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Abstract

In this paper we study the accuracy of the finite difference method when the finite difference method is
applied to approximately analyze the structure.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Analysis of stochastic structures is concerned with determination of the reliability, namely of
the probability that a specific mission is fulfilled.
In this context, the unreliability or probability of failure that equals unity minus reliability must

be extremely small. This fact immediately poses a question if the approximate methods allow for
accurate evaluation of the extremely small unreliability of the structure.
It makes sense to look for the possibility of analytical evaluation of the accuracy associated

with the calculation of structural reliability. Discretization error appears to be best to be
investigated in the context of the problem that has an exact analytical solution. Fortunately, such
a solution is derivable, in the deterministic context, and appear to be in need of the stochastic
generalization. Already Lagrange and Rayleigh evaluated the vibration frequencies of the string
with N beads of equal mass on it [1] (see also Refs. [2–4]).
Discrete vibration approximations of the uniform beam were studied by Livesley [5],

Leckie and Lindberg [6], Yoo and Haug [7] and Weaver [8]. In this study we evaluate analytically
see front matter r 2005 Elsevier Ltd. All rights reserved.
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the natural frequency as a function of N-number of segments in the finite different
approximation.
The obtained formula is instrumental in analytical evaluation of the structural unreliability and

comparing it with the ‘‘exact’’ one, the latter naturally derived within the Bernoulli–Euler theory
of beams.
2. Analysis using first-order finite difference method

The differential equation for transversal vibrations of a uniform and homogeneous beam is

EI
q4w
qx4
þ rA

q2w
qt2
¼ 0; (1)

where E is the beam modulus of elasticity, I is the inertia moment, A is the cross-sectional area, r
is the density, x is the axial coordinate, t is the time and w is the transverse displacement.
In the case of free vibrations, we set wðx; tÞ ¼W ðxÞ sin ot; thus, Eq. (1) can be written in the

following form:

d4W

dx2
�

rA

EI
o2W ¼ 0: (2)

The ordinary differential equation (2) can be solved using the first-order central difference method.
By this means the differential equation is replaced by an equivalent finite difference equation for any
nodal point i under the condition of uniform nodal points spacing. It has the following expression:

W i�2 � 4W i�1 þ 6�
rA

EI
h4o2

� �
W i � 4W iþ1 þW iþ2 ¼ 0 (3)

in which i is an arbitrary nodal point within the beam, h is the uniform nodal spacing given by the
ratio between the total length of the bar L and the number N of segments.
The solution of the difference equation (3) with constant coefficients can be obtained by setting

W i ¼ Ali. (4)

Substituting Eq. (4) into Eq. (3) and manipulating the resulting expression one gets the following
equation in l:

1

l
þ l

� �2

� 4
1

l
þ l

� �
þ 4�

rA

EI
h4o2

� �
¼ 0. (5)

Eq. (5) has the solutions:

l1;2 ¼ 1�
h2o
2

ffiffiffiffiffiffiffi
rA

EI

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

h2o
2

ffiffiffiffiffiffiffi
rA

EI

r !2

� 1

vuut ,

l3;4 ¼ 1þ
h2o
2

ffiffiffiffiffiffiffi
rA

EI

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h2o
2

ffiffiffiffiffiffiffi
rA

EI

r !2

� 1

vuut . ð6Þ
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By letting

W ¼ cos�1 1�
h2

2

ffiffiffiffiffiffiffi
rA

EI

r
o

 !
, (7)

the solutions in Eq. (6) can be rewritten in the following form:

l1;2 ¼ cos W� i
ffiffiffiffiffiffiffiffiffiffi
sin W
p

,

l3;4 ¼ 2� cos W�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cos Wð Þ

2
� 1

q
. ð8Þ

The general solution for Wi takes the form

W i ¼ C1 cos iWþ C2 sin iWþ C3l
i
3 þ C4l

i
4, (9)

in which l3 and l4 have the expressions in Eq. (8) and C1, C2, C3 and C4 are arbitrary constants of
integration.
To determine the four constants of integration we have to fix the boundary conditions, two at

each end of the beam. For a simply supported beam at both ends we have:

W 0 ¼W N ¼ 0; W�1 ¼ �W 1; W Nþ1 ¼ �W N�1. (10)

For a clamped beam at both ends the boundary conditions read:

W 0 ¼W N ¼ 0; W�1 ¼W 1; W Nþ1 ¼W N�1. (11)

Let us consider the case of a simply supported beam; the substitution of boundary conditions
(10) into Eq. (9) yields:

C1 þ C3 þ C4 ¼ 0,

C1 cosNWþ C2 sinNWþ C3l
N
3 þ C4l

N
4 ¼ 0,

2C1 cos Wþ C3
1

l3
þ l3

� �
þ C4

1

l4
þ l4

� �
¼ 0,

2C1 cos W cosNWþ 2C2 cos W sinNWþ C3l
N
3

1

l3
þ l3

� �
þ C4l

N
4

1

l4
þ l4

� �
¼ 0. ð12Þ

Since the equations are homogeneous, the condition to obtain a solution different from the trivial
one is that the determinant of the coefficient of C1, C2, C3 and C4 must vanish. The determinant of
the coefficients after some manipulations is obtained as follows:

ðcosW� 1Þ2 2� cos Wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos W2 � 4 cos Wþ 3

p� �N
�

� 2� cos W�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos W2 � 4 cos Wþ 3

p� �N
�
sinNW ¼ 0. ð13Þ

In order that the product to be zero each factor or one of them must be zero. Thus, either

2� cos Wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4 cos Wþ cos W2

p� �N

� 2� cosW�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4 cosWþ cos W2

p� �N

¼ 0, (14)
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or

cos y� 1 ¼ 0, (15)

or

sinNW ¼ 0. (16)

Satisfaction of Eq. (14) leads to

cos W2 � 4 cos Wþ 3 ¼ 0, (17)

whose solutions are cos W ¼ 3 and cos W ¼ 1; Eq. (15) leads to the solution cos W ¼ 1, naturally,
cos W ¼ 3 is an inadmissible solution; the condition cos W ¼ 1, bearing in mind Eq. (7) leads to

h2

2

ffiffiffiffiffiffiffi
rA

EI

r
o ¼ 0, (18)

that would constitute a nonsensical conclusion o ¼ 0.
The above implies that we consider Eq. (16) as a physically admissible condition with the

solution

NW ¼ kp; k ¼ 1; 2; 3; . . . . (19)

Keeping in mind expression (7) we evaluate cos W as follows:

cosW ¼ cos
kp
N
¼ 1�

h2

2

ffiffiffiffiffiffiffi
rA

EI

r
o. (20)

Using trigonometric relations we obtainffiffiffiffiffiffiffi
rA

EI

r
h2

2
o ¼ 2 sin2

kp
2N

, (21)

where k should be set equal to unity for the first natural frequency. Since h is the length of each of
the N segment and it is equal to the ratio between the length L of the beam and the total number
N of segments, the beam’s fundamental frequency has the following expression:

o1 ¼
p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
sinp=2N

p=2N

� �2

. (22)

When N goes to infinity we obtain the exact expression for the frequency of a simply supported
beam in free vibrations.
3. Probabilistic analysis

We want to study the case of a beam with elastic modulus as a continuous random variable with
given probability density function (PDF) fixing other parameters as deterministic quantities.
Since the main objective is to avoid resonance phenomenon, the natural frequency of the beam

must be less than an excitation frequency o0,

o1oo0. (23)
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From the expression of fundamental frequency (Eq. (22)) we see that since E is a random variable
so is the fundamental frequency O1, where we reserve capital letters to the random variables. The
randomness of E necessities the careful analysis of the possible values of the modulus of elasticity
that satisfy inequality in Eq. (23).
We can introduce the reliability R defined as the probability of the event expressed in Eq. (23):

R ¼ Prob O1oo0ð Þ. (24)

Keeping in mind the expression of the approximate natural frequency in Eq. (22), from its
definition (Eq. (24)), the reliability can be written as

Rapprox ¼ Prob
p4

L4

EI

rA

sin p=2N

p=2N

� �4

oo2
0

" #
, (25)

or

Rapprox ¼ FE
L4

p4
rAo2

0

I

p=2N

sin p=2N

� �4
" #

, (26)

where FEðeÞ is the probability distribution function of E. Once the expression of the reliability R is
known we are able to solve the design problem of the beam, under the consideration that the
structure performs satisfactorily if the reliability is greater or equal than a codified reliability value
r0:

RXr0; 0or0p1. (27)

The same problem can be treated in terms of the unreliability of the structure, defined as the
probability of failure as follows:

Pf ¼ 1� R (28)

and should satisfy the following inequality

Pf pp0, (29)

where p0 is the tolerable level of probability of failure.
The objective of reliability analysis of a structure is to keep the probability of failure extremely

small. If the probability density function for the random variable E is known, we can deduce an
expression for a design parameter, like the length of the beam L, from the approximate analysis. It
is easy to note that this parameter is a function of the number of elements N and the specified
value for r0.
In the case under consideration we know the exact expression for the natural frequency for the

simply supported beam given by the well-known expression:

oexact ¼
p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
. (30)

This means we are able to evaluate the exact reliability Rexact for the beam.
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The substitution of the approximate parameter L ¼ LðN; r0Þ into the reliability based on
utilizing expression (30) leads to a general expression for the ‘‘actual’’ reliability, according to
parameters N and r0.
The comparison between the actual reliability and the required reliability r0 allows us to

evaluate the accuracy of FDM, in the stochastic setting.
4. Numerical example

The random variable modulus of elasticity is probabilistically characterized by an exponential
distribution:

f EðeÞ ¼
0; eo0;

a exp½�ae�; eX0; a40;

(

the average M½E� ¼ 1=a and Var[E] ¼ 1/a2, where M[�] means mathematical expectation.
Therefore, the expression of approximate reliability is given by:

Rapprox ¼ 1� exp �
1

M½E�

o2
0rA

I

L4

p4
p=2N

sin p=2N

� �4
" #

. (31)

In design setting (Rappox ¼ r0), the length of the beam has the following expression:

Lapprox ¼ LðN; r0Þ ¼ p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M½E�

I

o2
0rA

ln
1

1� r0

4

s
sinp=2N

p=2N

� �
. (32)

Taking into account the expression of the exact solution for the natural frequency of a simply
supported beam (Eq. (30)), the exact reliability is given by

Rexact ¼ Prob
p4

L4

EI

rA
oo2

0

� �
, (33)

or

Rexact ¼ 1� exp �
1

M½E�

L4

p4
o2

0rA

I

� �
. (34)

Keeping in mind the expression of the approximate length of the beam (Eq. (32)), the actual
reliability is given by

Ractual ¼ RactualðN; r0Þ ¼ RexactjL¼Lapprox

¼ 1� exp �
1

M½E�

L4
approx

p4
o2

0rA

I

" #
. ð35Þ
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At last the substitution of Eq. (32) in Eq. (35) then yields

Ractual ¼ 1� exp
sin p=2N

p=2N

� �4

lnð1� r0Þ

" #

¼ 1� ð1� r0Þ
½fsinðp=2NÞ�=ðp=2NÞ4 . ð36Þ

The evaluation of Ractual for increasing number of N leads to values smaller than the codified r0.
In the following graphics (Fig. 1a–d) percentage errors between Ractual and r0 versus N are

depicted, fixing the value r0 equal, respectively, to 0.90, 0.99, 0.999 and 0.9999.
For r0 ¼ 0.90 the error goes from 1.76% for N ¼ 5 (Ractual ¼ 0.884) to 0.43% for N ¼ 10

(Ractual ¼ 0.896) to 0.188% for N ¼ 15 (Ractual ¼ 0.898).
The corresponding value of Ractual for r0 ¼ 0.99 and N ¼ 5 is 0.98658 (� ¼ 0:345%); always for

N ¼ 5 and r0 ¼ 0.999 and 0.9999 we have, respectively, Ractual ¼ 0.9984 (� ¼ 0:056%) and 0.99982
(� ¼ 0:008%).
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Fig. 1. Percentage error in reliability: evaluation versus the discretization parameter N, for various codified reliabilities

r0: (a) for r0 ¼ 0:90; (b) for r0 ¼ 0:99; (c) for r0 ¼ 0:999; (d) for r0 ¼ 0:9999.
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From the analysis of the figures unexpected results are obtained, namely, we observe the
decrease of the error (for a fixed value of N) when increasing the codified value of reliability r0.
The actual probability of failure from its definition (Eq. (28)) is related with the codified

probability of failure p0 by the following relation:

Pf ; actual ¼ pd
0, (37)

where

d ¼
sinp=2N

p=2N

� �4

. (38)

Note that the exponent d in expression (38) for increasing number of segments N, takes values
close but always smaller than unity; since p0 smaller than unity, the actual probability of failure is
always greater than the requested value.
Graphics in Fig. 2 depict the variation of the actual probability of failure versus N for various

levels of the codified value p0 for the probability of failure.
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Once one fixes the codified value for p0 ¼ 0:1, one gets Pf,actual ¼ 1.15847p0 for N ¼ 5
(d ¼ 0:93612), Pf,actual ¼ 1.03831p0 for N ¼ 10 (d ¼ 0.983672) and Pf,actual ¼ 1.01692p0 for N ¼
15 (d ¼ 0:992713).
For p0 ¼ 0:001, we obtain Pf,actual ¼ 1.55471p0 for N ¼ 5, Pf,actual ¼ 1.1194p0 for N ¼ 10 and

Pf,actual ¼ 1.05162p0 for N ¼ 15.
When increasing the number of segments N, for a codified value of p0, the value of Pf,actual

decreases, maintaining its value greater than p0, reaching the equality Pf,actual ¼ p0 only in the case
when N tends to infinity.
The value of actual probability of failure should be less than the required one, but results

demonstrate that the values obtained are not in safe side for.
Using other distributions (Rayleigh distribution or an uniform distribution) for the random

variable representing the modulus of elasticity leads to analogous qualitative results.
5. Discussion and conclusion

According to Ditlevsen [9], ‘‘decisions based on structural reliability analysis depend, naturally,
on the mathematical model which is set up for the analysis by the engineer. Moreover, if careful
real life decisions are to be made, it is necessary that considerations about the uncertainty of the
model itself are quantified within the model’’. This paper investigates the accuracy of the finite
difference method by analytical means utilizing the problem which allows the ‘‘closed-form’’
solution of the finite difference equations. The analogous study on the finite element probabilistic
vibration analysis is underway and will be reported elsewhere.
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