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Abstract

This paper examines the steady-state-forced vibration of a moving medium that is guided by a partial
elastic foundation, and where geometric imperfections on the medium’s edge act as an excitation source.
Such a system is of technical interest in the areas of web handling and magnetic tape transport where
externally pressurized air bearing guides are sometimes used to control lateral position. The axially moving
strip is modeled here as a string that is guided by elastic foundation segments, and that is subjected to
traveling wave excitation as the edge’s imperfection interacts with the foundation. The equation of motion
for this ‘‘moving medium and moving load’’ system incorporates a skew-symmetric Coriolis acceleration
component that arises from convection. The governing equation is cast in state-space form, with one
symmetric and one skew-symmetric operator, as is characteristic of gyroscopic systems. Through modal
analysis, the forced response of the system is obtained to the complex harmonic excitation associated with
the interaction between the edge’s weave pattern and the guides. Parameter studies are presented in the
transport speed, foundation stiffness, guide placement, guide width, and imperfection wavelength. Of
potential technological application, for a given wavelength of the edge’s imperfection, it is possible to
reduce the medium’s vibration at a certain location by judiciously selecting the locations and spans of the
foundation segments.
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1. Introduction

The traveling string, beam, membrane, and plate are prototypical models for axially moving
continua including magnetic tape libraries, automotive belt drives, power transmission chains,
conveyor belts, and web transport systems in manufacturing. In some cases, the lateral motion of
the medium is controlled through contact between its edge and one or more stationary guides. In
the case of magnetic and optical tape libraries capable of storing petabytes of data, lateral motion
of the tape arises from excitation sources such as the run-out of packs and rollers, or from impacts
occurring between the tape and guiding flanges. Lateral motion is undesirable because it results in
the misalignment of the data tracks and the read/write heads. High frequency lateral motion
beyond the bandwidth of the track-following servo system is particularly problematic.
Externally pressurized air bearing guides, formed of a porous ceramic material, are one design

option available for reducing such vibration. In Fig. 1, a slight taper y to the bearing biases the
lower edge of the tape against a flange that forms the guiding datum. A thin air film develops
between the bearing’s surface and the moving medium, and the lateral position is controlled by
guiding against the datum surface. With this form of edge guiding, however, lateral motion can be
influenced by imperfections or weave in the shape of the tape’s edge. Deviation of the edge’s shape
from the straight ideal can excite vibration as the material convects over and interacts with the
guide’s flanges.
More generally, imperfections in the shape of a web or other moving medium can be introduced

during the manufacturing process in which a wide web of material is slit into narrower portions.
For instance, the aluminum sheet metal used in beverage containers is reduced in thickness in a
rolling mill, coated, and then slit into narrower webs of a more suitable size for processing.
Likewise, in the manufacture of magnetic tape, a web comprising a polymer substrate with
magnetic and backside coatings is slit into narrower streams of tape, and these are subsequently
wound onto data cartridges. In each case, the slitting process is accomplished by passing the
Fig. 1. (a) Cross-section of a guide having a pressurized air bearing surface formed of a porous ceramic material and a

flange on the lower edge that establishes the reference datum for guiding. (b) Photograph of magnetic tape that is

guided by such a bearing.
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material through circular disk-like knives mounted on a rotating arbor, which in turn are received
in coordinating grooves. In such a process, the vibration or non-flatness of those knives, or
vibration of the web material itself, can be reproduced as a pattern of uneven edge shape. In some
instances, periodic non-flatness of the knives maps directly to a sinusoidal weave pattern along the
slit material’s edge, and the wavelength of the imperfection is equivalent to the knife’s
circumference. When such materials are guided at high speed, the edge imperfection can act as a
form of vibration excitation.
Previous work in the area of axially moving or translating continua has addressed the response

to general forms of excitation by using modal analysis and Green’s function methods [1–3]. In
what follows, the interaction between the moving medium and the guiding datum is modeled as an
elastic foundation. In that regard, application of the classical response methods for a traveling
string on an elastic foundation is described in [4]. Other work in this area considers nonlinear free
response [5] and the forced vibration of a traveling string on a foundation in the presence of
boundary excitation [6]. Mode localization phenomena [7], the stability of moving media on
elastic foundations at super-critical speeds [8,9], and the influence of a stationary load system [10]
have also been examined. Certain studies have addressed the free and forced nonlinear vibration
of viscoelastic moving belts [11,12] and traveling beams [13], the effect of excitation applied at
support points [14,15], and in-plane vibration of a moving membrane [16]. Related work in the
area of moving loads on moving media includes an investigation of the dynamics of translating
strings with an attached mass [2,17] or with an attached damped oscillator [18].
The objective of this paper is to investigate the steady-state-forced response of moving media in

the presence of edge guides and a sinusoidal imperfection. The medium is treated as a flexible strip
that translates over (illustratively) two distributed guides that are modeled as elastic foundations.
Vibration is excited through the moving load interaction of the strip’s imperfection with the
foundation. The dispersion afforded by the foundation’s stiffness to the traveling strip becomes
increasingly important as the transport speed increases. The equation of motion is cast in state-
space form having one symmetric and one skew-symmetric operator, and the solution of the
complex eigenvalue problem yields the system’s mode shapes and natural frequencies. The modal
analysis procedure for gyroscopic systems is applied to obtain the strip’s response to the moving
load-type excitation that arises as the medium convects over its guides. Parameter studies capture
the influence of translation speed, foundation stiffness, and geometry on the strip’s free and forced
vibration.
2. Vibration with edge imperfection excitation

The axially moving strip shown in Fig. 2 is modeled as a flexible string that travels with tension
T between the fixed supports located at x ¼ �ðaþ bþ cÞ, at which point the string’s displacement
vanishes. The strip’s position is further controlled by distributed guides in the regions x ¼

ð�ðbþ cÞ;�cÞ and x ¼ ðc; bþ cÞ which are modeled as elastic foundations having stiffness k per
unit length. In what follows, the guided and unguided spans of the strip are sequentially denoted
j ¼ 1; 2; . . . ; 5 beginning with the free span j ¼ 1 in x ¼ ð�ðaþ bþ cÞ;�ðbþ cÞÞ.
The strip has nominal width h and thickness d, and it is pre-loaded against the foundation by

the downward force p per unit length. In a guide having the design of Fig. 1, the preload is
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Fig. 2. (a) Schematic of the vibration model for a moving strip having its lateral motion controlled by two distributed

guides. (b) Detail of imperfection on the strip’s edge.
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developed by tilting the bearing’s surface by the slight angle y. With the strip encircling the guide
over the wrap angle f, the preload

p ¼
T

r
f sin y (1)

biases the strip against the guide’s lower flange, where the guide’s radius of curvature is denoted
by r.
When the strip’s edge is not straight, deviation of the width from its nominal value is

represented by e(x), where the coordinate x is measured in a reference frame that is fixed in the
strip. The edge’s defect has amplitude e and wavelength L, and it is taken as

eðxÞ ¼ � cos
2p
L

x
� �

. (2)

This form is representative of the weave distortion in a web’s edge that is produced by slitting
manufacturing operations using rotating circular knives. The geometrical defect (2) travels with
the strip, and it can excite vibration as the edge moves across, and interacts with, the guides of
stiffness k. The amplitude of steady-state vibration that is present in the unguided span x ¼ ð�c; cÞ
depends on the length b of the guides, the wavelength L of the imperfection, and the other model
parameters that are listed in Table 1.
The strip travels at the constant speed v relative to the ground-based coordinate x, and in Eq.

(2), x ¼ x� vt. With deflection u in the direction orthogonal to the tape’s translation, the equation
of motion is

rA u;tt þ 2vu;xt þ v2u;xx

� �
� Tu;xx þ kHðxÞðuþ eÞ ¼ �pHðxÞ, (3)

where r is the strip’s mass density, and A ¼ hd is its cross-sectional area. Here H(x) is a
windowing function that is set to unity over the guides and is zero otherwise. The width change is
specified to be sufficiently small that variations in the strip’s mass per unit length, and in
particular, their influence on potential parametric resonances are negligible. In a Eulerian
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Table 1

Nominal values of parameters used in the case studies

Density, r 1400 kg/m3

Tension, T 1N

Speed, v 10m/s

Foundation stiffness, k 5000N/m2

Width, h 12.7mm

Thickness, d 6.5mm

Lengths

a 63.60mm

b 38.10mm

c 19.05mm

Imperfection amplitude, A 1mm
Guide taper angle, y 0.61

Imperfection wavelength, L 250mm
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formulation with the ground-based reference frame x, an element of the strip experiences local,
Coriolis, and centripetal acceleration components. By defining the mass M, gyroscopic G, and
stiffness K operators

M ¼ rA � , (4)

G ¼ 2vrA
q
qx
� , (5)

K ¼ �ðT � rAv2Þ
q2

qx2
� þkHðxÞ � , (6)

the equation of motion is written in the symbolic form

Mu;tt þ Gu;t þ Ku ¼ f (7)

for gyroscopic dynamic systems. Bending of the strip can be incorporated in the strip’s model
through appropriate modification of K. With respect to the inner product

hg1; g2i ¼

Z aþbþc

�ðaþbþcÞ

g1g2 dx (8)

for two functions g1 and g2 having zero displacement at the supports, operators M and K are self-
adjoint and positive definite for transport speeds below vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ðrAÞ

p
. The operator G is skew-

symmetric. The dynamics of gyroscopic systems are further discussed in references [19,20].
The supports and the datum u ¼ 0 are henceforth set to the position at which the guides are

uniformly compressed by amount p/k. The excitation in Eq. (7) then becomes

f ¼ �keðx� vtÞHðxÞ ¼ �k� sin
2p
L
ðx� vtÞ

� �
HðxÞ, (9)

which convects with the strip, has wavenumber 2p/L, and circular frequency 2pv/L.



ARTICLE IN PRESS

V. Kartik, J.A. Wickert / Journal of Sound and Vibration 291 (2006) 419–436424
3. Natural frequencies and modes

The forced response of the strip to the moving load edge excitation is determined through
modal analysis for gyroscopic systems. In the spans ð�ðaþ bþ cÞ;�ðbþ cÞÞ; ð�c; cÞ, and
ðbþ c; aþ bþ cÞ, the free vibration solutions have the form

uðx; tÞ ¼ eltþgx, (10)

where l ¼ io, i2 ¼ �1, and o is the circular natural frequency. The dispersion relation in those
spans is

�ðv2c � v2Þg2 þ ð2vlÞgþ l2 ¼ 0, (11)

where the wavenumbers g are

g1 ¼ �
l

vc þ v
and g2 ¼

l
vc � v

. (12)

An eigenfunction in an unguided span ( j ¼ 1; 3; and 5) becomes

cfree ¼ C
ðjÞ
1 exp

�l
vc þ v

x

� �
þ C

ðjÞ
2 exp

l
vc � v

x

� �
, (13)

where C1
( j) and C2

( j) are constants. In the guided spans ð�ðbþ cÞ;�cÞ and ðc; bþ cÞ, the dispersion
relation

�ðv2c � v2Þg2 þ ð2vlÞgþ ðl2 þ k2
Þ ¼ 0 (14)

includes a contribution from the elastic foundation and has roots

g1 ¼ aþ b and g2 ¼ a� b, (15)

where

a ¼
vl

v2c � v2
, (16)

b ¼
1

v2c � v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2cl

2
þ v2c � v2
� � k

rA

s
. (17)

The eigenfunction in a guided span ( j ¼ 2 and 4) then takes the form

cguided ¼ eax C
ð jÞ
1 e�bx þ C

ð jÞ
2 ebx

� �
. (18)

In the light of Eq. (17), the character of the eigenfunction in a guided span depends on the guide’s
stiffness. While a is always imaginary, the cut-off frequency

oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

v

vc

� �2
 !

k

rA

� �vuut (19)

demarcates frequency ranges over which b is real (oooc), zero (o ¼ oc), and ima-
ginary (o4oc). Precisely at the cut-off frequency, g1 ¼ g2, and the prospective eigenfunction
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takes the form

ccut-off ¼ C
ð jÞ
1 þ C

ð jÞ
2 x

� �
eax (20)

with exponent

a ¼
ivoc

v2c � v2
. (21)

In Eqs. (13), (18) and (20), the constants C1
( j) and C2

( j) can be complex, and they are determined
through the boundary conditions, displacement, and slope compatibility relations among
neighboring spans. Those requirements yield a set of ten homogeneous, linear, algebraic equations
that define the system-level characteristic equation. Natural frequencies and the coefficients Ci

( j)

in the mode shapes are obtained numerically.
The influence of the guide’s stiffness on the natural frequency spectrum is depicted in Fig. 3. In

this parameter study, stiffness is varied with all other parameters being held constant at the
nominal values in Table 1. As the stiffness is increased, each natural frequency increases, and
certain pairs of frequencies coalesce at high stiffness values. At k ¼ 0, the natural frequencies
reduce to the classical values expected for an axially moving string [1]. Each natural frequency at
k ¼ 0 exceeds oc, but as the foundation’s stiffness increases, the cut-off frequency grows at a
faster rate than the lower natural frequencies. Depending on the mode and transport speed, the
eigenfunction can therefore assume different functional forms in the light of Eq. (17). For the
configuration of Fig. 2 in which two guides are present and three spans couple, the loci for modes
3ði � 1Þ þ 1 and 3ði � 1Þ þ 2, where i ¼ 1; 2; 3 . . . , coalesce at higher values of the foundation’s
stiffness. Likewise, the locus for mode 3ði � 1Þ þ 3 remains distinct from the others.
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Fig. 3. Loci of natural frequencies (bold line type), and the cut-off frequency (dashed line type), as functions of the

guides’ stiffness. The other parameters are held constant at the values listed in Table 1.
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The cut-off frequency is always a root of the characteristic equation, which is formed as the
determinant of the matrix involving the Ci

( j). However, based on the functional form (20) that is
taken by the eigenfunction at oc, non-trivial solutions for the eigenfunction that satisfy the
boundary and compatibility conditions do not exist, and so oc is not a natural frequency at any
value of k. The cut-off frequency simply demarcates frequency ranges where the spatial character
of the mode shape changes functional form.
The first four mode shapes of the strip are shown in Fig. 4 at the illustrative value k ¼

5000N=m2 (the normalization scheme for the eigenfunctions is described below in Eq. (33)).
Because of the strip’s convection, the eigenfunctions are complex, and they introduce a spatial
phase shift to the strip’s vibration. The shapes are further distorted relative to those of an un-
guided traveling strip owing to the constraints that are imposed by the guides. The elastic
foundation segments reduce the modal displacement in the guided regions, and shift regions of
higher amplitude to the un-guided spans. Fig. 5 depicts the manner in which the magnitudes |c| of
the first three complex mode shapes vary with the foundation’s stiffness. At k ¼ 0, the mode
shapes are proportional to

c ¼ sin
npx

2ðaþ bþ cÞ

� �
exp i

npvx

2vcðaþ bþ cÞ

� �
, (22)

where n ¼ 1; 2; . . . . Likewise, the natural frequencies are integer multiples and well-separated
from one another as indicated in Fig. 3. When the stiffness is increased to k ¼ 2000N=m2, the
frequencies remain distinct but are separated from one another by only 14%. In turn, the strip’s
M
od

e 
1

M
od

e 
2

M
od

e 
3

-10 -5 0 5 10
Position, x (cm)

M
od

e 
4

Fig. 4. First four mode shapes of the guided strip; k ¼ 5000N=m2. Real components are shown in bold line type, and

imaginary components in light line type. The locations of the guides are indicated by the hatched regions.
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displacement is reduced in the first and second modes over the guided regions as indicated
in the second row of Fig. 5. At the higher foundation stiffness of k ¼ 5000N=m2, the first
and second natural frequencies are separated by only 2%. In the third row of Fig. 5, the
first and second modes become qualitatively similar in appearance. Each has reduced
displacements over the guides and the central un-guided span, and these modes are differentiated
primarily by phase differences in the un-guided spans. For sufficiently high stiffness, the first two
modes coalesce in frequency and are characterized by large motions in the outlying spans, with
little or no motion occurring over the guides and the central free span. The third mode, of distinct
frequency, is characterized by large amplitude motion in the central span. A similar structure
exists for the next three vibration modes, with the fourth and the fifth frequencies coalescing
while the sixth remains distinct. The qualitative character of higher modes repeats in such
groups of three.
Fig. 6 depicts the effect of the strip’s transport speed on its natural frequencies, and on the cut-

off frequency. The excitation frequencies corresponding to different wavelengths of edge defect
are also shown in the figure as load lines, as described in the following section. The natural
frequencies of the strip-guide system and oc decrease monotonically with v. The first two natural
frequencies differ by less than 3% when the tape is stationary, and coalesce further as the tape
transport speed increases. The first three natural frequencies are below the cut-off frequency over
much of the speed range shown in Fig. 6, and they differ in functional form from the higher modes
following Eqs. (16)–(18).
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4. Response to traveling wave loading

The forced response to moving load excitation associated with a harmonic edge defect is
considered next. The eigenfunctions c are not orthogonal with respect to M, G, and K
individually, but the equation of motion can be re-cast in an alternative format that is amenable to
modal analysis. With the definition of the state and excitation vectors

w ¼
u;t

u

� 	
, (23)

q ¼
f

0

� 	
(24)

the equation of motion is written in the first-order form

A w;t þ B w ¼ q (25)

with the matrix differential operators

A ¼
M O

O K


 �
, (26)

B ¼
G K

�K 0


 �
. (27)
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Here the underscore denotes either a vector or matrix quantity. Operator A is symmetric, and B is
skew-symmetric, with respect to the inner product

g
1
; g

2

� �
¼

Z aþbþc

�ðaþbþcÞ

gT

2
g
1
dx, (28)

which is defined in terms of vector test functions g1 and g2 that satisfy zero displacement
conditions at the supports. Free vibration solutions

wðx; tÞ ¼ elt fðxÞ (29)

satisfy the eigenvalue problem

lAfþBf ¼ 0 (30)

for the eigenvalue l and vector eigenfunction f. In terms of the scalar c, the state representation
of each mode is

f ¼
lc

c

( )
. (31)

With ln ¼ ion for nX1, the on are real, positive, and ordered in an increasing sequence. To
represent the modal response in a compact manner, the series is extended to negative indices with
the definitions

l�n ¼ l̄n and f
�n
¼ f̄

n
(32)

for n ¼ 1; 2; . . . ; where the overbar denotes complex conjugation. The state eigenfunctions are
normalized with respect to A, and they are orthogonal with respect to operators A and B
following

Af
n
;f

m

� �
¼ dnm, (33)

Bf
n
;f

m

� �
¼ �lndnm (34)

for n, m ¼ �1;�2;�3; . . . .
The response of the strip is expressed as the expansion

wðx; tÞ ¼
X

n¼�1;�2...

ZnðtÞfn
ðxÞ (35)

and the generalized coordinate for each mode responds according to

ZnðtÞ ¼ Znð0Þe
lnt þ

Z t

0

elnðt�tÞNnðtÞdt. (36)

Here the initial values of the modal coordinates are given by

Znð0Þ ¼ ðA w0;fn
Þ, (37)
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where w0 ¼ wðx; 0Þ, and the modal forces are

NnðtÞ ¼ ðq;fn
Þ. (38)

In the present case, the excitation associated with interaction between the strip’s edge and the
guides is given in complex form by

f ðx; tÞ ¼ f 0ðxÞe
iot þ c:c:, (39)

where the excitation frequency is

o ¼
2pv

L
(40)

and the notation ‘‘c.c.’’ denotes complex conjugates of the preceding terms. Following Eq. (9), the
excitation’s spatial distribution is

f 0 ¼ �
1

2
k� exp �i

2p
L

x

� �
HðxÞ. (41)

The steady-state forced response of the strip to the moving edge load then becomes

uðx; tÞ ¼ eiot
X

n¼1;2;...

f 0;cn

� �
1� o=on

cnðxÞ þ
f 0; c̄n

� �
1� o=on

cnðxÞ

 !
þ c:c. (42)

for o 6¼on.
From the standpoint of the steady-state forced response amplitude, the relative lengths of the

strip’s guided and un-guided spans, and their relation to the wavelength of the edge imperfection,
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Fig. 7. Deflection of the strip at various time instants over one cycle of excitation; L ¼ 250mm. The locations of the

guides are indicated by the hatched regions.
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Fig. 8. Deflection of the strip at various time instants over one cycle of excitation; L ¼ 120mm. The locations of the
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are of particular interest. The strip’s deflections at a number of time instants spaced over one cycle
of excitation are shown in Figs. 7, 8, 10 and 11 for various wavelengths of the edge’s imperfection.
In Fig. 7, where L ¼ 250mm and the amplitude of the defect is 1 mm, the strip’s peak amplitude

at mid-span is 0.66mm. For the longer-wavelength defects, the strip responds nearly statically, and
its peak amplitude is similar to the magnitude of the edge defect itself. In Fig. 8, the defect’s
wavelength has been reduced to L ¼ 120mm. In this case, the maximal response along the strip is
similar to that in Fig. 7, although the magnitude at mid-span is substantially reduced. The
response is driven predominantly by the second vibration mode, for which the mid-point of the
strip is a node, and the peak amplitude at mid-span is considerably lower than the magnitude of
the imposed edge defect.
Fig. 9 depicts the manner in which the strip’s response amplitude at mid-span changes over a

wide range of imperfection wavenumbers 2p/L. Here the dimensions of the spans and other
parameters are held constant at the nominal values of Table 1. Certain wavenumbers exist at
which the amplitude of the strip’s vibration at the mid-span point vanishes, while for other
wavenumbers, the response amplitude is maximized. Near wavenumbers 360 and 420m�1 for the
parameters considered here, the strip resonates and the response is singular.
In Fig. 10 for wavelength L ¼ 33mm, the response is driven by the fourth mode, and the strip’s

deflection at mid-span is reduced to less than 0.4% of the excitation’s amplitude. For L ¼ 15mm
in Fig. 11, resonance is excited and the peak amplitude at the mid-span is much greater than the
amplitude of the edge defect. The response is dominated by the third mode, with the nodal points
lying at the edge of each guide that is closer to the fixed supports, and the mid-point of the strip
being an anti-node. The operating points corresponding to the responses shown in Figs. 7, 8, 10
and 11 are highlighted in Fig. 9.



ARTICLE IN PRESS

-10 -5 0 5 10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Position, x (cm)

D
is

pl
ac

em
en

t, 
u 

(µ
m

)

Fig. 10. Deflection of the strip at various time instants over one cycle of excitation; L ¼ 33mm. The locations of the
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Fig. 9. Amplitude of steady-state vibration at the strip’s mid-span point as a function of the edge imperfection’s

wavenumber; x ¼ 0. The other parameters are held constant at the values listed in Table 1. The data points marked on

the curve correspond to the motions depicted in Figs. 7, 8, 10 and 11.
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In some applications, it is desirable for a designer to select the geometry of the guides in order
to reduce vibration occurring at a particular location of interest, to the extent that the wavelength
of the edge defect is known from the specifics of the manufacturing process. When the edge
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Fig. 11. Deflection of the strip at various time instants over one cycle of excitation; L ¼ 15mm. The locations of the

guides are indicated by the hatched regions.

2

3

4

5

6

2

3

4

5

6

0

0.5

1

Center span length, 2c (cm)

Guide length, b (cm)

M
id

sp
an

 d
is

pl
ac

em
en

t 
am

pl
itu

de
, 

u 0
 (

µm
)

Fig. 12. Amplitude of steady-state vibration of the strip’s mid-span point as a function of the central span’s length 2c

and the guide’s length b; x ¼ 0 and L ¼ 33mm. The other parameters are held constant at the values listed in Table 1.
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imperfection arises from the slitting process during a manufacturing operation, the wavelength is
often associated with the circumference of the slitting knives. In such an application, the design
objective would be to minimize the vibration amplitude at locations where important processing
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Fig. 13. (a) Amplitude of steady-state vibration at the strip’s mid-span point as a function of the center span’s length 2c

and the guide’s length b; x ¼ 0 and L ¼ 15mm. The other parameters are held constant at the values listed in Table 1.

(b) Section taken at the nominal value of the guide’s length.
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steps occur. In the case of a magnetic tape library, for instance, the width b of the guides, and the
dimensions a and c of the free spans, can be chosen to reduce vibration amplitude at the location
of the read/write heads. Thus, the designer could have leeway in selecting the transport path’s
geometry, even while such other parameters as speed, tension, and media wavelength are
constrained by other considerations.
Figs. 12 and 13 depict the effect of varying dimensions b and c on the forced response amplitude

at mid-span, illustratively for wavelengths L ¼ 33 and 15mm. In these parameter studies, the total
length of the strip is held constant at the nominal value of Table 1. For longer wavelengths, the
response amplitude is largely insensitive to the foundation’s length b, but it decreases
monotonically as the center span’s length 2c is increased. In that instance, the imperfection’s
wavelength is larger than the strip’s total length, and less than one wavelength of the disturbance
can extend across the center span’s length. The response amplitudes for imperfection wavelengths
33mm (Fig. 12) and 15mm (Fig. 13), however, do exhibit distinct local minima and peaks as b

and c are varied. The displacement amplitudes are insensitive to the length of the elastic
foundations to the extent that the effect of the foundation guides is to restrict the amplitude of
motion over the guided span. The excitation wavelength of 15mm excites a resonance of the
system that accounts for the magnification of the response at a center span length of close to
3.9 cm. A section of Fig. 13(a) taken at the nominal value of the guide length b (Fig. 13(b))
indicates that zeros exist in the response for center span lengths near 3.2 and 4.7 cm, which are
nearly integer multiples of the excitation’s wavelength. In short, dimensional changes to a
transport system’s geometry can be optimized to reduce vibration of moving media that are
positioned by edge guides.
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5. Summary

This paper emphasizes the steady-state forced vibration of moving media in the presence of
geometric edge imperfections that act as a source of excitation when the medium moves over a
guide. This excitation takes the functional form of traveling wave loading to the extent that it
convects with the medium. The response is found formally by employing a modal analysis
procedure for gyroscopic dynamic systems. The nature of the response is influenced by a cut-off
frequency which is shown to be distinct from the natural frequencies of the strip-foundation
system. Parameter studies are performed with system variables such as foundation stiffness,
transport speed, and strip and guide geometries to identify those design variables that significantly
influence the response, and that can be optimally adjusted to minimize vibration at certain critical
locations.
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