discontinuous dynamical system in Eq. (9) or (11), x(#,,) = X,, € 0Q;; at ¢,,,. For
an arbitrarily small ¢>0, there are two time intervals [t,,_., ¢,) and (¢, t,.] With Xf.“)(tm_) =

X, = xj(.ﬁ )(lm+) (o, B € {i,j} and a# ). The non-empty boundary 09, to a real or imaginary flow
—
ng)(l) U x](-ﬁ)(t) UXx,, is semi-passable from the domain Q; to Q; (expressed by 0Q ) if the flow



138 A.C.J. Luo, B.C. Gegg | Journal of Sound and Vibration 291 (2006) 132-168

X

Fig. 3. Sub-domains Q; and €;, the corresponding boundary 8Q;; in phase space.

XE“) (¢) and Xj(»ﬁ )(l) possesses the following properties:
either

nlo, @ X (tno) = X (tn) | >0
) " " : for 0Q; convex to Q;
nggij ® X; (Im+e) — X; (tm+)| >0

or

nngf b Xga)(tnl_) - Xfa)(tm—é) <0

o - for 0Q;; convex to Q;, (14)
g, & X () = X (1) <0
where the normal vector of the boundary 0€Q;; is
0p;; 0, T
Xms>Vm

Note that notations #,,+, = t,, £ ¢ and #,,+ = t,, = 0 are used. Consider a true flow in Eq. (9) from
the domain €; into the domain ; through the boundary 0Q;;. Suppose the true flow arrives to the
boundary 0Q;; for a time t,,. For an arbitrarily small ¢ >0, a small neighborhood (#,,—, t,,.+:) of the
time ¢, is arbitrarily selected where 7,1, = t,, & ¢. The input and output flow vectors are xl.’) (t,) —
xg’)(tm_g) and x](.’)(thrg) — xj(.’)(tm), respectively. As ¢—0, the time increment Az =¢— 0. The
process of the flow passing through the convex and non-convex boundary sets from the domain Q;
to ; is shown in Fig. 4. Non-stick motion exists on this kind of boundary. Similarly, the
geometric interpretation can be presented through the imaginary (or fictitious) flow as in Ref. [33].
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Fig. 4. Semj-passable boundary; set 0Q; from the domain Q; to Q; (a) convex to €; and (b) convex to
xg’)(tm—s) = (xg’)(tm—s)a yf'l)(tm—s)> P x('/)(lmﬁ—s) = ng('/)(tm-f—s)ayj('])(tm+e)P and x,, = (X(lm), y(lm))T where t,,1, = t,, £ ¢ for
an arbitrary small ¢>0. Two vectors nag, and tag, are the normal and tangential vectors of the boundary curve 3
determined by ¢;(x, y) = 0. The direction of tao, X mag, is the positive direction of the coordinate by the right-hand rule.

Theorem 1. For a discontinuous dynamical system in Eq. (9) or (11), x(t,,) = X,, € 0Q;; for t,,. For
an arbitrarily small ¢>0, there are two time intervals [t,_., t,) and (ty, tys:] with xﬁ“)(tm_) =X, =
x](ﬁ)(thr) (o, p € {i,j} and a#p). Both the flows xga)(t) and x](.ﬁ)(t), respectively, are Cf ) and

Z”l*z')’t”l
C,.. d'x /dr dx{? /e
boundary set 0Q;; is semi-passable from the domain Q; to Q; iff

<00. So that the non-empty

<00 and‘

e -CONLINUOUS (1r2=2) for time t. ‘

either
n, e X(“)(t )y>0andnl, e X(ﬁ)(t )>0 for 0Q;; convex to Q;
a0, ® Xi Um— o0, ®X; Um+ ij j

or

"gQ,-,- . )'cf-‘“)(tm_) <0 and ngQU_ ) X_;ﬁ)(thr) <0 for 0Qj; convex to Q. (16)

Theorem 2. For a discontinuous dynamical system in Eq. (9) or (11), X(t,,) = X,, € 0Q;; for t,, For
an arbitrarily small e>0, there are two time intervals [t,,_., t,y) and (t,,, tys] With XE“)(Zm,) =X, =
xj(ﬁ)(l,wr) (o, p € {i,j} and o). Both FE“)(Z) and F](. (1), respectively, are Cy, , and Cj, .-
continuous (r=1) for time t. Hd’x&“)/dl’H <00 and Hd"xgﬁ)/dt"H <00. So that the non-empty

boundary set 0Q;; is semi-passable from the domain Q; to Q; iff

either

ngQ,-, ° Ff.“)(lm_) >0 and ngQU_ ° FJ(B )(tm+) >0 for 0y convex to €,
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or
n., e F(.“’(z )<0and nl, e F(.m(z )< 0 for 0Q;; convex to Q; 17)
o0, ® X Um— 00, ® X Umt ij i

where F(t,,_) = F® (X(.“) - u[-> and Fj(-ﬁ tny) = FP (xj(-ﬂ ) s uﬁ>.

1

Definition 5. For a discontinuous dynamical system in Eq. (9) or (11), x(#,,) = x,, € 0Q;; for 1,,.
For an arbitrarily small ¢>0, there is a time interval [t,,_,, t,,) with ng‘)(tm_) =X, = xgﬂ)(ler)
(o, B € {i,j}, x# f). The non-empty boundary set 0Q;; is the non-passable boundary of the first
kind, 0Q;; (or termed a sink boundary between the sub-domains €; and )) if the flows x_ﬁf)(t) in the
neighborhood of the boundary 0Q;; possess the following property:

{ndo, o [} = xP(0n-0] b x {0y, o [x0n) = x(0-0)] } <0

or
{nggi, . [x?(anS) — xl@(zmg} } x {nggi/_ . [x§f)(t,ﬁ+£) — x}”(zmg} } <0. (18)

The sink boundary between the two sub-domains ©; and Q; is sketched in Fig. 5 through the real
(or true) flow x¥(¢), o € {i,j}. In the neighborhood of the boundary, when a flow x*(¢) in the
domain Q, arrives to the non-passable boundary of the first kind 0€;;, the flow can be tangential
to or sliding on the non-passable boundary. For the sink boundary, the stick motion will exist.
However, the tangential case will be discussed later. As in Ref. [32], the following theorems are
given for determination of the sink separation boundary. Namely, the existence of the stick
motion will be guaranteed.

. — —

- ~
7 ~
/ x0
/ X] (tmfﬁ)

X

Fig. 5. The sink boundary (or the non-passable boundary of the first kind, 5?2,]-). X = (x(tm),y(t,,,))T, X (ty_,) =
(xfj‘)(z,,,,g),y&“)(tm,g))T where #,_; = t,, — ¢ for an arbitrary small ¢>0. Two vectors mgo, and tag, are the normal and
tangential vectors of the boundary curve 8€; determined by ¢;(x,y) = 0. The direction of teo, X nag;, is the positive
direction of the coordinate by the right-hand rule.
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Theorem 3. For a discontinuous dynamical system in Eq. (9) or (11), X(t,,) = X,, € 0Q;; for t,,. For
an arbitrarily small ¢>0, there is a time interval [ty—g, ty) or (L, ture] With X(“)(tm ) =X, =
XPtmy) (o, f € (inj),0#p). The flows xP(1) and xP(1) in the two domains are Cj, . and
Cliy,.t,-CONtinuous (r =2) for time t, respectively, d’x(“) /dr H <00, and Hd’ xP) /dt’H <oo So that

the non-empty boundary 0Q;; is a non-passable boundary of the first kind iff
0 i 0] <
or

[nggo_ . x?’>(zm+)} x [ngg[j . xj(.i)(thr)} <0. (19)

Theorem 4. For a discontinuous dynamical system in Eq. (6), X(t,,) = X,, € 0Q;; for t,,. For an
arbitrarily small ¢>0, there is a time interval [ty g tn) with XP(t,-) = Xm = xP(t,1)

(O‘ B e tij},a#p). The vector field ¥(t) and ¥P(1) in the two domains are Clipery and
. os-CONtInUOUs (r>2) for time t, respectively, d'+11~:(°‘)/dz’+1 ” <00 and Hd’“x(ﬁ)/dt’“ ‘<oo
So that the non-empty boundary 0Q;; is a non-passable boundary of the first kind iff
[nggij ° ng)([m_)] X {nggly ° Fj(./')([m_)} <0
or
[nggz,-,- * F?’)(tm+)} X [nggﬁ J F_;i)(ler)} <0 (20)

where F (1) 2F® (x®, 1, ) and ¥ (1,,,) 2 FP (x&ﬁ’, L uﬁ)'

As in Ref. [32], the flows tangential to the separation boundary are presented herein in order to
investigate the grazing bifurcation at the boundary.

Definition 6. For a discontinuous dynamical system in Eq. (9) or (11), x(#,,) = x,, € 0Q;; at 1,,,. For
an arbitrarily small >0, there is a time interval [£,,_, t,,) With XP(2,,1) = X, (o0, B € {i, j}, o # ).
The flow xP(¢) in Q, at (x,,,1,,) is tangential to the boundary 0Q;; if the following two conditions
hold:

(C1) ngsz[j hd ngﬁ)(tmi) =0, (21)

©2)  {nly o [P0 = xPln-0] } x {0y, & Pl = xPa)] <0, (22)

This tangential bifurcation is often termed the grazing bifurcation. As in Ref. [32], the following
theorems are presented for determination of the tangential bifurcation at the separation
boundary. The graphical illustration of such a definition is given in Fig. 6.

Theorem 5. For a discontinuous dynamical system in Eq. (6), X(t,,) = X,, € 0Q;; for t,,. For an
arbitrarily small >0, there is a time interval [t,,_,, t,n1.] With xgﬁ)(tmi) =X, (o, f € {i,j}). The two
segment flows X(ﬂ)(l‘) are C ) and Cft’m[nm]-continuous (r=2) for time t. Hd"xgﬁ)/dt’H<oo.

til elm
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(i)
i (tm+s)

t,
00

Fig. 6. A flow in the domain Q; tangential to the boundary 0Q;; convex to ;. The gray-filled symbols represent two
points (x&“)(tmﬁ)) on the flow before and after the tangency. The tangential point x,, on the boundary 0Q;; is depicted
by a large circular symbol. nyg, and tog, are the normal and tangential direction of the boundary 0€2;;. The direction of
too, X Mog, is the positive direction of the coordinate by the right-hand rule.

So that the flow xP(1) in 8Q,, at (x,y,,) is tangential to the boundary 0Q;; if the two conditions hold:

(C1) nggﬁ ° ngg)(tmi) =0or nggﬁ ° Fff) (xéﬁ), 17 rc) =0;

(C2) either (23)
[nggﬁ . ngﬁ(zm_g)} x [nggﬁ . xgm(zmﬂ)} <0 (24)

or

[nggﬁ o F <ng;), [ 178 n)] X [nggﬁ o FP <x§(ﬁ), e Mg n)] <0. (25)

For convenience, the following theorem can be used for determination of the tangential (or
grazing) bifurcation on the separation boundary. The theorem is stated as follows.

Theorem 6. For a discontinuous dynamical system in Eq. (9) or (11), X(t,,) = X, € 0Qy; for t,,. For
an arbitrarily small ¢>0, there is a time interval [t,,_;, t. ] with xgﬁ)(thr) =Xy (o, p € {i,j}). The
vector field FP(1) are Cliyvty and C, . -continuous (r=2) for time t. Hd"ﬂx(“) /de+! H <00. So
that the flow x\P)(¢) in Q, at (X, y,,) is tangential to the boundary 0Q;; if the two conditions hold.

€)  nly e 5xP(tys) = 00rnly o FY (xgjﬂ, b g, n) = 0; (26)
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eithernl, o DF;E)(tmi)<Of0r 0Q;; convex to Qp (/3 € {i,j} but ﬁ;éoc)

i

C2 , 27
(€2) or “aTQl-j ° Dfoﬁ)(tmi) >0 for 0Q;; convex to €, 27)
where the total differentiation
) aFggﬁ;(tm:t) B aF(ﬁ)(lmi)
DFP(tys) = | — 23— | FP ) + =57 ({pg} =(L.2mi=x0m=y). (29
q

The proof of the above theorems can be referred to Luo [32,33]. From the above theorems, the
conditions for the onset, existence and disappearance of stick, non-stick and grazing motions in
the friction-induced oscillators, as in Eq. (5), will be developed in the next section.

3. Force criteria

In this section, the criteria for stick and grazing motion can be applied to generalized, nonlinear
oscillator with a nonlinear dry friction. As in Ref. [1], since the friction force is dependent on the
direction of the relative velocity, the phase plane of the friction-induced oscillation systems is
partitioned into two domains. In each domain, the motion can be described through the
continuous dynamical systems, as shown in Fig. 7. The two domains are expressed by
Q,(x € {1,2}). In the phase plane, the following vectors are introduced as

x2(x, %) = (x,»)" and F&(y, F)". (29)

g V///%

....................................................................

\

Fig. 7. Domain partitions in phase plane for constant belt speed V.
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The mathematical description of the domains and boundary
Ql = {(X,J/)‘y € (Va OO)}, QZ = {(X,y)}y € (_OO, V)},
00, = {(V]se ) =y =V =0}, (30)

The subscript (- ),z denotes the boundary from Q, to Qg («, f € {1,2} and a# f). The motion of
equations for friction-induced oscillators, such as in Egs. (3) and (5), can be described as

x=F (0 (5,2 €{0,1,2)), (31)

where

FP(x, 1) = (0, Fa(x,0)" in @, (2 € {1,2)),

FO(x,0) = (v, Fp(x,0)" in Q, (2 #f € {1,2}),

FO(x,1) = (V,0)" on 8Q,; for stick,

Ff)o)(x, ) = Fg“)(x, 1), F%ﬁ )(x, Z)} on 0Q, for non-stick. (32)
For the subscript and superscript (x and A) with non-zero values, they represent the two adjacent
domains for (o, f§ € {1,2}. Fg")(x, t) is the true (or real) vector field in the «-domain. F&ﬂ)(x, t) is the
fictitious (or imaginary) vector field in the a-domain, which is determined by the vector field in the
p-domain. F BO)(x, t) is the vector field on the separation boundary, and the discontinuity of the

vector field for the entire system is presented through such an expression. F,(x,¢) is the scalar
force in the a-domain. For the system in Eq. (5), we have the forces in the two domains as

F,(x,t) = Ay cos Qt — b, — 2d,y — cyx (o € {1,2}). (33)

Note that by = —by = ug, d, = d and ¢, = ¢ for the model in Fig. 1. From Theorem 4, the stick
motion (or mathematically called the sliding motion) through the real (or true) flow is guaranteed,
if 9Q,p (5 p) is convex to Q,, by

[ngw «F(1,,)| <0 and [nl, .F;m(zm,)] >0. (34)

Note that 1, represents the time for the motion on the velocity boundary, and #,+ =1, +0
indicates responses in the two domains rather than on the boundary. Similarly, from Theorem 2,
the non-stick motion (or called passable motion to boundary in Refs. [32,33]) through the real or
imaginary flows is guaranteed, if 0Q, is convex to ,, by

ngguﬂ ° Fg“)(lm_) <0and nggaﬂ ° F;f)(thr) <0 for Q, — Qy,
_nggm ° Fgg)(tm,)_ >0 and _nggm ° Fg“)(thr)_ >0 for Qp — Q,.
or
_ngguﬁ . Fﬁf‘)(lm_)_ <0and _ngw . Fgﬁ)(tm_)_ <0 for Q, — Qp,

>0 for Q/g — Q,. (35)

_nggm o F{ (1)

>0 and nggm o F;;‘)(tm,)
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because of the sliding dynamics on the separation boundary, the separation boundary 0Q,, (or
0Q,) is convex to ;. Using the third equation of Eq. (30), Eq. (15) gives the normal vector of the
separation boundary, i.e.,
Moo, = Moo, = 0, l)T' (36)

Therefore, we have

ngo,, @ F(1) = ngo, @ F(0) = Fy(x, 1),

nlo,, e FP(0) =ni,, e FP(1) = Fy(x, 0). (37)
From Eqgs. (34) and (35), the force conditions for stick and non-stick motions, respectively, are:

Fi(t,,-)<0and F»(t,_)>0 ondQ,,
Fi(t,-)<0and Fy(t,,4)<0 for Q — Q,, }

38
Fi(t,-)>0 and Fy(t,-)>0 for Q, — Q. (38)

From the theory for non-smooth dynamical systems in Refs. [32,33], the force conditions for
vanishing of the stick motions are

Fi(tm_)<0and Fa(t,,_) =0 for 0Q1 — @,

Fr(tm_)>0and Fi(tn_) =0 fordQ; — Q. (39)
From Eq. (35), the onset condition for the sliding motion is

Fi(tm_)<0and Fa(tys) =0 for Q) — 0Q1s,

Fr(tm_)>0and Fi(tms) =0 for @, — 0Qp. (40)

The onset condition of the sliding motion is also called the sliding bifurcation condition, and the
detailed discussion can be referred to Luo and Gegg [34]. A sketch of the stick motion is presented
in Fig. 8. In Fig. 8(a), the force condition for the sliding motion with its vanishing and appearance

is presented through the vector fields of F(Il)(t) and F(22)(t). The vanishing condition for stick (or
sliding) motion along the velocity boundary is illustrated by F(#,_) = 0. The vanishing point is
labeled by the gray circular symbol. However, the starting points of the sliding motion may not be
the switching points from the possible boundary to the non-passable motion boundary. The
switching point satisfies the onset condition of the sliding motion in Eq. (40). When the flow
arrives to the separation boundary, once the first equation of Eq. (38) holds, the sliding motion
along the corresponding discontinuous boundary will be formed. The onset of the sliding motion

from the domain 2, onto the sliding boundary 65212 is labeled by the dark circular symbol in
Fig. 8(b). From Eq. (40), F(¢,+) = 0 should be hold.
From Theorem 6, the grazing motion is guaranteed by

[“ggw o ng)(fmi)} =0,

[nggm . DF(ll)(tmi)] >0, [nggzl o DFY(1,,1)] <0, (41)
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Ql
Ql
y
, Y]
Q, =
X
(@) x ®)

Fig. 8. Vector fields of stick motion with (a) vanishing only, and (b) onset and vanishing for belt speed V' >0. The gray
and dark filled circular symbols represent the vanishing and onset of stick motion, respectively.

where
F, T
DFY(1) = <2Fa(x, 1), VF(x, 1) @ F(1) + W) : (42)
where V = 0/0xi + 0/0yj is the Hamilton operator. With Egs. (32) and (36), we have
nggw e F(1) = F,(x, Q1),
oF ,(x, Qt
naTQw e DFY(f) = VF,(x, Qt) e F¥(1) + % (43)
From Eqgs. (42) and (43), the force conditions for grazing motions are:
FO!(X”'I, ‘Qtﬂli) - O’ FO((XWI, th—b) X FO!(XW!, ‘Qt771+8)<0 (44)
or
OF oy (Xmy Qlms) >0 fora=1,
_ (a2) a\Am> m
Foc(xm: le:l:) - Oa VFa(Xma th:l:) b Fa (tmzl:) + ot <0 foro=2. (45)

The foregoing grazing conditions are presented in Fig. 9. The vector fields F(ll)(t) and F(zz) (1) in Q,
and €, are expressed by the dashed and solid arrow-lines, respectively. The force condition in
Eq. (44) for the grazing motion in @, is presented through the vector fields of F(¢). In addition to
the necessary condition F,(X,,, t,,+) = 0, the sufficient condition requires F(x,,, 2t¢,_.)<0 and
Fi1(Xp, Qty.)>0 in domain Q; and F»(X,,, Qt,,_.)>0 and F»(X;,, 2t,1.)<0 in domain Q,. The
detailed investigation of the grazing phenomena can be referred to Luo and Gegg [35].

4. Mapping structures and periodic motions

In this section, the mapping structures for periodic motion will be developed for the friction-
induced oscillator. For the constant belt speed, Eq. (3) will hold. Direct integration of Eq. (3) with
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Fig. 9. Vector fields of grazing motions: (a) in Q; and (b) in Q, for the belt speed V' >0.

initial condition (¢;, x;, V') yields
X = V(l - l,') + X;. (46)

For the model in Eq. (5), substitution of Eq. (46) into Eq. (33) gives the forces in the very small -
neighborhood of the stick motion (6 —0) in the two domains Q, (« € {1,2}) i.e.,

F,(t,) = =2d,V — ¢c,[V(t;,— — t;) + x;] + Ao cos Qt,,— — b,,. 47)

For the non-stick motion, the initial conditions are chosen on the velocity boundary (i.e.,x; = V),
and the solution of Eq. (5) in all the domains €2, is listed in the appendix and the subscript indices
(o and j) are identical. For coefficients of those solutions in the appendix, Cgf‘)(xi, Xi, 1) 2 Cgf‘)(xi, 1)
for k = 1,2. The basic solutions in the appendix will be used for mapping construction. For non-
smooth dynamical systems without the closed-form solutions, the mapping construction can be
done only by the numerical integration. To demonstrate the methodology, the firction-induced
oscillators with the closed-form solutions will be used. To construct the basic mappings, the
switching planes in phase space will be introduced first.

In phase plane, the trajectories in Q,, starting and ending at the velocity boundary (i.e., from
0Qp, to 00Q,p), are illustrated in Fig. 10. The starting and ending points for mappings P, in Q, are
(x5, V,t;) and (x;41,V,t:11), respectively. The stick mapping is Py. Define the switching planes as

50 = {(x;, Qu)|x:(t1) =V},
E+ = {(Xi,Qti)‘xi(ti) = V+}’
E7 = {(x Q)| xi(t) = V1, %)

where V™~ = limg, _.o(V — dy) and VT = lim;,_o(V + ) for arbitrarily small 6, >0. Therefore,

-, Py:E'— =0 (49)

2

[

P :Et S EY, PyiE >
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(x;, V. 1)

(b) *
(a) Py

Fig. 10. (a) Regular and (b) stick mappings for oscillators with dry friction.

From the foregoing two equations, we have
PO . (xl'a V: Qtl) - (xf-l-l: V: QtH—l)a
Pr:(x, V7, Q1) — (X1, V7, Qtig1),
P2 . (xl'a V_:Qti) - (xi+1: V_thH-l)' (50)
The governing equations for Py and o € {1,2} are
= X1 + V(i1 — 1) +x; =0,
Fo(tiv1) = 0, F1(1;) x Fa(1;) <O0. (51
For the model in Eq. (5), Eq. (51) becomes
— Xip1 + V(i — 1) + X =0,
2d,V + co[V(tiy1 — ;) + xi] — Ao cos Qi1 + b, =0,
Fi(t;) x Fy(1;)<0. (52)
From this problem, the two domains Q, (x € {1,2}) are unbounded. The flows of the dynamical
systems in the corresponding domains should be bounded from assumptions (A.1)—(A.3).
Therefore, only three possible, bounded motions exist in each domains 2, (« € {1, 2}), from which
the governing equations of mapping P, (o € {1,2}) are obtained. For the non-smooth dynamical
systems with the closed-form solutions, the governing equations of each mapping P, (4 € {0, 1,2})
can be expressed by
SO0, Qt, x4, Qigy) = 0,
S0 Qi X1, Q1) = 0. (53)
Otherwise, such governing equations cannot be obtained analytically. Consider a generalized

mapping structure for periodic motion with stick as

p— (ngm o pikm) opgkmo)> oo (Pgm) o P41V 6 P(Okm) , (54)

m—terms
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where k1, € {0,1) for [ € {1,2,...m} and 2 € {0,1,2}. P”’ = 1 and PV = P; o P"V. Note that
the clockwise and counter-clockwise rotations of the order of the mapping P, in the complete
mapping P in Eq. (54) will not change the periodic motion. However, the corresponding initial
conditions for such a periodic motion are different. For simplicity, the mapping notation in Eq.
(53) can be expressed by P = P(zkm2 i) .. (2k12 K ooy

For (im = k12 = ki1 = 1 and k19 = 0), Eq. (54) gives a mapping structure for the simplest, non-
stick periodic motion passing through the separation boundary. The procedure for prediction of
periodic motions is presented through this periodic motion. The mapping structure of the simplest
periodic motion is

P=P,oP,:E" > 5. (59)
From the above relation, we have
Pl : (xia V+1[l'> - (XH_I, V+a tH—l)a
Py (xip1, Voo tip) = (X2, V7L tigo). (56)

Without sliding, V" = V'~ = V exists. For the periodic motion y;,, = Py, where y; = (x;, Q)’
during N-periods of excitation, the periodicity of the periodic motion is

Xit2 = Xi, Qli+2 = Ql‘[ + 2NT. (57)
For the model in Eq. (5), the governing equations for the simplest periodic motion are

S0, @ty X1, Qti1) = 0,
fé”(x,-, Qt;, X1, Qtip1) =0,
fgz)(xm, Qti1,Xi42, Qtip2) =0,
DX, Qti1, Xiga, Qtia) = 0. (58)
With Eq. (57), Eq. (58) gives the initial switching sets for such a periodic motion. The existence of
the periodic motion will be determined by the local stability analysis. For the nonlinear, friction-
induced oscillators without the closed-form solutions, the numerical algorithm will be used to
obtain the initial switching set for such a periodic motion.

Consider the mapping structure for periodic motion with stick (k =k, = 1, o € {0, 1,2}), the
mapping structure for one of the simplest motions with stick is

P=Py0&P,0P0P,. (59)

The periodic motion based on the foregoing mapping is sketched in Fig. 11.
For the stick periodic motion y, ; = Py; where y; = (x;, Q1;))" during N-periods of excitation,
the periodicity is

Xit3 = X;, Q143 = Qt; + 2N (60)
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\/ ’

Fig. 11. A periodic motion with stick in oscillators with dry friction.

Again, for the friction-induced oscillators with closed-form solutions, the governing equations for
such a periodic motion with stick are

f(lk)(xiw., Qtis s, Xigj1, Qi ;41) = 0,
f(zﬂ)(xiw., Qtiy g, Xigir1, Qligsq1) =0 (61)

for / € {0,1,2}. Similarly, the periodic motion for the generalized mapping structure can be
predicted through the corresponding governing equations.

To determine the existence of periodic motions, consider the local stability and bifurcation
through the eigenvalue analysis based on the corresponding Jacobian matrix. For a periodic
motion vy, FS bkt = Py;, the Jacobian matrix is computed by

6 t m , X m
i+z(k/2+k11+k/0) i+Z(k/2+k11+k10)
DP — I=1 =1
a(tia Xj)
. (tl-,x,»)
— (ngkmz) o DP(lkml) o DPf)kmO)> 6. 0 <DP(2k12) o DP(lkll) o Dngm)) , (62)
k—terms
where
Ofyr1  Ofpyy
ot, ox,
DP; = (63)

O0Xyp41  OXpy1
ot, ox,
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for «€{0,1,2} and ve {i,i+1,....,i+ Y " (kn+kn+kp)—1}, and the Jacobian matrix
components 0t,1/0t,, Ot,41/0xy, 0xp41/0t, and Ox,41 /0x, can be computed through Eqgs. (52) and
(53). Suppose the eigenvalues for the mapping structure of periodic motion are 4. The stable
period-1 motion requires the eigenvalues be |1,|<1 (x € {1,2}). Once the foregoing condition is
not satisfied, the period-1 motion is unstable. If |1;2] = 1 with complex numbers, the Neimark

bifurcation occurs. If one of the two eigenvalues is —1 (i.e., Aior2) = —1) and the other one is
inside the unit circle, the period-doubling bifurcation occurs, i.e.,
Det(DP) 4+ Tr(DP) 4+ 1 = 0. (64)

If one of the two eigenvalues is +1 (i.e., A1or 2y = +1) and the second one is inside the unit circle,
the first saddle-node bifurcation occurs, i.e.,

Det(DP) + | = Tr(DP). (65)

Without the local bifurcation relative to the discontinuity, the eigenvalue analysis can provide an
adequate prediction. However, the eigenvalue analysis cannot work for the local bifurcations
pertaining to the separation discontinuity. According to the aforementioned causes, the onset,
existence and disappearance of the stick motion should be determined through the force criteria in
Egs. (39) and (40). The grazing bifurcation will be determined by Eq. (45). For the general case of
the friction-induced oscillators, the eigenvalue analysis cannot be done. However, the force
criteria can be embedded in the numerical algorithm to detect the switch, non-stick and grazing
motions.

5. Tllustrations

Consider the system parameters (V' =1, 40 =90,d, =1,d, =0, by = —b, = 30, ¢; = ¢, = 30),
as an example for illustration. The numerical prediction of a bifurcation scenario on switching
phase and displacement varying with excitation frequency is illustrated in Fig. 12. All the
numerical computations are completed from the closed-form solutions in the appendix. Based on
the methodology presented in this paper, the straight-forwarded numerical integration with the
appropriate accuracy can be also used for numerical predictions of nonlinear, non-smooth
dynamical systems. The dashed and dash-dot vertical lines denote the boundaries for the onset
and vanishing of sliding motion (or stick motion) and for grazing bifurcation, respectively. The
acronyms “SB”” and “GB”’ individually represent the sliding and grazing bifurcations. The regions
between two adjacent boundary lines are labeled with corresponding mapping structures for
Q €(0.333,90.330). If the excitation frequency is either less than the lowest boundary or greater
than the highest boundary, no periodic motion intersects with the separation boundary y = V
(i.e., ¥V = 1). The periodic motion for P, is in range of Q € (80.215,90.330). The periodic motion
for P, is in range of Q € (52.600, 80.214) and (2.397, 3.539). The periodic motion for P, is in the
range of Q € (3.540,52.599). The periodic motion for Pyory is in the range of Q € (2.372,2.396).
The periodic motion for Py, is in the range of Q € (1.669,2.371), (0.974,1.159) and (0.726, 0.748).
The periodic motion for P(02)201 is in the range of Q e (1.160,1.669), (0.749,0.973)and
(0.629,0.725). The periodic motion for Py is in range of Q € (0.610,0.628) and (0.543,0.588).
The periodic motion for Py is in the range of Q € (0.599,0.609) and (0.536,0.542). Finally, the
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Fig. 12. The numerical prediction of bifurcation diagram: (a)—(c) switching phase and (d)—(f) switching displacement
varying with excitation frequency (V' =1, 49=90,d,=1,d>, =0, by = —b, = 30, ¢; = ¢, = 30). The dashed and
dash-dot, vertical lines denote the boundaries for the onset and vanishing of sliding motion, and for grazing bifurcation,
respectively.



Table 1

The summary of excitation frequencies for specific motions (V' =1, 4y=90,d, =1,d, =0, by = —b; = 30,

Cl =C = 30)
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Mapping structures

Excitation frequency

Grazing bifurcation

Sliding bifurcation

Px (80.215,90.330) 90.33 80.214-80.215
2 (52.600,80.214) 2.396-2.397 80.214-80.215
(2.397,3.539) 52.599-52.600
3.539-3.540
Py (3.540,52.599) — 52.599-52.600
3.539-3.540
Pyory (2.372,2.96) 2.396-2.397 2.371-2.372
Pooor (1.670,2.371) 0.748-0.749 2371-2.372
(0.974,1.159) 1.159-1.160 1.669-1.670
(0.726,0.748) 0.973-0.974
0.725-0.725
Pioyon (1.160,1.669) 1.159-1.160 1.669-1.670
(0.749,0.973) 0.748-0.749 0.973-0.974
(0.629,0.725) 0.725-0.725
0.628-0.629
Paoy (0.610,0.628) 0.598-0.599 0.628-0.629
(0.543,0.598) 0.542-0.543 0.609-0.610
Py (0.599,0.609) 0.598-0.599 0.609-0.610
(0.536,0.542) 0.535-0.536 0.542-0.543
Py (k=1,2,3) (0.333,0.535) — —

periodic motion for P, (k=1,2,3,...)isin range of Q € (0.333,0.535). The grazing bifurcation
occurs at the following approximate excitation frequencies {90.330, 2.397, 1.160, 0.749, 0.542,...}.
For Q &~ 2.397, the grazing bifurcation for mapping P; exists, and the other critical values are for
the grazing bifurcations of mapping P,. The onset and vanishing of stick periodic motions occur
at the approximate excitation frequencies {80.214, 52.600, 3.540, 2.371, 1.669, 0.973, 0.725, 0.629,
0.610, 0.599, 0.543}. Excitation frequencies for specific periodic motions, grazing and sliding
bifurcations are summarized in Table 1 with parameters (V' =1, A0 =90,d, =1, d>» =0,
bl = —bz = 30, Cl =C = 30)

Using the mapping structure in Eq. (54), all the periodic motions for the entire range of
excitation frequency can be determined analytically by the corresponding governing equations
similar to Egs. (60) and (61). The mapping structure gives the nonlinear algebraic equations,
solved by the Newton—Raphson method. To make the computation convergent fast, the initial
guess solutions should be chosen in the appropriate convergent domain. Once the first solution is
obtained, the rest solutions with varying parameters can be determined through the corresponding
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mapping structure. The same parameters as in the numerical analysis are adopted. The
analytical prediction of the stick and non-stick periodic motions is given for Q2 € (0.536,90.333),
and the switching phase and switching displacements of the periodic motions are plotted in
Fig. 13. As in Fig. 12, the dashed and dash-dot vertical lines denote the boundaries for
the onset and vanishing of stick motions and for grazing bifurcation, respectively. The
regions between two adjacent boundary lines are labeled with corresponding mapping
structures. In addition, the switching phases and displacements are also labeled for the
corresponding mapping. The intersected points between the switching phases/displacements and
the vertical boundary lines are marked by the hollow circular symbols. It is observed that this
analytical prediction of the periodic motions is identical to the numerical prediction as
presented previously. For nonlinear, non-smooth dynamical systems, the analytical
predictions cannot be carried out. The numerical algorithms with the force criteria will be used
for numerical predictions. However, the numerical predictions give only one branch of multiple
solutions of non-smooth dynamical systems. To get the rest solutions, the symmetry of
solutions should be considered by use of the corresponding the mapping structure. The detailed
discussion for the symmetry of periodic motions in non-smooth dynamical systems can be referred
to Luo [36].

The eigenvalue analysis of the analytical solutions based on the mapping structure can be
completed very easily according to the procedure presented in Section 4. The magnitude and real
parts of eigenvalues for all the analytical solutions of periodic motions are illustrated in Fig.
14(a)—(c) and (d)—(f), respectively. The corresponding mapping structures are labeled as in Figs. 12
and 13. From the local stability analysis of the periodic motions, all the periodic motions are always
stable before a new periodic motion appears. Therefore, the traditional eigenvalue analysis
tells us that those periodic motions may exist in the wide range of parameters. However,
before the local stability conditions are destroyed, the existing periodic motion already switches to a
new periodic motion due to a global event, resulting from the stick and grazing bifurcations. Once
the stick motion exists, the traditional eigenvalue analysis for the motion switching cannot work
well. In Fig. 14, it is clearly seen that, from the non-stick motion to the stick motion, one of the
eigenvalues for the periodic motion is zero. From a stick motion to an adjacent stick motion, the
eigenvalue analysis cannot provide further information to find any signature of the motion
switching.

Using the mapping structures and the criteria for stick motions in Egs. (38)—(40), the regions
of periodic motions in parameter space are illustrated in Fig. 15 through excitation amplitude
and frequency with the prescribed parameters (V' =1, 490=90,d; =1,d>,=0,b; =—b,
=30, ¢; = ¢; = 30). The acronym “NM” denotes no periodic motion intersecting with the
separation boundary (i.e., y = V). The regions of periodic motions in parameter space (€2, 4y) are
plotted in Fig. 15(a) under the prescribed parameters. The detailed view of periodic motion for small
excitation frequencies is given in Fig. 15(b). With increasing excitation amplitude, the periodic
motion with mapping structure P,; possesses a wider range of excitation frequency. However, the
range of excitation frequency for stick motion becomes smaller, and the mapping structures for stick
motions become much simpler. To consider the effects of the friction force, the regions of periodic
motions is formed through friction force and excitation frequency, as shown in Fig. 16 for the
parameters (V' =1, 40 =90,d, =1, d>, =0, by = —b, = 30, ¢; = ¢, = 30). With increasing fric-
tion force, the range of excitation frequency for the non-stick motion becomes smaller and smaller;
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and the motion relative to Py will finally disappear. With further increasing the friction forces, only
the stick motion with mapping structures Py (k=1,2,3,...) exists. However, the stick motions
for smaller friction forces will be more complicated than for larger fiction forces.
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6. Simulations

The motion parametric characteristics of the oscillator with dry friction in parameter space
have been systematically investigated. To verify the analytical prediction of the periodic motions,
the periodic motions in the oscillator will be demonstrated through time-history responses and
phase space. From the analytical investigation, it is found that the force responses play an
important role in discontinuous dynamical systems. Therefore, the force responses will be
presented to illustrate the criteria for the onset and vanishing of stick motions in such a friction-
induced oscillator. In addition, the mechanism of stick and non-stick motions in friction-induced
oscillators will be further discussed. The input data for numerical simulations are tabulated in
Table 2.

Consider the parameters (i.e., V=1, 490=90,d, =1,d, =0, by = —b, = 30, ¢; = ¢, = 30)
for illustrations. Phase trajectories for several specific mapping structures are demonstrated in
Figs. 17 and18. The dark circular symbols represent the passable motion flow from domain €, to
Qp, {o, B} € {1,2} and a#p. The gray and hollow circular symbols represent the onset and
vanishing of the stick motion along the separation boundary, respectively. The shaded areas in
phase planes are relative to the regions of stick motions. In Fig. 17, trajectories in phase planes are
arranged in Fig. 17(a)—(d), respectively, for the stick, periodic motions with mapping structures
P>o1, Pro1os P(oz) 01 and P ,,.. Each segment of the trajectory in phase plane, corresponding to the
specific mapping, is also labeled. The different, stick periodic motions possess completely different
orbits in the phase plane. The trajectory of the mapping P gap01 is very interesting because of the
combination of the stick and non-stick motions. To further observe the complexity of the
trajectories relative to mapping P, ,,, more phase trajectories for such a periodic motion are
plotted in Fig. 18(a) and (b). The periodic motions relative to mapping Py,g; and very close to
P10 are also presented in Fig. 18(c) and (d) to explain the motion transition from Pgyg; to

Table 2
Input data for numerical simulations (V' =1,d, =1,d, =0, by = —by = b, ¢; = ¢; = 30)
Friction b Excitation (22, 4g) Initial conditions (x;, y;, Qt;) Mapping structures
Fig. 17 30 (70.0, 90) (0.7151659580,1.0,0.5549996200) Payr
30 (1.75,90) (—2.617341234,1.0,2.639329565) Proro(or Poror)
30 (1.35, 90) (—1.891740094,1.0,4.433773820) P01
30 (0.52, 90) (—2.237163685,1.0,3.212714000) Py
Fig. 18 30 (0.7, 90) (0.5175912680,1.0,5.268734020) Papor
30 (0.9, 90) (—0.6199800230,1.0,4.861840257) Payor
30 (1.1, 90) (—2.763943025,1.0,3.146400000) Py
30 (1.16, 90) (—2.806638239,1.0,3.812031430) Pyoro(or Poxot)
Fig. 19 30 (4, 90) (—6.112684135,1.0,3.776978988) Py
Fig. 20 3 (2.74,15) (—0.8285986540,1.0,3.176648200) Py
Fig. 21 3 (2.58,23.25) (—1.071028626,1.0,3.055083416) Pyo
Fig. 22 30 (1.49, 90) (—1.947416143,1.0,2.459350054) Po1020
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P gpy01- The trajectory of the stick periodic motion in Fig. 18(d) is very close to grazing motion of
Psr010. After the grazing motion relative to Pg,g;, the periodic motions pertaining to mapping
P oo will occur.

The dynamical forces are very important to predict stick motions. For a better understanding of
the mechanism of stick motion, the time-history responses for displacement, velocity, and forces
will be illustrated, and the relationships between the displacement/velocity and the force will be
presented. The responses of the non-stick periodic motion of mapping P,; are plotted in Fig. 19.
No stick motion (or sliding motion) exists on the separation boundary in Fig. 19(a). The mapping
switching from P, to Py {«, B} € {1,2} and o # f8) is continuous without stick. The relation between
the displacement and force in Fig. 19(b) verifies the criteria in the second equation of Eq. (38) at
the velocity separation boundary. Namely, the signs of two forces on the boundary are same,
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which is also clearly shown in Fig. 19(c) through the dynamical forces and velocity. The time-
history responses of displacement, velocity, and forces are shown in Fig. 18(d)—(f), respectively.
The switching points are marked by the dark circular symbols. The vertical, dashed lines are the
separation boundary lines, which imply the motion switching. The corresponding mappings are
labeled in plots of displacement and velocity responses.

To compare with the above non-stick motion, stick motions for such a friction-induced
oscillator are presented in Figs. 20—22 for mapping structures Pyg1y25 Paior and P»g1029 (Or P(02)201)
accordingly. The motions of P2(01)2 and P,jo; cannot be observed for 4y = 90. Therefore, the
different excitations and friction forces are used to demonstrate such periodic motions. The
transition from P51g; to Py is caused by a grazing of mapping P;. The responses of periodic
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Fig. 21. Displacement, velocity and force responses of stick, periodic motion with P,g; for Q= 2.58 and the
initial conditions (x; &~ —1.0710286260, Qt; ~ 3.055083416, y, = V) (V =1, 49 =23.25,d,=1,d, =0,b; = —by, =3,
c; = ¢; = 30). The dark symbol represents the passable motion from domain Q, to Qg, {«, f} € {1,2} and a# . The
gray and hollow circular symbols represent the onset and vanishing of stick motion along the separation boundary,
respectively.



164 A.C.J. Luo, B.C. Gegg | Journal of Sound and Vibration 291 (2006) 132-168

10 50
5F 25F
3 = r
2 . g F Py [Py Pf Py Py Py Pif Py
z — £ E
S 0F 8 00¢F
i=] n k=) n
2 C & F Py P\ P> Py
F A o
5F 25F I
s s :
o E |
: g I I | I
o Y | S EEEEEEE Tl T ST E ST N S
4 ; 0 2 4 6 8 10
(a) (d) Time, ¢
80 10
5

40

Velocity, y
o

Forces, (F|(1), Fy(1))
o

L | |
| |
L : : !
“t I \
B J ” | | Sr
- || | | r
L : | : | E
r kel | % o
L L [ E
-80 o VN b b e J o J SRR 1A S AT 0 A T A S A A
-4 -2 0 2 4 0 2 4 6 8 10
(b) Displacement, x (e) Time, ¢
80 80 :
3 £ :
F r |
C r |
40F 40 | :
S S F oml
<& ER Fy = E
2 3 S s I
< OF - < OpTTT :
s F g s I
g o S s |
s f I :
= a0F -40 £ FIK
g g :
o F |
80 b b e e L go b bbb v i Ll
12 -8 -4 0 4 8 0 2 4 6 8 10
(c) Velocity, y ® Time, 1

Fig. 22. Displacement, velocity and force responses of stick, periodic motion with Psgigz0 (O P(02)201) for 2 =1.49
and the initial conditions (x; & —1.9474161430, Qt; ~ 2.459350054, y; =V) (V=1,490=90,d1=1,d, =0, b; =
—by =30, ¢; = ¢, = 30). The dark symbol represents the passable motion from domain Q, to Qp, {«, f} € {1,2} and
a# 5. The gray and hollow circular symbols represent the onset and vanishing of stick motion along the separation
boundary, respectively.



A.C.J. Luo, B.C. Gegg | Journal of Sound and Vibration 291 (2006) 132-168 165

motions pertaining toP,,» are presented in Fig. 20. Two stick parts exist in this periodic motion,
as shown in Fig. 20(a)—(c). It is clearly seen that the dynamical forces for stick motion satisfy the
criteria in the first equation of Eq. (38), and the vanishing of the stick motion satisfies the force
requirement in Eq. (39) as well. The corresponding displacement, velocity, and forces responses
for the periodic motion relative to P, are presented in Fig. 20(d)~(f). The displacement,
velocity and force responses for the periodic motion of P,jq; are illustrated in Fig. 21. It is
observed that only one stick motion exists in such a periodic motion. Once the stick motion
vanishes, the non-stick motion will appear. For the complicated mapping Pooyors several phase
trajectories have been presented in Figs. 17 and 18. Herein, the further dynamical force relations
with displacement and velocity are demonstrated in Fig. 22. The phase trajectory and forces
responses of a periodic motion relative to P oo become considerably complex compared to
those simple stick and non-stick motions.

7. Conclusions

In this paper, the force criteria for the stick and non-stick motions in the harmonically forced,
friction-induced oscillators are developed. The harmonically forced, linear oscillator with dry
friction is investigated as an example for demonstration of the methodology. The stick and non-
stick, periodic motions of such an oscillator is analytically predicted via appropriate mapping
structures. The effects of the excitation and friction forces on the stick and non-stick motions are
discussed and the corresponding parameter regions are obtained through the force criteria for
stick and non-stick motions. The sliding and grazing bifurcations for this oscillator are also
presented. However, a detailed investigation should be carried out further in sequel. The
displacement, velocity and force responses for stick and non-stick, periodic motions are illustrated
for a better understanding of the mechanism of stick and non-stick motions in the dry-friction
oscillator. The methodology presented in this paper is applicable for numerical predictions of
motions in nonlinear, non-smooth dynamical systems.

Appendix
Consider a linear oscillator in the domain Q;

9 4 2d;%0 + XV = —b; + A cos Q. (A1)

With the initial condition (x;, X;, #;), solution for Eq. (A.1) in two regions ; (j € {1,2}) are for
Case 1 (i.e., df>cj):

X0t = CV x5, 1) D 4 CP v, 50, 1) ) + AD cos Qr + BV sin Q1+ €D, (A.2)

(1) = 29V, %1, 1) 070 139 CD(oxs, 51, 1) 1 — 4D Q sin Qt + BYQ cos Q1,  (A.3)
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C({)(xi,x,-, t) = ﬁﬁzj) {872+ (d+o )AU)] cos Q1+ |40 — (d; + o ) B? | sin Q1+ %
- (dj + wg)) (€ —x) }
CY (x5 17) = 7l {[B72 (o — ) 49] cos @1, — [ (0 — &) B + 490 sin @1,
%+ (wfj) — dj) (xi — CU>)}, (A4)
(M (cé ~- @) e 2429/10 = _Q ' (AS5)
(¢; — Q%) + (2d,Q) (¢; — Q%) + (2d,Q) ¢

Case 11 (ie., d?<cj):
x(i)(l) = o=t [C(lj)(xl-, Xi, t;) COS a)d)(t t)+ C(lf)(xi,)’ci, t;) sin wy(t — t,-)}

+ AY cos Q¢+ BY sin Q1+ CV, (A.6)

30() = { [0a € v, 519 — 5P (31, 31| c0s (1 = 1)
- [wdC(lj)(xi, 1)+ de(zj)(xi, Xi, z,-)} sin wy(t — t,-)}e_df”_’f) — A9Q sin Q¢+ BYQ cos Qu,
(A7)
a)g) = MCY)(xi, %i,t)) = x; — AY) cos Qt; — BY sin Qt; — CV,

CY (i, i, 17) = ﬁ [X; — (d;4 + BQ) cos Qt;—(d;B” — AVQ) sin Qt; + d;(x; — CV)].  (A.8)
d

Case 111 (i.e., djg =¢):

X0y = [CY)(xi,xi, 1)+ CP (i, %, 1) % (1 — zf)} e =1 4 AV cos Qr + BY sin Qt + €D, (A.9)

. i) G . i . 2D (t—t, i) A~ . D (-t
$0() = [P 1) + € 19|47 4 40 D1, 10) x (1 = 1)

— AYQ sin Qt + BYQ cos Qt, (A.10)

(1/) = — 2dj, CY)(xi,)'ci, ti) = X;j — AD cos Qt; — BY sin Qt; — C(j),
CP (i, %1, 17) = % + (AVQ — d;BY) sin Qt; — (d; 4V + BOQ) cos Qt; — d;(CV — x;).  (A.11)
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